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Quantum-Enhanced Simulated Annealing Using Rydberg
Atoms

Seokho Jeong, Juyoung Park, and Jaewook Ahn*

Hybrid quantum-classical algorithms offer a promising strategy for tackling
computationally challenging problems, such as the maximum independent
set (MIS) problem that plays a crucial role in areas like network design and
data analysis. This study experimentally demonstrates that a Rydberg hybrid
quantum-classical algorithm, termed as quantum-enhanced simulated
annealing (QESA), provides a computational time advantage over standalone
simulated annealing (SA), a classical heuristic optimization method. The
performance of QESA is evaluated based on the approximation ratio and the
Hamming distance, relative to the graph size. The analysis shows that QESA
outperforms standalone SA by leveraging a warm-start input derived from two
types of Rydberg atomic array experimental data: quench evolution (QE)
(implemented on the QuEra Aquila machine) and adiabatic quantum
computing (AQC) (using the experimental dataset archived in K. Kim et al.,
Scientific Data 2024, 11, 111). Based on these results, an estimate is provided
for the maximum graph size that can be handled within a one-day
computational time limit on a standard personal computer. These findings
suggest that QESA has the potential to offer a computational advantage over
classical methods for solving complex optimization problems efficiently.

1. Introduction

Quantum computing holds the promise of tackling certain com-
putational problems on a scale beyond the reach of classical
counterpart.[1–3] Various physical systems are currently being
actively investigated for their potential in advancing quantum
computing.[4–8] Among these, Rydberg atom arrays have recently
gained attention as a promising platform, offering some out-
standing features, such as scalability, high qubit connectivity, dy-
namic reconfigurability, and, most notably, an intrinsic Hamilto-
nian that naturally maps to the maximum independent set (MIS)
problem.[8–12]

The MIS problem involves finding the largest possible inde-
pendent set (MIS) of vertices for a given graph, G(V, E), where
V represents the set of vertices and E represents the set of
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edges, ensuring that no two vertices in the
MIS are connected by an edge in E. This
problem has numerous practical applica-
tions, including network design, social net-
work analysis, and resource allocation.[13–18]

However, solving large instances of theMIS
problem efficiently remains a significant
challenge for classical algorithms, as it is
generally classified as a non-deterministic
polynomial-time (NP)-complete problem in
computational complexity theory.[19] Quan-
tum computing, particularly within the
framework of adiabatic quantum comput-
ing (AQC) Rydberg atom arrays, is con-
sidered as a strategy to tackle this prob-
lem efficiently and many applications to
MIS graphs have been documented.[20–29]

A hybrid quantum-classical algorithm
has been recently proposed as an ap-
proach to overcoming the computational
challenges of hard problem instances, such
as the MIS problem.[30,31] In the context
relevant to this paper, experimental results
from a Rydberg atom array can be uti-
lized as a warm-start input for classical

optimization methods, such as the simulated annealing (SA).
This approach, maybe referred to as quantum-enhanced simu-
lated annealing (QESA), can effectively combine the advantages
of both classical and quantummethods–leveraging the vast algo-
rithmic resources of classical computing and the massive com-
putational parallelism inherent in quantummany-body systems.
As a result, QESA has the potential to reduce computational time
compared to the standalone SA method when addressing the
MIS problem.[31]

In this paper, we aim to demonstrate the advantage of QESA
using experimental data obtained from both adiabatic quantum
computing (AQC) (based on previously reported result[24]) and
quench evolution (QE) experiments newly newly executed on
the QuEra Aquila platform[32]), employing Rydberg-atom arrays
at system sizes of approximately one hundred atoms. Specifi-
cally, we investigate the relationship between QESA’s computa-
tional performance and the Hamming distance of initial config-
urations, to show how QESA outperforms SA by utilizing the
quantum-experimentally optimized Hamming distance distribu-
tion, in contrast to the unoptimized distributions used in SA.
Building on these findings, we further explore the scalability of
QESA with respect to both system size and Hamming distance,
providing a numerical extrapolation of its potential to solve larger
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MIS problems within the limits of classical computational re-
sources.

2. Rydberg Atom Approach to the Maximum
Independent Set Problem

Rydberg atom arrays consist of neutral atoms trapped in optical
tweezers, where individual atoms are manipulated using laser-
induced excitations to Rydberg states.[8–11] A key feature of Ry-
dberg atom systems is the Rydberg blockade mechanism. Due
to strong dipole-dipole interactions between Rydberg atoms, two
neighboring atoms cannot be excited to the Rydberg state si-
multaneously whenever the atoms are closely displaced than the
blockade radius. This inherently enforces the independence con-
dition of the MIS problem, allowing for an efficient mapping of
graph problems to physical quantum systems.
The quantum Hamiltonian governing the Rydberg atom sys-

tem is expressed (in the unit of ℏ = 1) as:

ĤQuantum =
∑
j∈V

(Ω(t)
2

�̂�x
j − Δ(t)n̂j

)
+

∑
(j,k)∈E

C6

r6jk
n̂jn̂k (1)

where Δ(t) is the laser detuning parameter, Ω(t) is the Rabi fre-
quency,C6 is the van derWaals interaction coefficient,C6∕r6jk, that
accounts for the interaction between j and k-th atoms distanced
by rjk, �̂�

x
j is Pauli x operator acting on j-th atom, and n̂j is the Ry-

dberg occupation number operator (0 or 1) of j-th atom. Proper
tuning of Ω and Δ allows the system to evolve toward a solution
to the MIS problem.[27]

The experimental feasibility of solving the MIS problem with
Rydberg atom arrays has been tested,[20–29] following the formal
introduction of the relation between the Rydberg-atom Hamil-
tonian and the MIS problem.[12] For example, up to 289 atoms
were arranged in a 2D unit-disk graph[26], with edges defined
by the blockade radius, and by adiabatically sweeping the laser
detuning, the system evolved toward approximate MIS solu-
tions, in which the key finding is the superlinear quantum
speedup over classical methods like simulated annealing. Other
experiments including the implementation of Rydberg quantum
wires for nonlinear graphs,[22] unit-ball graph embedding us-
ing a 3D atom array,[20] and non-unit disk graphs,[21] among
others.
The MIS problem is an NP-complete class problem, al-

lowing reductions to other NP problems.[19] Leveraging this
NP-completeness of the MIS problem, Rydberg atom graphs
have been used to program the Boolean satisfiability (SAT)
problem,[23] integer factorization,[25] quadratic unconstrained bi-
nary optimization (QUBO),[28] and higher order unconstrained
binary optimization (HUBO) with hypergraphs.[33] Furthermore,
the maximum weighted independent set (MWIS) problem has
been explored with local light shifts.[29]

Many challenges remain, despite progress, which include
scalability, noise,[4,34,35] decoherence,[9] graph embedding con-
straints, and benchmarking against classical algorithms.[36]

While current experiments handle hundreds of atoms,[24,26,37]

scaling to thousands requires improved coherence times and er-
ror mitigation.[38] Errors from imperfect laser control and spon-
taneous emission degrade solution quality.[4,9,34] A local detun-

ing strategy is introduced, based on vertex connectivity,[39] to re-
duce errors and improve optimal solution probability. Graph em-
bedding remains a challenge,[40] with 3D Rydberg arrays pro-
posed for complex non-planar graphs.[21] Additionally, rigorous
comparisons with classical solvers, such as tensor networks,[36]

are needed. While quantum methods show advantages for cer-
tain graph instances, their performance depends on structural
properties.[41] Highly connected graphs remain difficult for quan-
tum solvers, highlighting the need for further research to identify
cases where quantum approaches consistently outperform clas-
sical methods.

3. Quantum-Enhanced Simulated Annealing
(QESA)

The procedure of the quantum-enhanced simulated annealing
(QESA) is illustrated in Figure 1a, which consists of four steps.
First, in the quantum computing step, a Rydberg-atom experi-
ment (AQC or QE) is conducted to generate a quantum solu-
tion for the MIS problem. Second, during the SA initialization
step, this quantum-derived solution is used to initialize the SA
process. Third, the iterative annealing step executes the SA algo-
rithm through successive iterations until a predefined final tem-
perature is reached. Finally, in the QESA solution extraction step,
the optimized solution is obtained upon completion of the an-
nealing procedure.
The cost Hamiltonian for the MIS problem is given by:

HMIS =
∑
j∈V

(−Δnj) +
∑
(j,k)∈E

Unjnk (2)

where the occupation number nj = 0, 1 is a binary variable asso-
ciated with vertex j ∈ V . The value nj = 1 indicates that vertex j is
included in the independent set, while nj = 0 indicates its exclu-
sion. The constants Δ and U are positive, with 0 < Δ < U. The
termΔnj lowers the energy when nj = 1, promoting the inclusion
of vertex j in the independent set. The term Unjnk penalizes the
inclusion of both vertices j and k in the independent set if they
are connected by an edge, thereby increasing the energy to en-
force the independence condition. Typically, the parameters are
normalized by setting Δ = 1. For specific graph structures, such
as King’s graphs (which represent the legal moves of a king on a
chessboard), a value of U = 11 is chosen to strongly penalize the
inclusion of adjacent vertices in the independent set.[26]

For the quantum part of the QESA operation, we utilize ei-
ther adiabatic quantum computing (AQC) or quench evolution
(QE). In AQC experiments, the quantum system is driven quasi-
adiabatically, gradually changing ĤQuantum in Equation (1) over
time. As long as the evolution is sufficiently slow, as per the
quantum adiabatic theorem, the system remains in the ground
state of the time-varying Hamiltonian.[42–45] At the end of this
evolution, measuring the atoms yields a result corresponding to
a low-energy state of HMIS, which provides an approximate so-
lution to the MIS problem. Ω(t) is chosen typically on the or-
der of 2𝜋 × 1 MHz and Δ(t) is changed from −2𝜋 × 4.0 MHz to
2𝜋 × 2.0 MHz. We use the Rydberg state |n = 71, S1∕2⟩ of of 87Rb
atoms, for which the van der Waals coefficient is C6(n = 71) =
2𝜋 × 1023 GHz ⋅ μm6. The corresponding interaction strength is
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Figure 1. a) The QESA procedure. b) Comparison of QESA vs. SA for AQC datasets. The approximation ratio (𝛼) is plotted for AQC-based QESA
(the y-axis) and compared with randomly initialized SA for the chosen graphs (the x-axis). A total of 924 graphs (atom arrangements) from the AQC
datasets (#8,#9, #10, and #11),[24] with sizes N = 60, 80, and 100 (number of vertices N ≡ |V|), are analyzed and represented by circular, diamond,
and pentagram scatter plots, respectively. Starting from the initial input (gray scatter plot), the SA algorithm progresses through epochs of 0.5N (blue
scatter plot), N (orange scatter plot), and 2N (green scatter plot). As the number of epochs (Epoch#) increases, 𝛼 improves, indicating better MIS
approximations. c) Comparison of QESA vs. SA for QE datasets. The same analysis is conducted for the above graphs using QE experiments. In (b) and
(c), the size of the ellipses is the standard deviations 𝜎(𝛼), representing the spread of 𝛼.
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U(n = 71, r = 8.5 μm) = 2𝜋 × 2.7 MHz for diagonally neighbor-
ing atoms and U(n = 71, r = 6.0 μm) = 2𝜋 × 21.7 MHz for later-
ally neighboring atoms.[24]

In QE experiments, the QuEra Aquilla platform is operated us-
ing a single-atom Rabi frequency pulse with Ω = 2𝜋 × 1 MHz
under resonant conditions (Δ = 0). The pulse duration is set
to tQ = 𝜋∕[

√⟨deg(G)⟩ ⋅Ω], where ⟨deg(G)⟩ denotes the aver-
age degree of the atom-graph G. This duration is motivated
by prior work that analyzed quench dynamics in relation to
graph connectivity.[46] The rise and fall time of the Rabi pulse,
tr = 50 ns, is also incorporated into the protocol. Unlike AQC,
the QE method is expected to be inherently free from algorith-
mic control errors, making it well-suited to generating many-
body correlations necessary for solving MIS problems, even at
larger system scales. We used the |n = 70, S1∕2⟩ Rydberg state of
87Rb atoms, for which C6(n = 70) = 2𝜋 × 863 GHz ⋅ μm6, U(n =
70, r = 7.5(1) μm) = 2𝜋 × 4.8(4) MHz for diagonally neighboring
atoms, and U(n = 70, r = 5.3(1) μm) = 2𝜋 × 39(4) MHz for later-
ally neighboring atoms.
After the first step in the QESA procedure, the atomic states

are measured and provided as a “warm start” input for the sub-
sequent simulated annealing (SA) step.[31] The update rules for
this SA step follow the “Rydberg Simulated Annealing” protocol
previously reported.[26] These rules involve three key operations:
First, a free vertex can be added to the independent set. If node
i is unoccupied (ni = 0) and none of its adjacent vertices are oc-
cupied (nj = 0 for all (i, j) ∈ E), vertex i is proposed for inclusion
in the set by setting ni = 1. Second, the algorithm can swap the
occupation between vertices. If vertex i is occupied (ni = 1), its oc-
cupation can be swapped with one of its adjacent vertices. Specif-
ically, for each adjacent vertex j, there is a probability of 1∕8 to
propose swapping the occupations ni, nj, leading to the transition
ni, nj → nj, ni. Lastly, a vertex may be removed from the indepen-
dent set. If neither of the above applies, vertex i is proposed for
removal by setting ni = 0.
Once an update is proposed, the change in the cost Hamilto-

nian HMIS associated with the MIS problem is computed. The
proposed state is then either accepted or rejected based on the
Metropolis-Hastings criterion [47,48] at the current temperature T .
After each update, T is gradually decreased according to a pre-
defined schedule, and the algorithm proceeds to the next itera-
tion. The iterative annealing step concludes when the tempera-
ture reaches a final value of T = 1∕𝛽 = 0.03,[26] and the resulting
QESA solution is extracted.

4. Results

To evaluate the performance of QESA and compare it with a cor-
responding standalone SA,we define ametric, the approximation
ratio, 𝛼, given by

𝛼 ≡
|{i ∈ V|ni = 1}| − |{(i, j) ∈ E|ninj = 1}|

|MIS| (3)

where |{i ∈ V|ni = 1}| counts the number of vertices in the in-
dependent set, |{(i, j) ∈ E|ninj = 1}| counts the number of edges
connecting pairs of occupied vertices that violate the indepen-
dence condition, and |MIS| represents the size of the MIS of

the graph. So, 𝛼 takes into account two performance criteria:
1) how close the total occupation number is to the MIS so-
lution, and 2) how many edges in the spin configuration vio-
late the independence condition. It is noted that from the MIS
Hamiltonian in Equation (2) with Δ = 1 and U = 1, HMIS(s) ≡
−|{i ∈ V|ni = 1}| + |{(i, j) ∈ E|ninj = 1}| is an effective enrgy for
a spin configuration s = (n1, n2,…), which is minimized to
HMIS(s) = −|MIS| when s is the MIS solution. A value of 𝛼

close to 1 indicates a high-quality solution that closely approx-
imates the MIS, while lower values indicate a less accurate
approximation.
Figure 1b shows the evolution of 𝛼 during the AQC-based

QESA method, (using the AQC dataset archived[24]), applied to
various experimental graphs chosen from the datasets, in com-
parison with pure classical, standalone SA (without AQC data)
for the same graphs. Also, in Figure 1c, the evolution of 𝛼 during
the QE-based QESA method is applied to the same set of graphs
as in Figure 1b, but using the QE experiments implemented on
the QuEra Aquila platform.[32] In both figures, the y-axis repre-
sents the performance of QESA, while the x-axis shows the re-
sults from standalone SA, starting from a random configuration
s of ni with the same total occupation number

∑
i ni as the exper-

imental counterpart. The results in Figure 1b,c show that a sub-
stantial proportion–97.5% in AQC and 91.9% in QE–of the data
points lie above the line y = x. Similarly, for Epoch#∕N = 0.5, 1,
and 2, the substantial proportions are 98.1%, 95.5%, and 87.1%
(based on AQC results) and 97.0%, 88.7%, and 69.9% (based on
QE results). This indicates that QESA consistently outperforms
the pure classical SA for the both types of QESA. These find-
ings highlight the advantage of incorporating Rydberg-atom ex-
perimental results as a “warm start,” which increases the like-
lihood of the SA algorithm converging to higher-quality solu-
tions for the MIS problem compared to starting from a random
configuration.
We now focus on evaluating the computation time of QESA,

denoted as Epoch#(QESA), needed to achieve a target approxi-
mation ratio (e.g., 𝛼t = 0.95) and compare it with the computa-
tion time of pure SA, denoted as Epoch#(SA). Considering di-
verse instances which utilize Hamming distance as a robust met-
ric to evaluate and enhance the performance of various heuris-
tic optimization algorithms (e.g. particle swarm optimization
(PSO)[49–51], A∗ search algorithms[52] and hypergraph matching
problems[53]), we identified the Hamming distance, HD ≡ |{j ∈
1,… , N|sj ≠ tj}| between the initial spin configuration s and the
target spin configuration t, as a primary relevant variable.
As a performance measure of QESA with respect to

SA, we consider the ratio between Epoch# of SA and
QESA. In Figure 2a,b, we plot the ratios Epoch#(SA)∕Epoch#
(QESAModel) and
Epoch#(SA)∕Epoch#(QESA) for 𝛼t = 0.95, as functions of

HD∕N (Hamming distance normalized by the graph size N), re-
spectively. The former ratio is based on a modeled QESA, de-
tailed below. Required Epoch# of simulated annealing is mod-
eled as Epoch#(SA) = c1e

𝛽m∗ .[54,55] Sincem∗ can be approximated
to HD∕N, we model the ratio as a function y(HD∕N) in Equa-
tion (4):

y(HD∕N) = 1
c1 ⋅ (exp[𝛽 ⋅HD∕N] − 1)

(4)
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Figure 2. The relationship between Epoch# for 𝛼t = 0.95 and HD∕N is depicted in two parts: a) Epoch# ratio between SA and QESA models for
1200 graphs with N = 60 − 115, 93 graphs with N = 140, and 154 graphs with N = 170. The QESA model’s monotonic behavior fits well to the black
line y = 1∕ [c1 ⋅ (exp(𝛽 ⋅HD∕N) − 1)], with c1 = 0.1602, 𝛽 = 6.738 and an adjusted R2

adj
= 0.9838, as detailed in the inset for HD∕N = 0.05 − 0.35. b)

Epoch# ratio between SA and QESA for 924 graphs from Figures 1b,c, with error bars representing AQC (black) and QE (blue).

with c1 = 0.1602, 𝛽 = 6.738 and an adjusted coefficient of deter-
mination, R2

adj = 0.9838, which explains over 98% of the variabil-
ity in the data.
The modeled QESA results in Figure 2a are obtained through

the following procedure: First, we sample SA spin configura-
tions that reached 𝛼t = 0.95 from a set of 1200 experimental
graphs[24] with N = 60 − 115 in Exp#10, 93 graphs with N =
140, and 154 graphs with N = 170, in order to determine their
epoch differences for initial points 𝛼i = 0.85, 0.88, 0.91 across
N = 60, 65, 70,… , 115, 140, 170. Then, we sort these epoch dif-
ferences by HD and compute the epoch performance ratio, de-
noted as
Epoch#(SA)/Epoch#(QESAModel), which represents the ratio

of epochs for SA to those for QESA for each 𝛼i, based on the
sorted epoch differences.
In Figure 2b, the ratios Epoch#(SA)∕Epoch#(QESA) for AQC

and QE (black and blue error bars, respectively) closely fol-
low the black fitting line from the QESA model. The zoomed-

in plots for HD∕N = 0.05 − 0.35 in the insets of Figure 2a,b
show that Equation (4) characterizes the average epoch perfor-
mance ratio. This result indicates that QESA’s computation time
is reduced with a shorter, quantum-mechanically warm-started
HD∕N compared to the randomly started SA, giving QESA an
advantage.

5. Discussion

We now discuss the scaling challenges related to the QESA ap-
proach. Since QESA is a subset of SA that begins at a shorter
Hamming distance, we analyze its scaling behavior in compar-
ison to that of SA. Simulated annealing (SA) is a probabilistic
and iterative optimization algorithm designed to find the opti-
mal value of a cost function, such asHMIS in our case. The prob-
ability of successfully finding the MIS is expressed as PMIS,SA =
1 − exp(−a

−1∕N ⋅ Epoch#(SA)), where  is the hardness

Adv. Quantum Technol. 2025, e2500070 © 2025 Wiley-VCH GmbHe2500070 (5 of 8)
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Figure 3. Scalability of graph size N for 𝛼t = 0.99 within a limited processing time of one day on PC. Each color means SA (blue) case (blue) and cases
with different ⟨HD∕N⟩: 0.32 (orange), 0.21 (yellow) 0.15 (purple) and 0.07 (green). (Inset: Measured average processing time required to reach 𝛼t = 0.99

for N = 60, 70,⋯, 110, 140 and 170.) The required processing time is estimated as aN × b
√
N × cNd based on Equation (5) and the epoch performance

ratio in Figure 2, where a0 = 5.0508, b = 1.0738, c = 25.44 𝜇s, d = 0.76 and a0∕a = 1, 1.15, 1.74, 2.63 and 9.94 for SA and ⟨HD∕N⟩ = 0.32, 0.21, 0.15
and 0.07 cases, respectively. From these estimations, the upper bounds Nc of graph size within the one-day limit are predicted to be 5,312 for SA and as
5,484, 6,023, 6,584, and 8,655 for ⟨HD∕N⟩ = 0.32, 0.21, 0.15 and 0.07 cases, respectively.

parameter of the given graph; for King’s graphs, it is examined
as ln ∼

√
N.[26] Consequently, the epoch-to-solution (ETS)[56]

for the SA algorithm, denoted by ETSMIS,SA, is given by

ETSMIS,SA = aN × ∼ aNeb
√
N (5)

where a is a coefficient associated with the normalizedHamming
distanceHD∕N (inversely proportional to the epoch performance
ratio in Equation (4)), and b is a parameter related to  of the
graph. This exponential scaling with

√
N implies that as N in-

creases, the number of iterations required for the algorithm to
converge grows significantly.
We assume that the average processing time per epoch, tstep,

scales as a function of N:

tstep = cNd (6)

where the parameters c and d are determined by the specifica-
tions of the PC. Consequently, the total processing time for target
𝛼t, denoted as tprocessing, is obtained as the product of Equations (5)
and (6):

tprocessing ≡ tstep × ETSMIS,SA

= aN × b
√
N × cNd (7)

The scalability of tprocessing is drawn in the inset in Figure 3,
as HD∕N varies and N increases for 𝛼t = 0.99. For N = 60 to
170, tprocessing shows performance gaps of 1.15, 1.75, 2.63, and
9.94 times compared to the SA case, with ⟨HD∕N⟩ = 0.32, 0.21,
0.15, and 0.07, respectively. In Figure 3, a, related to HD∕N,
is fitted as a = 5.05, 4.39, 2.89, 1.92, 0.51 for the SA case and⟨HD∕N⟩ = 0.32, 0.21, 0.15, and 0.07. b, related to  , is fitted
as 1.0738, with R2

adj values of 0.9981, 0.9929, 0.9758, 0.9625 and
0.8276 for SA case and ⟨HD∕N⟩ = 0.32, 0.21, 0.15, and 0.07, re-
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spectively. c and d are related to the PC computing environment
and fitted with values of 25.44 𝜇s and 0.76, respectively, yield-
ing R2

adj values of 0.9826. The PC operational environment is
MATLAB R2023a with an AMD Ryzen Threadripper 3960X 24-
Core processor, NVIDIA GeForce RTX 3080 GPU, and 64.0 GB
of RAM. It is assumed that the RAM does not significantly influ-
ence the extrapolation.
We now attempt to estimate the maximum graph size Nc that

can be processed when tprocessing is constrained by a finite PC op-
eration time, such as within 1 day. Extrapolating the numerically
fitted scaling as Figure 3, Nc =5,312 is expected for SA alone.
However, for the QESA approach, Nc could increase to 5,484,
6,023, 6,584 and 8,655, for graphs having initial Hamming dis-
tances, HD∕N = 0.32, 0.21, 0.15 and 0.07, respectively. This sug-
gests that QESA is capable of handling larger problem instances
than the SA algorithm alone.
The experimental results from AQC include various de-

coherence effects, such as laser phase noise,[23,57] motional
dephasing,[58] State-Preparation-and-Measurement (SPAM) er-
ror (related to finite Rydberg state lifetimes),[24,59] and Rabi
frequency (related to individual dephasing rates.[60]) To ac-
count for these effects, we performed a Lindblad Monte-Carlo
simulation[57] of AQC, which incorporates the variation of noise
parameters and decoherence effects. Using the simulation, we
estimated the figure of merit, HD∕N, to quantitatively analyze
the impact of these decoherence effects on the QESA perfor-
mance. In the simulation, four parameters were considered:
1) laser phase noise 𝛿𝜙 (standard deviation), 2) motional de-
phasing 𝛿r(= 𝛿x, 𝛿y) and 𝛿z (standard deviations), 3) SPAM er-
rors (mean value ⟨pg→R,SPAM(pR→g,SPAM)⟩ and standard deviation
𝛿pg→R,SPAM(𝛿pR→g,SPAM), 4)maximumRabi frequency (mean value⟨Ω⟩ and standard deviation 𝛿Ω∕Ω).
Under the experimental noise conditions, we assumed an

AQC with a sweep time tΔ = 0.8 μs for a small atom graph. We
then extracted the statistical distribution of HD∕N for 100 atom
graphs withN = 100 atoms, based on the average value and stan-
dard deviation of the bit-flip error. This analysis was performed
for each combination of noise parameters. Three different combi-
nations of experimental noise paramters,C0,C1,C2, were consid-
ered, where C0 < C1 < C2 represents an improvement in exper-
imental conditions. Specifically, C0 follows the noise conditions
of previous studies in Refs. [24, 57, 58, 61]. The parameter set-
tings (𝛿𝜙, 𝛿r, 𝛿z, ⟨pSPAMg→R ⟩, 𝛿pSPAMg→R , ⟨pSPAMR→g ⟩, 𝛿pSPAMR→g , ⟨Ω⟩, 𝛿Ω∕Ω) for
the combinations C0, C1 and C2 are as follows:

C0 : (0.045𝜋, 0.1 μm, 0.6 μm, 0.0730, 0.0165, 0.12, 0.06, 2𝜋

×1.42 MHz, 0.1), (8)

C1 : (0.0143𝜋, 0.03 μm, 0.18 μm, 0.0219, 0.0050, 0.036, 0.0018,

2𝜋 × 1 MHz, 0.1), (9)

C2 : (0.0046𝜋, 0.01 μm, 0.06 μm, 0.0073, 0.0017, 0.012, 0.0006,

2𝜋 × 1 MHz, 0.1). (10)

The HD∕N estimates under each combination C0, C1 and C2
of experimental noise parameters are as follows: (⟨HD∕N⟩,

𝛿HD∕N) = (0.22, 0.051) for C0, (0.071, 0.028) for C1, and
(0.051, 0.023) for C2. These results demonstrate that the distribu-
tion of HD∕N improves for C1 and C2 compared to C0, reflecting
the enhanced noise conditions. Based on these findings, we
expect that with further improvements in the experimental
environment–such as reductions in laser phase noise, motional
dephasing, SPAM errors, and individual dephasing rates–the
warm-start results will exhibit smaller HD∕N values, leading to
a significant enhancement in QESA performance.
In addition, our QESA has incorporated an occupation swap

process, which corresponds to spin exchanges in the Rydberg-
based SA process. This feature is absent in the previously re-
ported post-processing approach.[26] As a consequence, the dis-
tribution of the performance metric 𝛼 in QESA is more sharply
peaked and exhibits a higher average value compared to that of
the post-processing method. This indicates that QESA tends to
yield solutions that are closer to the optimal. (See more detail
in the supporting information available in the Wiley Online Li-
brary.)

6. Conclusion

This paper has presented a data-driven case study highlighting
the computational time advantage of QESA over SA, utilizing
AQC and QE experimental datasets from Rydberg atom arrays
with approximately 100 atoms. By analyzing SA’s epoch time de-
pendence on Hamming distance, we have shown that QESA out-
performs SA by utilizing a quantum-optimized Hamming dis-
tance distribution, unlike SA’s unoptimized counterpart. Conse-
quently, QESA, an SA variant with a quantum-prepared “warm
start,” is expected to handle larger graph sizes–up to 8,655 ver-
tices compared to 5,312 for standalone SA within a one-day PC
runtime–allowing for the solution of larger MIS problem in-
stances while staying within classical computational constraints.
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