Difference between revisions of "Quantum Control"

From KAIST Quantum Computing Lab Wiki
Jump to navigationJump to search
Line 1: Line 1:
 
== Two photon absorption in strong field ==
 
== Two photon absorption in strong field ==
  
[[Image:quantum control.jpg|center|400px]]
+
[[Image:quantum control.jpg|center|500px]]
  
 
A shaped ultrafast pulse makes it possible to stir a quantum system and thus control a quantum process via light-matter interaction. Two photon absorption(TPA) processes between two states is one of famous systema of coherent control. We study coherent control schemes for a TPA process in a strong field. For a optimal coherent scheme to enhance TPA, strong field effects(dynamic Stark shift) have to be considered.
 
A shaped ultrafast pulse makes it possible to stir a quantum system and thus control a quantum process via light-matter interaction. Two photon absorption(TPA) processes between two states is one of famous systema of coherent control. We study coherent control schemes for a TPA process in a strong field. For a optimal coherent scheme to enhance TPA, strong field effects(dynamic Stark shift) have to be considered.

Revision as of 10:39, 10 September 2009

Two photon absorption in strong field

Quantum control.jpg

A shaped ultrafast pulse makes it possible to stir a quantum system and thus control a quantum process via light-matter interaction. Two photon absorption(TPA) processes between two states is one of famous systema of coherent control. We study coherent control schemes for a TPA process in a strong field. For a optimal coherent scheme to enhance TPA, strong field effects(dynamic Stark shift) have to be considered.

Setup dazzler.jpg
Fig.1: schematic diagram of the experimental setup

In weak field reigme, a transform-limited pulse is a optimal pulse to enhance a TPA. But it is not a optimal solution in strong field. The dynamic Stark shift disturbs a TPA process.

Intensity total v4.jpg
Fig.2: fluoresence as a function of chirp rates and transform-limited intensity of pulses

A linear chirped pulse is more optimal than a transform-limited pulse.


Detuning total v6.jpg
Fig.3: fluorescence as a function of detuning and chirp rates