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We show that the Bell inequalities lead to a new type of linear-optical Deutsch algo-
rithms. We have considered the use of entangled photon pairs to determine probabilis-
tically two unknown functions. The usual Deutsch algorithm determines one unknown
function and exhibits a two to one speed up in a certain computation on a quantum com-
puter rather than on a classical computer. We found that the violation of Bell locality in
the Hilbert space formalism of quantum theory predicts that the proposed probabilistic

Deutsch algorithm for computing two unknown functions exhibits at least a 2
√

2(� 2.83)
to one speed up.
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1. Introduction

Quantum information processing and quantum computing have attracted much
interest in the science community because of the novel usage of quantum mechan-
ics in technological applications. Many ideas of quantum processors and comput-
ers were experimented in many architectures of physical systems, including ion
traps, neutral atoms, nuclear spins in magnetic resonance, semiconductor quantum
dots, and super-conducting resonators.1–5 Still the progress has been limited to a
few qubit operations and the performance is far from being practical. The ability
of quantum computers in outperforming their classical counterparts has not been
demonstrated.

In many physical systems, the preparation and change of quantum states, or
how to prepare entanglements and how to maintain coherence, is a more difficult
task than how to wire logics quantum-mechanically. However, in quantum com-
puting with linear optical systems, it is relatively easy to deal with entanglement
and decoherence. For this reason, linear optical quantum computings or the linear
interactions of photons with matters are often adopted for the implementation of
N -qubit quantum algorithms.6,7 Especially entanglement is an important aspect
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that a quantum mechanical device can have, and the quantum information car-
ried by an entangled state like Einstein, Podolsky, and Rosen (EPR) state over-
comes some of the limitations of classical information used in communication and
cryptography.8–13 Recently, there have been several attempts to use single-photon
two-qubit states for quantum computing. Oliveira et al. implemented the Deutsch
algorithm with polarization and transverse spatial modes of the electromagnetic
field as qubits.14 Single-photon Bell states were prepared and measured by Kim.15

Also the decoherence-free implementation of Deutsch algorithm using such single-
photon two logical qubits.16 Although such single-photon two-qubit implementa-
tions are not scalable, the quantum gates necessary for information processing can
be implemented deterministically using only linear optical elements.

Often a demonstration of quantum algorithm, which is performed with possibly
mixed quantum states, is presented without a proper mathematical theory for the
analysis of experimental data, or sometimes with a rather complicated quantum
tomographical state analysis. However, if the output state of an experiment under
study should be an entangled state, we can choose to use Bell inequalities.17 It is
a sufficient condition to demonstrate a negation of Bell locality and the detection
of entanglement. We can consider the following question. Is there a relationship
between the negation of Bell locality and the performance of such quantum algo-
rithm that can be implemented by a single photon? Interestingly the answer is yes.

In this paper we have devised an experimental scheme to obtain simultaneous
and nonlocal answers from Deutsch problem with two unknown functions. Espe-
cially we elaborate the use of entanglement in processing this quantum algorithm.
The advantage of using an EPR pair of photons (two-photon two-qubit states) in
quantum computing algorithm is analyzed with Bell inequalities in quantum theory.
We show that a set of answers of the given Deutsch problem, with two unknown
functions, statistically shows a violation of Bell locality in the Hilbert space formal-
ism of quantum theory. It turns out that the negation of Bell locality exhibits a 2

√
2

to one speed up at least. We, thus, observe a highly nonlocal effect and it leads the
entangled answers in a network of pair quantum computers to provide enhanced
information compared with its classical counterpart. An important note here is that
there must be probabilistic errors in answers which appear due to the imperfection
of the photon detection and defects in optical devices. Thus it is necessary to take
into account many measurements and what we can do is only to analyze prob-
abilistically in real experimental situation. By applying the maximum likelihood
principle, the answer to the Deutsch problem is estimated probabilistically.

In the following sections, we introduce a method of linear optical quantum
computing of Deutsch problem. In Sec. 2, the method that utilizes two-photon
two-qubit entanglement is discussed. This method allows statistical analysis of the
average value of Bell operator. In order to overcome the imperfection of the photon
detection and possible defects in optical devices, the fidelity20 of the method is
analyzed. During the analysis of Bell operator or the fidelity to EPR state in Sec. 3,
the separable states are distinguished from the entangled states. It is well-known
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that the fidelity which is larger than 1/
√

2 to EPR state is a sufficient condition
for a negation of Bell locality in the Hilbert space formalism of quantum theory.
We can say that our Deutsch scheme succeeds with the probability of the value of
the lower bound of fidelity at least under the condition where the fidelity is larger
than 1/

√
2. A short summary and conclusion follows in Sec. 4.

2. Deutsch Algorithm with Two Unknown Functions

The Deutsch algorithm determines whether a given function, f(x), on a binary
number, x, is either balanced or constant, where the function is constant if the
function outputs f(0) and f(1) are the same and balanced if not. The unknown
function is defined by

Uf |x〉y ≡ |x〉y⊕f(x). (1)

In a classical computer, the answer is obtained by calculating f(0) and f(1), while
in a quantum computer only a single calculation with a superposition state of 0 and
1 is necessary. Hence, if f(H) = f(V ) then the output label should not depend on H

and V , whereas if f(H) �= f(V ) then the output label should depend on H and V .
As shown in Fig. 1, Deutsch algorithm may be implemented using a two-photon

state. The two qubits in channels (B) and (C) represent the polarization and
momentum (or optical path) states of the photon pair. The horizontally polarized
state in channel (B) undergoes a Hadamard gate (H) and forms a superposition
state of polarization states. Then, a coherent superposition state of the optical
paths of the photon is created pertained to the polarization state, by a polariza-
tion beam splitter, for example. The CNOT operation is performed conditionally
if a balanced function is chosen and if a constant function is chosen, an identity

Fig. 1. The schematic of Deutsch algorithm with an entangled two-photon state. The classical
channel (A) represents the type of the chosen Deutsch function, |0〉 for a balanced function and
|1〉 for a constant function. The polarization state and the optical path are stored in channel (B)
and (C) respectively. In channel (B), |0〉 denotes a horizontal polarization state and |1〉 denotes a
vertical polarization state. In channel (C), |0〉 (|1〉) denotes the optical path denoted by 2 (2′) or
a(b) and toward D2 (D2′) shown in Fig. 2. The channel (D) is for the other photon of the photon
pair which is used for a time correlation detection.
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operation (I) is performed. Corresponding three qubit operation is Toffoli gate, or
C-CNOT gate. The polarization state goes through another Hadamard gate and
then another CNOT gate but in this case the control and target bits are exchanged.
The final qubit state of the photon in the channel (D) is collapsed and detected
either at the detector D2 or D2′, to reveal the type of the Deutsch function: whether
the unknown function was balanced or constant. The other photon, in the verti-
cal polarization, is used as a gate function for the coincidence measurement. This
is reminiscent of Oliveira’s scheme in Ref. 14, except that we discuss quantum-
mechanical advantage of wiring two of those Deutsch algorithms processed by an
entangled two-photon state.

We describe the experimental scheme of which is shown in Fig. 2. This setup
has two Deutsch algorithms, shown in Fig. 1, in the left and right sides of the
setup. We note that the two functions are not simultaneously processed but prob-
abilistically processed one by one. Yet the statistical analysis to be described in
Sec. 3 proves a processing speed-up due to quantum mechanical properties. The
unknown functions A and B in the gray boxes in Fig. 2 represent the Toffoli gate in
Fig. 1. The half-wave-plates labeled from HWP1 to HWP5, oriented at θ = 22.5◦,
are Hadamard gates that change a horizontal (vertical) polarization state into a
45◦ (−45◦) polarization state. The half-wave-plates labeled as HWP in Fig. 2 are
oriented at θ = 45◦ and interchange the polarization state of the photon in one
optical path (b) only and not one in the other path. Corresponding operation is
the CNOT gate with the states of the optical path as the control bits and with the
polarization states as the target bits.

In our implementations, we assign the truth values 0 and 1 as |H〉 ↔ |0〉, |V 〉 ↔
|1〉. The initial photon becomes a coherent superposition state, (|0〉2 + |1〉2)/

√
2

Fig. 2. The Deutsch algorithm with a two-photon entangled state.
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after the first half-wave-plate (HWP1 or HWP4). Then at the polarization beam
splitter (PBS2 or PBS5), the photon path is determined by the polarization state,
or (|0〉2 + |1〉2′)/

√
2. Now the coherent superposition state of polarization states as

well as in the two different optical paths is prepared. Once again, the polarization
qubit undergoes a Hadamard gate, at HWP2 (or HWP5), before the photon enters
the Toffoli gate, or the conditional-CNOT gate constructed with the optics in the
gray boxes in Fig. 2. HWP3 (or HWP6) performs a Hadamard operation and HWP
performs a CNOT operation with the polarization state as its target bit. Then,
the photon with the horizontal polarization reaches D2 and that with the vertical
polarization reaches D2′.

In qubit notations of |px〉 where p and x are the polarization qubit and the
optical path qubit, respectively, the described process in Fig. 1 becomes

UCN′UH1

{
UCN

I

}
UH1UCNUH1 |00〉 =

{|1+〉
|0+〉

}
, (2)

where UH1 = H⊗ I, UCN, and UCN′ are the Hadamard gate acting on the polar-
ization qubit, a CNOT gate with polarization control bit, and a CNOT gate with
polarization target bit, respectively. |±〉 denotes (|0〉± |1〉)√2. The top and bottom
row of the parenthesis represents the balanced and constant Deutsch function cases,
respectively.

The reason we use other photon, in channel (D), for the coincident measurement
is to determine the lower bound of the success probability of the Deutsch algorithm
and to see a violation of Bell locality in the Hilbert space formalism of quantum
theory. In this section, we consider an ideal case, i.e. there is not any experimental
noise to simplify the discussion. However, in real experimental situations, we have
to take error answers into account due to experimental imperfections. Thus, many
runs of experiments are evidently necessary. Hence, we shall discuss a method using
Bell operators to analyze experimental data. The method of such analysis will be
presented in Sec. 3.

When two Deutsch functions, A and B, are processed together, there are 8
different channels, 4 for the function A and 4 for the function B. In the following
subsections, we provide a step-by-step validation of the process described in Eq. (2)
and the combined result of two of such processes. We first start with the initial state
of photons, an EPR photon pair, from the BBO crystal, as:

1√
2
(|0〉1|1〉1′ − |1〉1|0〉1′), (3)

where the photon paths 1 and 1′ are shown in Fig. 2. Now we follow the time
evolution of each of photons.

2.1. Deutsch algorithm with a function A

Assume that the case where the state |0〉1|1〉1′ is used to determine the function A
shown on the left side of Fig. 2. The unknown function A is determined as constant
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or balanced. The vertically polarized photon along the path 1′ is measured as the
digital 1 at the detector D1, or |1〉1′ → |1〉D1, and the horizontally polarized photon
along the path 1 becomes |1〉1 → (|0〉1 + |1〉1)

√
2, hence the photon state becomes

H|0〉1|1〉1′ = |+〉1|1〉D1. (4)

The vertically polarized photon is detected by the detector D1 as

σD1
z = −1, (5)

and, therefore, the state of the photons |+〉1|1〉D1 is projected into |+〉1. The polar-
izing beam splitter (PBS2) changes each of states as |0〉1 → |0〉2, |1〉1 → |1〉2′ . Hence
we have the coherently superposed states of a photon in two paths 2 and 2′ as,

|+〉1 → 1√
2
(|0〉2 + |1〉2′), (6)

or in the two-qubit notation |px〉, (|00〉 + |11〉)/√2. Then the half-wave plate
(HWP2), with the optic axis oriented at θ = 22.5◦, performs Hadamard opera-
tions on the polarization qubits, or H⊗ I(|00〉 + |11〉)/√2, and we get

1√
2
(| + 0〉 + | − 1〉) =

1√
2
(|0+〉 + |1−〉). (7)

A dove prism (DP) is the most important part in implementing the given func-
tions. The output polarization state of the dove prism rotates at twice the angular
rate of the rotation of the prism itself. So, if a dove prism inclines at 45◦ about
a vertical line, the image rotates at 90◦. Now we consider how a CNOT gate (cf.
Ref. 21) is implemented with the space and polarization degrees of freedom of a

PBS

DP

H

V

H

V

Fig. 3. An example of polarization-CNOT gates.
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photon. As shown in Fig. 3, a horizontally polarized photon is transmitted through
the polarization beam splitter. But a vertically polarized photon is reflected at the
polarization beam splitter. They propagate along different ways. The angle between
a vertical line and the axis of the dove prism is 45◦ in the case of a horizontally
polarized photon, but −45◦ in the other case. So this configuration implements such
changes of photon paths: 2 → a, 2′ → b when the polarization is horizontal. 2 → b,
2′ → a when the polarization is vertical. Here a and b are the labels for the paths
toward detectors. Output photons labeled by a and b are detected by D2 and D2′.

2.1.1. Balanced function case

In the balanced function case, the changes of the polarization states of the photon
due to the dove prism are:

|0〉2 → |0〉a, |0〉2′ → |0〉b,
|1〉2 → |1〉b, |1〉2′ → |1〉a,

(8)

of which the operation is a controlled NOT with the polarization and path bits as
the control and target bits. We denote the 2-a path digital 0 and 2′-b digital 1.
Thus, after the dove prism, the qubits (7) becomes (|0+〉−|1−〉)/√2. After HWP3,
we have (|01〉+ |10〉)/√2 and after HWP(θ = 45◦), we get (|10〉+ |11〉)/√2. Hence,
we detect only vertically polarized photons in D2. This implies

(σa
z = σb

z =)σD2
z = −1. (9)

Hence from Eqs. (5) and (9), the value of observable σD1
z σD2

z should be +1. This
is one of the success result of a single run of the experiment, i.e.

σD1
z σD2

z = +1. (10)

2.1.2. Constant function case

After the dove prism, polarized photon states change as follows

|0〉2 → |0〉a, |0〉2′ → |0〉b,
|1〉2 → |1〉a, |1〉2′ → |1〉b.

(11)

Similarly, we get after HWP3 and HWP(θ = 45◦) (|00〉+|01〉)/√2. Hence, we detect
only horizontally polarized photons in D2. This implies

(σa
z = σb

z =)σD2
z = +1. (12)

Hence from Eqs. (5) and (12), the value of observable σD1
z σD2

z should be −1. This
is one of the success result of a single run of the experiment, i.e.

σD1
z σD2

z = −1. (13)

Thereby, we can determine whether a given function (A) is constant or balanced
with utilizing the state |0〉1|1〉1′ .
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2.2. Deutsch algorithm with a function B

Similarly we can assume that the case where the state |1〉1|0〉1′ is contributed
to our Deutsch algorithm. In this case, the unknown function (B) is determined
in constant one or balanced one. At the detector D3, the photon state becomes
(|0〉1 + |1〉1)|1〉D3/

√
2. So a vertically polarized photon is detected by the D3 detec-

tor. That is, σD3
z = −1. Therefore in the balanced function case, the changes of

the polarization states of the photons due to the dove prisms, HWP6 and the last
HWP (θ = 45◦) are: (|10〉 + |11〉)/√2. Hence, we detect only vertically polarized
photons in D4. This implies (σa

z = σb
z =)σD4

z = −1. Hence the value of observable
σD3

z σD4
z should be +1. This is one result of a single run of the experiment, i.e.

σD3
z σD4

z = +1. (14)

In the constant function case, similarly we get (σa
z = σb

z =)σD4
z = +1. Hence

the value of observable σD3
z σD4

z should be −1. This is one of the success result of a
single run of the experiment, i.e.

σD3
z σD4

z = −1. (15)

Thereby, we can determine whether a given function (B) is constant or balanced
with utilizing the state |1〉1|0〉1′ .

Thus, we can determine whether either a given function (A) or (B) is constant or
balanced with utilizing EPR entanglement. Clearly, many EPR experiments eval-
uate two functions simultaneously, i.e. Deutsch algorithm exhibiting a four to one
speed up. In the next section, we assume the existence of experimental imperfections
and we present the method to determine the lower bound of the success probability
of our scheme presented by Fig. 2. Especially, a violation of Bell locality in the
Hilbert space formalism of quantum theory ensure that the success probability is
larger than 1/

√
2.

3. Bell Operator Analysis

In the previous sections, we have assumed that the initial state is a two-photon
entangled state |Ψ〉 = (|V 〉z |H〉z−|H〉z|V 〉z)/

√
2. We now insert a polarizer oriented

at 45◦ and a HWP (λ/2 plate) in front of each detector. See Fig. 4. This allows the
measurement of polarized photon states described in polarized basis x. That is, one
can measure an observable σx in this way. Due to the feature of the initial state,
the same situation occurs in the ideal case. The situation is as follows. One can see

|H〉x =
|H〉z + |V 〉z√

2
,

|V 〉x =
|H〉z − |V 〉z√

2
.

(16)
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Fig. 4. A setup of measurement of polarization in z basis and in x basis.

Let us rewrite the initial state |Ψ〉 using x polarization basis. We have |Ψ〉 =
(|V 〉x|H〉x −|H〉x|V 〉x)/

√
2. This implies that the scheme mentioned in the preced-

ing section works in the same way. However, we have to take the imperfection of
the photon detection and defects in optical device into account.

Here we introduce Bell operators:

BA =
1√
2
(σD1

x σD2
x + σD1

z σD2
z )

BB =
1√
2
(σD3

x σD4
x + σD3

z σD4
z ).

(17)

First of all, we check if both of the following Bell inequalities17 are violated:

|〈BA〉avg| ≤ 1, |〈BB〉avg| ≤ 1. (18)

When both of the Bell inequalities are violated, we can ensure that the success
probability of our Deutsch algorithm is larger than 1/

√
2 in the experiment as

shown below.
We note here that if experimental error exists, one could misjudge the unknown

function. For instance, it is possible that actually observed data says that the
unknown function is constant even though the unknown function is in fact bal-
anced. Such a wrong case occurs when experimental error is larger than a half.
Nevertheless, our analysis rules out such a wrong case since a violation of two Bell
inequalities ensures the success probability of our scheme is larger than 1/

√
2.

In Table 1, we summarize the relationship between a violation of Bell inequalities
and the two types of functions (A) and (B).

Table 1. The rationship between the the
violation of Bell inequalities and the two
kinds of functions (A) and (B).

A B

Balanced 〈BA〉avg > 1 〈BB〉avg > 1
Constant 〈BA〉avg < −1 〈BB〉avg < −1
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The situation is as follows. First, we consider the case in which the unknown
function (A) is balanced. The fidelity to (|H〉D1|H〉D2 + |V 〉D1|V 〉D2)/

√
2 in some

quantum state ρ (the success probability) is bounded as20〈
BA√

2

〉
≤ fA

b ≤ 〈BA/
√

2〉 + 1
2

. (19)

In an ideal case, we have 〈BA〉 =
√

2. In the presence of experimental noise, we
have

〈BA〉 =
1√
2
(〈σD1

x σD2
x 〉avg + 〈σD1

z σD2
z 〉avg). (20)

Hence, we can determine the range of the value of the success probability fA
b in

the presence of experimental noise. Thus, a violation of Bell inequalities implies the
success probability fA

b is larger than 1/
√

2 at least. We can analyze the case where
the unknown function (B) is balanced in a similar way.

Next, we consider the case where the unknown function (A) is constant. The
fidelity to (|H〉D1|V 〉D2 − |V 〉D1|H〉D2)/

√
2 in some quantum state ρ (the success

probability) is bounded as

−
〈

BA√
2

〉
≤ fA

c ≤ −〈BA/
√

2〉 + 1
2

. (21)

In the ideal case, we have 〈BA〉 = −√
2. In the presence of the experimental noise,

we have

〈BA〉 = − 1√
2
(〈σD1

x σD2
x 〉avg + 〈σD1

z σD2
z 〉avg). (22)

Hence, we can determine the range of the value of the success probability fA
c in

the presence of experimental noise. Thus, a violation of Bell inequalities implies the
success probability fA

c is larger than 1/
√

2 at least. We can analyze the case where
the unknown function (B) is constant in a similar way.

We have two functions (A) and (B). The global success probability of our
Deutsch algorithm is given by

Psuccess =
fA

k1
+ fB

k2

2
(k1, k2 ∈ {b, c}). (23)

Clearly, this value Psuccess is equal to the global probability with which a perfectly
entangled state is detected.

As an example, suppose that the case where conditions 〈BA〉avg > 1 and
〈BB〉avg < −1 are met. We can know that the unknown function (A) is balanced
and (B) is constant. In this case, our Deutsch scheme presented in Fig. 2 succeeds
with the probability of the value (〈BA/

√
2〉avg + 〈−BB/

√
2〉avg)/2 at least. This

value is equal to the lower bound of the probability with which a perfect entan-
gled state is detected, i.e. the lower bound of the global success probability of our
Deutsch algorithm. We can analyze other cases (there are four cases in fact) in the
same way. So we can probabilistically determine whether each of two functions is
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constant or balanced simultaneously, based on a violation of two Bell inequalities
and the evaluation of the success fidelity with utilizing two-photon entangled state.
This implies probabilistic Deutsch algorithm exhibiting a four to one speed up in
ideal case. A violation of Bell locality in Hilbert space says probabilistic Deutsch
algorithm exhibiting a 2

√
2 to one speed up at least.

4. Summary and Conclusion

In summary, we have presented a linear-optical implementation of quantum algo-
rithm with the use of entanglement of photon states. For the process of Deutsch
algorithm, two-photon two-qubit entangled states have been considered in conjunc-
tion with a polarization-based C-NOT gate. The algorithm presented here is the
only algorithm which incorporates the Deutsch algorithm with a violation of Bell
inequalities, to date. A violation of Bell inequalities ensures the success of prob-
abilistic Deutsch algorithm with two unknown functions which exhibits at least a
2
√

2 to one speed-up probabilistically. The global nonlocal effect leads us to make
a quantum computer faster than usual ones.
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