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초 록

중성 원자 배열을 이용한 양자 정보 처리에 기반이 되는 실험적 부분들 및 그에 대한 분석을 다

루었다. 포획된 단일 중성원자 배열에서 개별적 원자의 전송 및 배열의 재배치를 구현하였으며,

이를 이용하여 본질상 부분적으로만 채워지는 단일 원자 배열로부터 확정적 원자 배열을 얻을 수

있음을 실험적으로 보였다. 또한 원자 사이의 리드버그 차단을 이용한 양자적 얽힘을 최대 N=5

까지의 포획된 원자에 대해 구현하였고, 이러한 시스템의 역학에 큰 영향을 주는 환경적 요인들을

고려하여 N=3-5개의 리드버그 원자의 역학에 대한 정확한 모델링을 제시하였다.

핵 심 낱 말 원자 물리, 광학, 단일 원자, 리드버그 원자, 양자정보, 양자컴퓨터

Abstract

Fundamental experiments and analysis on quantum information processing with neutral atom

arrays are presented. Individual transport of trapped single atoms and reconfiguration of single

atom arrays were realized, and assembly of deterministic arrays from single atom arrays that

are only partially filled by nature, with the single atom transport method, was demonstrated.

Also, quantum entanglement of up to N=5 trapped single atoms via Rydberg blockade was

demonstrated and a well-fitting model of the dynamics of the system is suggested considering

the environmental condition that considerably affects the dynamics.

Keywords atomic physics, optics, single atoms, Rydberg atoms, quantum information, quan-

tum computer
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Chapter 1. Introduction

A system of atoms has been one of the most important platforms for exploring quantum

physics, statndards such as atomic clocks, and quantum computation. Especially, an atomic

qubit has been a promising candidate platform of a qubit thanks to its sharp linewidth, or the

long coherence time, and the long history of controlling technique on atoms in atomic physics

and optics fields. Recently, techniques for single atom manipulation, such as dipole trapping

technique of single neutral atoms and atom-atom interaction via Rydberg blockade, have been

of much interests for quantum information processing. Here, brief introductions to neutral atom

qubits, single and two qubit operation, dipole traps for neutral atoms and experiments with

Rydberg atoms are presented.

1.1 Neutral atom qubits

Trapped neutral atoms have intensively studied as physical implementation of qubits for

quantum information processing, along with photons [1], trapped ions [2, 3, 4], and supercon-

ductors [5, 6]. As a qubit, a neutral atom, as well as a trapped ion, has a clear advantage

that it has a well-defined set of quantum states with sharp linewidth, which makes it a well-

defined qubit with long coherence time. Besides, the history of controlling atoms, or optical

spectroscopy, with many kinds of modulated lights makes it more accessible. Also, neutral atom

qubits have high scalability [7], in which they are more favorable than trapped ions, as their

trap geometries are easily created by a range of light modulation techniques [8]. On the other

hand, achieving high gate fidelity on neutral atoms for quantum computing still remains as a

challenge yet.

Any two states can be used for a qubit in neutral atoms among many states that have

variety of physical characteristics such as linewidth and dipole moments. For long coherence

time of qubits, any two hyperfine states in the ground state are favored as a qubit [9]. The

clock transition state pair in alkali atoms, for example, is a good choice as a qubit for the

purpose. The states with high principal quantum numbers, called Rydberg states, on the

other hand, can be exploited for atom-atom interaction since they can create a considerable

overlap among atoms which results in dipole-dipole interaction. To this day, many valuable

suggenstions and demonstrations have been known for quantum computing [10, 11, 12] and

quantum simulation [13, 14, 15].

1



1.2 Single- and two-qubit operation

Study of single-qubit operation of trapped neutral atoms basically shares its principle with

the traditional field of optical spectroscopy and quantum control. Well-known Rabi oscilla-

tion [16, 17, 18] is one of the representative ways for longitudinal transition of a qubit in the

Bloch sphere, and also phase evolution, or z-rotation in the Bloch sphere can be realized by

phenomena such as ac stark shift with cw lasers and ultrafast pulses [19]. Implementing a set of

universal quantum gates, which is any set of gates where an unitary operation can be reduced

to another operation consisting of elements of the set only, is one of the main interests in the

field. A typical set of universal gates includes a few single-qubit gates and a two-qubit gate

such as a C-NOT gate.

Researches on control of trapped neutral atoms which focus more on the basis of quantum

information have been presented recently, in depth. Single-qubit operation conducted on hyper-

fine qubits has been reported with microwaves [20, 21], and two-frequency Raman lights [22, 23].

Also, randomized benchmarking has been recently performed on large atom arrays for Clifford

gates giving high fidelity [7, 24]. Two-qubit gates, in forms of quantum entanglement [9] and

a C-NOT gate [25], have been demonstrated via a way of atom-atom interaction called the

Rydberg blockade, in recent days. The Rydberg blockade will be discussed in Chapter 5 in

detail.

1.3 Dipole traps for neutral atoms

Suggestions and realizations of trapping neutral atoms in dipole traps have inspired the use

of neutral atoms as qubits in quantum computation and investigating them as physical quanta.

The physical model is as followings [26].

An atom in a laser light field has a dipole moment p induced by an electric field E of the

field. Then the atom is involved in an interation potential given by,

U = −1

2
〈pE〉 = − 1

2ε0c
Re(α)I. (1.1)

where α is the complex polarizability of the atom and I is the intensity of the laser field. It

is known that when we apply the driven oscillator model for atom polarizability, we get an

expression of the dipole trap potential,

U(r) = −3πc2

2ω3

(
Γ

ω0 + ω
+

Γ

ω0 − ω

)
I(r) (1.2)

where ω is the laser field frequency, ω0 is the frequency of the involved atom transition levels,

and Γ is the linewidth of the corresponding transition.

After demonstration and analysis of single neutral atom trapping [27], the technique was

further developed, for example, employing beam shaping methods to prepare neutral atom

arrays in arbitrary geometries [8], along with single atom addressing techniques for quantum
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gates [7]. Meanwhile, efforts to enhance the loading probability to a dipole trap has been also

made [28].

1.4 Rydberg atoms and Rydberg blockade

Recently, Rydberg atoms, atoms in high principle quantum states, have been intensively

studied as a kind of quantum computation platform, due to their strong interactions suitable for

gate operations, sharp linewidth and long coherence time for preservation of quantum states [29].

Atom-atom interaction can be experimentally realized by a phenomenon known as the Rydberg

blockade, which is basically the dipole-dipole blockade between Rydberg-state-populated atoms.

Two neighboring atoms with sufficient polarizability in the Rydberg state have their energy

shifted in the simultaneous excitation state. The energy shift can be calculated by perturbation

theory, between a two-atom state |rr〉 and its neighboring state |r′r′′〉, with a Hamiltonian,

H =

(
0 C

R3

C
R3 δF

)
, (1.3)

where C is a constant proportional to the dipole moments of the atoms and δF is the energy

difference between the two states, called the Förster defect [30]. R is the distance between the

two atoms. The eigenvalues of the Hamiltonian are,

Vint(R) =
δF
2
± 1

2

√
δ2
F +

(
2C

R3

)2

. (1.4)

In van der Waals interaction case, where C
R3 � δF , the Taylor expansion of the square root

term, in terms of 2C
R3 yields,

Vint(R) =
δF
2
± 1

2

[
δF +

2C2

δFR6
+ · · ·

]
(1.5)

Thus, the energy shift is, without the unperturbed energies,

∆Vint(R) = ± C2

δFR6
, (1.6)

which will be denoted simply as C6/R
6. For instance, for a Rydberg state

∣∣67S1/2

〉
and an

interatomic distance of 6 µm, the energy (in frequency unit) of the Rydberg interaction is

about 2π × 10 MHz. This energy shift can succesfully prevent the simultaneous excitation of

the both atoms in the condition that the single atom Rabi frequancy is sufficiently smaller

than the energy shift, say, about 1 MHz, which makes the Rydberg blockade an useful way of

atom-atom interaction in quantum information processing.
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Chapter 2. Magneto-optical traps for cold atom loading

Since its development [31, 32, 33, 34, 35], the magneto-optical trap has been a standard

experimental apparatus for various quantum experiments with cold and dense neutral atom

ensembles, including Bose-Einstein condensates and quantum control of optically dipole-trapped

single neutral atoms.

A magneto-optical trap consists of a vacuum chamber, an anti-Helmholtz coil, and lasers

for cooling. The atoms are shot by cooling lasers from six directions (Fig. 2.1). The cooling

lasers are red-detuned so that only those atoms moving towards the direction where a beam

comes from are Doppler-cooled. However, in order to gather and trap atoms at the center of

the region where the laser beams intersect, the Doppler cooling has to be parity-dependent.

This is achieved by a combination of quadrupole magnetic field generated by an anti-Helmholtz

coil and oppositely-polarized counter-propagating cooling lasers in each of the three dimensions.

The gradient of the magnetic field at the center of the quadrupole geometry causes a gradient of

energy shift for Zeeman magnetic states of an atom. The direction of the energy shift depends

on the sign of the magnetic quantum number of the state. For example, in a geometry of

quadrupole magnetic field where the direction of the field on the z-axis is toward the center

(z = 0), in the z > 0 side, σ−-polarized lights coming to the center become resonant for

m = −1 state among the excited levels, while σ+-polarized lights become resonant for m = 1

state in the opposite side (z < 0). By this, atoms moving outwards lose momentum by resonant

photons, causing cooling and trapping of atoms. Typically, the temperatures of the cold atoms

are < 100 µK, and the density of an atom cloud is ∼ 1010 /cm3.

2.1 Vacuum

For isolation of trapped cold atoms, as low as < 100 µK, from the room temperature air,

atoms were trapped in a vacuum chamber. To secure optical windows for further atom control

such as single atom transport and Rydberg state control, as well as for magneto-optical trap-

ping, we used a custom-made glass-bodied vacuum chamber made with borosilicate (Precision

Glassblowing). The design of the chamber is shown in Fig. 2.2. Four-fold surrounding glass

walls (100 mm × 40 mm, 3.5 mm thick) of the middle part and both-end 2.75-inch flanges

in the perpendicular direction provided sufficient space for three-dimensional magneto-optical

trapping and additional optical controls. The geometry of the middle part was to make single

atom trapping and imaging possible with a high-NA lens. The 87Rb atom dispenser (SAES Get-

ters) attached between the middle part and an end flange was heated by electical current (a few

amperes) to supply background atoms for atom trapping. The window walls were AR-coated

in the wavelength range of 400 nm - 800 nm for trapping and control of atoms.
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Figure 2.1: Principle of mageneto-optical traps. The schematic picture is adopted from Ref. [31]
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Figure 2.2: Design of the vaccum chamber.

Figure 2.3: Pressure inside the vacuum chamber while baking
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For achieving ultra-high vacuum, the pressure inside the vacuum was decreased through

three stages. In the first stage, the air in the chamber was mechanically pumped out by

a turbomolecular pump (Varian V-70). With the pump, the pressure went down to under

10−5 Torr within hours. After then, the vacuum chamber entered a bake-out stage for removal

of water vapor and other contaminants and acceleration of artificial outgassing which enabled

a higher vacuum. The chamber was first wound by some heating tapes. Then, it was covered

by aluminum foils for even distribution and gradual change of heats. The temperature of the

vacuum chamber was increased and reached a temperature slightly less than 250 °C avoiding the

chamber damage threshold. This stage took about a week. The temperature and pressure plot

during the whole vacuum-generating period is shown in Fig. 2.3. The pressure was decreased

a bit further after bake-out stage. Finally, ion pump was used to reach 10−10 Torr order of

pressure. Pressure of 10−9 Torr was obtained in a few hours and it converged to 3× 10−10 Torr

afterwards in days. The accidental diverging of pressure in the plot was due to outgassing of

Rubidium dispenser and corresponding additional bake-out of it. The pressure entered a stable

phase after treatments.

2.2 Magnetic field gradient by anti-Helmholtz coil

For atom cooling and trapping, parity-dependent absoption of photons by atoms is required

which could be realized by a magnetic field gradient at the trapping region along with oppositely

circular-polarized counter-propagating cooling beams. The gradient of magnetic field is formed

by an anti-Helmholtz coil connected to a current supply. The magnitude of the magnetic field

is controlled by the amount of current. Between the coil and the current supply there is a

MOSFET switch to turn on or off the magnetic field gradient in the procedure of single atom

trapping and control.

2.3 Cooling laser

The cooling laser for the magneto-optical trap is locked to the frequency red-detuned to the∣∣5S1/2, F = 2
〉

state to
∣∣5P3/2, F

′ = 3
〉

state, which is around 780 nm wavelength. The amount

of the detuning is around 3 times the decay rate of the transition which might be optimized for

the MOT density. For three-dimensional cooling and trapping the laser is splitted into three

ways and delivered through optical fibers to shine the trapped atoms in the vacuum chamber

from one vertical axis and two horizontal axis. Each beam is reflected after passing through

the chamber, in configuration of two-way Doppler cooling of the atoms along with the original

passing beam. After each output of fibers are half-wave plate - polarizer - quarter-wave plate

to ensure the cooling laser has circular polarization to react to the magnetic field generated

by the anti-Helmholtz coil for cooling. A reflected beam passes a quarter-wave plate twice to

reverse the polarization (σ+ ↔ σ−). The power of each beam is around 2.6 mW to exceed the
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saturation intensity of an atom.

2.4 Repump laser

The repump laser is locked to the resonance of
∣∣5S1/2, F = 1

〉
to
∣∣5P3/2, F

′ = 2
〉

transition,

in order to pump the leaked population of
∣∣5S1/2, F = 1

〉
back to the cooling cyclic transition.

For better efficiency of optical pumping the in later Rydberg atom experiment, the linear

polarization parallel to the quantization axis (B-field axis, or ‘z’-axis), exerted from the direction

perpendicular to the axis, is chosen, rather than coming along the same path as the cooling

beam, although the polarization does not heavily affect the performance of cooling and trapping.

The power of the beam is around 3 mW and the cooling performance is not much sensitive to

the alignment.

2.5 Earth’s magnetic field compensation

The Earth’s magnetic field has non-negligible effect on the magnetic gradient geometry, thus

affecting the efficiency of atom cooling and trapping. The field is compensated by Helmholtz

coils wound around the cage outside the chamber. The coils create uniform B-field in each

of three orthogonal axes. Enameled wires are connected to current supplies to control the

magnitude B-fields in three axes (
√

2µ0I/πa for current I and coil dimention a). In each axis,

a pair of 20-loop coils creates 0.8 G/A. The earth B-field of several hundred miliGauss in

magnitude can be compensated by this configuration of coils with current less than or around

an Ampere. Tapes are attached at edges of the cage under wires to avoid peeling of the wires

which causes electric leakage and short circuit.
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Figure 2.4: Photo of the vaccum chamber and surrounding optics.
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Chapter 3. Transport of single atoms in three-dimensional

space

Optical dipole trapping is a simple and powerful technique for holding and steering atoms

in space [36, 37, 38, 39, 40, 41, 42]. This technique, recently developed to far off-resonant optical

trapping (FORT), utilizes the electric dipole interaction force exerted by light to manipulate the

external degrees of freedom of quantum objects. From a pre-cooled atom ensemble, focused laser

beams can capture and isolate single atoms without inducing optical transitions, so their internal

states are well preserved in the electronic ground state up to several seconds, which makes

the optically trapped single atoms a promising candidate for storing and processing quantum

information [43]. Currently there is a strong interest in using the FORT in engineering scalable

quantum platforms [8], [44]-[52], because the manipulation of N single atoms in a synthetic

structure of a few µm size is a crucial necessity for the study of quantum computation, quantum

simulation, and quantum many-body physics [53]-[56].

Optical dipole microtraps and optical lattices [56] are the well-known tools for atom arrays.

In the context of the manipulation and control of individual atoms in an array, optical microtraps

are considered to be a versatile tool, having many control parameters. The optical microtraps

have been achieved by various methods, including micro lens arrays [57], diffractive optical

elements such as Dammann grating [58], spatial light modulators (SLM) [8], [45]-[46], optical

standing waves [50], and dynamic light deflectors [45]. With these methods, adiabatic transport

of atoms in one and two dimensions [47]-[48], atom sorting with a cross junction [50], collisional

blockade mechanism [52], controlled collisions for near-deterministic atom loading [59], atom

array rotations [46], and single-qubit gate arrays [53] have been demonstrated. These impressive

achievements are currently being geared towards a deterministically-loaded high-dimensional

arbitrary architecture of N single atoms in which the the internal and external degrees of

freedom of the atoms are freely controllable.

Holographic methods of using a programmable SLM in the Fourier domain have been a

work horse in the construction and manipulation of various forms of two-dimensional (2D)

microtrap arrays [8]. The SLM phase pattern generation for Ntr ∼ 2N optical microtraps is

often performed with iterative Fourier transform algorithms (IFTA). However, because of the

frame-to-frame intensity flickering [60], dynamic and simultaneous control of N single atoms

with a series of IFTA-gererated patterns has remained difficult. Recently we devised a simple

method for flicker-free atom controls with optical microtraps [61]. In this section, we extend this

method further to achieve 3D rearrangements of N singe atoms. We experimentally demonstrate

holographic methods for various 2D and 3D transformations of single atoms in an array.

In the remaining sections, we first describe in Sec. 2.2 the principle of the dynamic and

simultaneous displacement of Ntr optical microtraps in 3D. The transverse and axial displace-
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Figure 3.1: Technical image of the objective lens.

ments are programmed with linear and quadratic phase gradients of the SLM pixels, respectively.

In Sec. 2.3 we explain the experimental setup and the control and imaging procedure. The ex-

perimental demonstrations of various 2D and 3D atom-array rearrangements are presented in

Sec. 2.4, before the conclusion in Sec. 2.5.

3.1 Experimental requirement

Trapping of single atoms starts with trapping of a cold atom cloud which is described in

Sec. 2. Additional experimental settings required for single atom trapping are explained here.

3.1.1 Single atom trapping with dipole traps

The light source for the FORT was a continuous-wave Gaussian beam from a Ti:sapphire

laser (SolsTiS from M-Squared Lasers) tuned at λ = 820 nm. The beam was programmed

and reflected by an LCOS-SLM (Liquid Crystal on Silicon-Spatial Light Modulator, phase-only,

Holoeye PLUTO, 1920 × 1080 pixels, 60 Hz frame rate) to generate N sub-beams. N optical

microtraps were formed at the focal plane of an objective lens (Mitutoyo G Plan, 50×, NA = 0.5,

working distance 13.89 mm, f = 4 mm, infinity-corrected, 3.5-mm-glass compensation, technical

drawing in Fig. 3.1), where the laser power was 0.55 W after the SLM and the beam diameter

entering the obejective lens was 1/e2 = 4 mm, limited by the aperture size. Each sub-beam

from the SLM was delivered onto the objective exit pupil by a pair of relay lenses with the

same focal length of f = 200 mm in a 4-f geometry. The focal diameter of the sub-beam in the

vacuum chamber was 2wo = 2.28 µm estimated by a separate beam profile measurement (not

shown).
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Figure 3.2: Schematic illustration of the experimental setup. Optical microtraps were pro-

grammed with the LCOS-SLM to capture single atoms from the pre-cooled 87Rb ensemble in

the MOT. The information of the trapped single-atom configuration obtained with the EMCCD

was sent back to the SLM computer for the feedback control.

3.1.2 Imaging

To verify transport of single atoms, one must be able to observe single atoms. This can be

done by obtaining images of fluorescence from the single atoms which are excited by cooling laser

in a detuned frequency with an electron-multiplying charge-coupled device (EMCCD, Andor

iXon3). The cooling laser is red-shifted by about 30 MHz from the frequency when MOT

operates, in order to avoid heating of the atoms by the cooling (imaging) laser (the procedure

is descrebed in Sec. 3.2. The fluorescent light is collected by the same objective lens used for

dipole trap generation.

3.1.3 Computer control

The experiment requires real-time control of devices, a whole period in a second, concerning

that typical trap lifetime is in order of tens of seconds. For this, the setup is controlled by a

programmed procedure. The software part of the computer control was made and run by Lab-

view. The software program controlled the devices through the hardware part of the computer

control system, NI-PCIe series and NI-PCI series. These devices delivered the programmed

procedure from the software (digital outputs and analog outputs) to the experimental devices

in the setup to control whole sequence from MOT generation through single atom trapping to

imaging of the single atoms.

12



3.2 Procedure

3.2.1 MOT loading

Before trapping of single atom, a cold atom cloud was prepared as a source for sinigle

atoms. In our experiment, we used cold rubidium atoms (87Rb) in a magneto-optical trap

(MOT) and single atoms were captured and controlled with optical microtraps (see Fig. 3.2).

The atoms were first pre-cooled in the MOT with the D2 line (F=2 → F’=3) with a density

of 1010 atoms/cm3 in the vacuum chamber with a pressure of 3.0×10−10 Torr. A detailed

explanation about a magneto-optical trap is provided in Sec. 2

3.2.2 Single atom loading

After the atoms were loaded in the MOT, the microtrap beams were turned on and the

MOT cooling beam was red-shifted by 45 MHz for polarization gradient cooling (PGC) and

atom imaging at the same time. After 200 ms of optical molasses, the magnetic field of the

MOT was turned off to keep background atoms from further gathering. The PGC beam was

temperarily turned off during axial transport of atoms in order to reduce heating. The trap

depth of the microtraps was U = (3πc2Γ/2ω3
o∆)I > 1.4 mK, where Γ/(2π) = 5.75 MHz was the

natural line width of the 87Rb D1 line, ωo the transition frequency, ∆/(2π) = −1.16× 1013 Hz

the detuning, and I = 2 × 109 W/m2 the intensity of the the beam. The FORT-induced

heating rate was 7 µK/s assuring that the atoms remained in the cooled temperature. The trap

frequency was (2/w0)
√
U/m ∼ (2π)70 kHz, where m is the mass of an atom. The fluorescence of

the atoms was detected with the EMCCD. The EMCCD detected about 200 photons per atom

during an exposure time of 50 ms. Note that the PGC scattering rate, with I = 27 mW/cm2 and

∆ ≈−17Γ, was 2.9×105 s−1 and about 6.7% of emitted photons were collected with the objective

lens of NA = 0.5. Our experiment was performed in the collisional blockade regime [52] with

a single-atom trapping probability of 50.9%, measured by fluorescence histogram. The trap

lifetime was τ > 13 s, given from the decay of the remaining atom probability (when the trap

was stationary). The decay process was dominated by background gas collisions [1].

Dynamic manipulation of the single atoms was achieved by applying a sequence of phase

patterns to the SLM. We used an active area of 800×800 pixels around the SLM center to take

full advantage of the hardware frame update rate of 60 fps (frames per second), because the

displaying rate from the computer to the SLM was relatively slow to use the full frame. Also, we

used two personal computers (PCs) to accelerate the whole operation. The phase patterns were

first diagnosed with the first computer and transferred to the SLM through a display port (DVI

or HDMI). In “adaptive” mode, where the set of the trap trajectories depended on the initial

configuration of the atoms, the EMCCD operated by the second computer took the image of

the initial atom configuration and sent the information to the first PC (see Fig. 3.2). The PC

then loaded a 30-frame movie depending upon the initial state. For this, we prepared a look-up
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library having all possible trajectories between the initial and final atom configurations. The

computer memory required for the look-up library in our experiment was 10 GB (gigabytes).

Because each trap site was occupied probabilistically, there were total 2Ntr initial configurations

for Ntr trap sites. The memory for a single frame of 800 × 800 pixels with an 8-bit gray level

was 640 KB (kilobytes) and there were 30 frames for each movie. So, with Ntr = 9 sites, 29 ×
30 × 40 KB was about 10 GB. During the 30-frame movie was being played on the SLM, the

EMCCD captured sequential images of the atom array. The number of the movie frames was

limited by the lifetime τ of the atoms.

3.3 SLM phase calculation

The flicker-free frame-to-frame evolution of microtraps in 3D is implemented with phase

patterns programmed in the Fourier domain. The transverse displacement (∆x,∆y) is imple-

mented by a linear phase gradient [61] and the axial displacement ∆z by a Fresnel lens phase [62].

The linear phase ei(kXX+kY Y ), where (X,Y ) is the position in the Fourier domain and (kX , kY )

the transverse wave vector, makes the focal spot of a beam shifted by (∆x,∆y) = (kXfo, kY fo)/k

from the optic axis (the z axis), where k is the wavenumber of the beam, when the beam is

focused by an objective lens with focal length fo [see Fig. 3.3(a)]. Also, when the beam passes

through a Fresnel lens with focal length fF and then focused by the same fo lens which is fo

apart from the Fresnel lens, after relaying 4-f geometry [see Fig. 3.3(b)], the axial displacement

is given by ∆z = −f2
o /fF, where the thin lens formula 1/fo = 1/(−fF + fo) + 1/(fo + ∆z) is

used. Therefore, the 3D displacement of the focal spot

(∆x,∆y,∆z) =

(
kXfo
k

,
kY fo
k

,−f
2
o

fF

)
(3.1)

is implemented with the phase pattern φ(X,Y ) on the SLM given by

φ(X,Y ) = mod

(
kXX + kY Y +

k

2fF
(X2 + Y 2) + π, 2π

)
, (3.2)

where 2π is the phase modulation depth of the SLM and the constant π phase is for less phase

jumping at the center.

Scaling the number of focal spots, or producing an array of optical microtraps, is achieved

by generating more than one such spots simultaneously [see Fig. 3.3(c)]. The simplest way is

to divide the SLM plane spatially and implement phase patterns onto each region; however,

this scheme changes the profile of the focal spot because it loses some spatial frequencies.

Alternatively, we can mix the fundamental phase patterns into a single phase pattern; each of

them is randomly distributed over the entire SLM space with equal appearance. To mix Ntr

phase patterns φm(i, j), where m ∈ [1, Ntr] and i, j are the SLM pixel indexes, into a combined

phase pattern φmixed(i, j), we use an addressing matrix S(i, j) of random integers between 1

and Ntr with an equal probability. The mixed phase pattern φmixed(i, j) is then given by

φmixed(i, j) = φS(i,j)(i, j). (3.3)
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Figure 3.3: (a) Transverse displacement of focal spots. (b) Axial displacement. (c) Phase

pattern synthesis.

In this way, each focal spot can be controlled independently while the spatial profile of the

original spot is well preserved. The independent control of each focal spot guarantees the

flicker-free frame-to-frame evolution of Ntr focal spots [61]. Note that a periodic addressing,

the way in which m is chosen in a periodic manner, rather than randomly, also works, but an

unwanted interference could occur.

3.4 Results

3.4.1 Transport in 2D

Figure 3.4 shows selected demonstrations of our creation and reconfiguration of 2D single-

atom arrays. In every experiment, a phase movie moved Ntr microtraps along each pre-defined

trajectory. The phase movie frame rate was 20∼60 fps and the time interval between the

captured atom images was 60 ms for the overall demonstration. The nearest neighbor spacing

in arrays was d = 4.5 µm for every scheme of operation. In the first set of experiments, (a)

rotation, (b) 2D vacancy filling, and (c) worm running in Fig. 3.4, the atoms were guided under

a fixed scenario of placing and rearranging the Ntr optical microtraps. The number of trapped

atoms was smaller than the number of optical microtraps, so not all optical microtraps guided

atoms. So, in the second set of experiments, (d) Fall to the right: case 1, (e) Fall to the right:

case 2, and (f) Fall to the right: case 3, an appropriate scenario to move the atoms was chosen

from the look-up library, according to the initial configuration of the trapped atoms. Then, the

microtraps occupied by atoms were guided along the chosen trajectory, while the unoccupied

ones were dragged outward.

(a) Array rotation: Rotation of a 3-by-3 single atom array as a whole is presented as a

simple operation on arrays. Six atoms were initially trapped out of nine optical microtrap sites

and the trapping of all atoms was maintained until the end of the 150◦ rotation. The outermost

atoms traveled a distance of 14.8 µm during the 25 operational frames which spanned 1.2
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Figure 3.4: Selected results of demonstration. (a) Rotation of a 3-by-3 array as a collective

control. (b) 2D vacancy filling and (c) ‘Worm running’ as individual atom controls. (d-f)

‘Rightward alignment’ as feedback controls of atom arrays. The leftmost column presents the

schematic diagram of each operation scenario. In each column, the initial and in-between photos

are followed by the final photos [36].
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seconds. The frame-to-frame step rotation angle was 6◦, so the step distance for the outermost

atoms was 0.67 µm. The atoms were individually controlled in this demonstration, but rotating

the phase pattern itself also worked well in our trial demonstration. Note that rotating the

phase pattern rotates the focal plane profile on the axis of zeroth order diffraction beam of the

SLM.

(b) Vacancy filling : A more explicit evidence of an individual atom control is demonstrated,

which also could be a candidate for the vacancy filling scheme in atom arrays. Initially four

atoms were captured and the atoms in diagonal sites proceeded to the next diagonal sites while

the rest of the atoms stayed in their positions, ending in a complete 2-by-2 single-atom array

as a whole. Despite the simplicity of the operation, it was impossible to achieve the same

performance by frames generated by Gerchberg-Saxton algorithm [8], one of the widely used

IFTAs, losing all the atoms only after a few frames. The traveling distance of the atoms in the

diagonal sites was equal to the next nearest neighbor spacing, 6.3 µm, so the step distance in

this 23-frame operation was 0.30 µm.

(c) Worm running : For another demonstration, which may be called snake crawling, nine

atoms were initially trapped at arbitrary chosen positions and started to follow through a

designated path in a line while being pushed by their precedent atoms (including vacancies).

This scenario clearly shows a full degree of freedom in controlling the positions of individual

atoms, where some atoms moved in horizontal directions and some moved in vertical directions,

while the other were stationary, in a simultaneous manner. The triggering atom travels by 45 µm

during 225 operational frames in 4.8 seconds. Some atoms were lost during the operation either

by background gas collision or by moving loss.

(d)-(f) Fall to the right - adaptive operation: An initial 3-by-3 trap array, as in (a), trapped

atoms with a probability of around 0.5 for each trap site. Since there were Ntr = 9 trap sites in

the array, there were 29 cases of initial trap conditions. The scenario was to detect the initial

positions of the atoms and move them to the right to fill the array from the left, as if they

were under a gravity directing to the right. The phase pattern movie for every initial case

of condition was retrieved from the look-up library. Demonstrations for three different initial

condition cases are shown in (d)-(f). The feedback control, or adaptive control, worked well

albeit the stationary and moving loss of the atoms. The longest travel possible was twice the

nearest neighbor spacing, 2d = 9 µm, with a step distance of 0.30 µm in the 30 operational

frames.

3.4.2 Transport in 3D

Finally, we present the proof-of-principle demonstration of the 3D transportation of single

atoms. Fig. 3.5(a) shows a set of layered 2D images of a 3D atom array to check the validity of

our 3D transport scheme. The 3D atom array consisted of two layers of total eight atoms. The

first layer had four atoms in the square configuration and the second had also four atoms but

in the diamond configuration. The layers were separated by 1 µm in the axial direction. The
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Figure 3.5: (a) Trapping and imaging of a 3D single-atom array, where the image plane

was shifted by translating the EMCCD. Each image corresponded to the EMCCD position at

z = −10, -5, 0, 5, 10 mm and was accumulated from 100 single-event images that were captured

right after the atoms were trapped in each acquisition. (b) Individual transport of single atoms

in 3D, where each demonstration spanned 90 SLM frames and each step of atom moving was an

equal division of the entire path. 370-time accumulated sequential images and selected single-

event sequential images are displayed. The lattice constant of the 2D array was d = 4.5 µm and

the depth of the axial travels for the both atoms were 4 µm [36].

result in Fig. 3.5(a) shows the z-scan imaging of the 3D atom array conducted by translating the

EMCCD in the axial direction, which confirms the creation of the 3D atom array as designed.

Figure 3.5(b) shows a trial demonstration scheme for the 3D individual transport of single-atoms

along with the captured images during the demonstration. The trial atoms moved along the

designated paths out of the image plane while the other atoms stayed in position. The leftmost

atom (marked as “1”) was programmed to bypass the neighboring atom (marked as “2”) in the

axial direction to fill the vacancy in the right column. At the same time, the atom 2 traveled

in the opposite axial direction. The rest atoms remained in the position during the operation.

Atom 1 followed an elliptical path with the given dimensions. The SLM operated at 60 fps.

3.4.3 Efficiency and loss analysis

Even using “flicker-free” method of phase generation, there exists certain amount of flicker

occuring due to finite range of phase modulation, or phase stroke, which inevitably causes phase

jump. For example, when the phase of a pixel changes from 1.99π to 2.01π, and if the phase

stroke is [0, 2π], the phase has to be actually change from 1.99π to 0.01π. This occurs in a

portion of the entire SLM area and ruins the overall frame-to-frame continuity, which causes

some flicker. Fig. 3.6 (a) graphically shows the phase jump when the phase pattern changes from

k1x (blue) to k2x (red). The gray shaded area indicates the part of normal phase change while
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Figure 3.6: (a) Schematic illustration for phase jump which causes frame-to-frame flicker of

traps. (b) Destructive interference of phase-jump area and no-phase-jump area. (c) Experimen-

tal result of flicker-induce atom loss during transport for various values of R [61].

the rest indicates phase jump area. If we denote the portion of the former R and the rest, 1−R,

the 1−R part would destructively contribute to the trap depth during frame-to-frame evolution

(Fig. 3.6). Fig. 3.6 (c) shows experimental result of atom loss by flicker during transport along

5 µm travel distance, with step distance ∆x = 180, 360, 520 nm, respectively. The averaged R

value for each is 0.960, 0.919, 0.885. The dashed decreasing line is the stationary loss without

transport. The atoms were dragged in time that is depicted in the shaded areas. The red line

shows averaged atom remaining probability of individual probabilities in gray plots. The loss

probability due to transport, ploss is depicted in vertical shades.

Single step loss P1 can be calculated by P1 = 1−(1−ploss)1/n, assuming the total remaining

probability is repetitive multipication of single step remaining probability. The calculated result

is shown Fig. 3.7 for R > 0.84 which is well laid between simulation result of loss for two

temperatures T = U/10, U/13.

The measured transport efficiency of the 3D transport is shown in Fig. 3.8. Among Ntr = 8

trap sites initially created on the original image plane (z = 0), four sites were programmed to

move in the positive axial direction (∆z > 0) and come back, while the other four were moved

in the negative axial direction (∆z < 0) and came back. When the efficiency was defined as the

ratio of the number of remaining atoms after an operation to the number of initially trapped

atoms, Fig. 3.8(a) shows the measured efficiency for various step distances. The step distance

is defined by the displacement between frames and the travel distance is the total displacement

sum of the entire round-trip travel. Figure 3.8(b) shows the transport efficiency when the travel
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Figure 3.7: Experimental single step loss calculated from experimental total loss for various R

values, compared with simulation with two temperatures, T = U/10, U/13 [61].

distance was varied and the step distance was fixed at 250 nm. The result shows that the

transport efficiency is little dependent on the rate at which the trap is refreshed. The transport

loss in a single frame-to-frame operation is calculated from Figs. 3.8(a) and 3.8(b) and the

results are displayed in Figs. 3.8(c) and 3.8(d), respectively. When being calibrated with the

passive loss values, the single-step transport loss increases as the step distance increases; the

farther the trap moves during a frame-to-frame operation, the more the intensity flickering

occurs, as expected. On the other hand, the travel distance did not increase the single step loss

significantly, when the step distance was fixed, in our experiment. The results indicates that

within the practical travel range of 20 µm from the initial focal plane, the traps are created in

a reliable manner and, therefore, the atoms are safely transported.

We note that the main mechanism of loss from the trap is the frame-to-frame intensity

flickering (degrading) which is caused by the phase jump at the boundaries of the finite SLM

phase modulation range. For example, provided that the phase modulation range is [0, 2π], a

pixel evolving from 1.99π to 2.01π actually evolves from 1.99π to 0.01π, so the phase value in

between has no defined value at certain time interval, failing to contribute to the trap. Note that

heating and acceleration play minor roles because the scattering rate for heating is estimated to

be smaller than the cooling rate, and the frame-to-frame moving speed of traps (∼ 0.1 mm/s),

determined by the relaxation time of the liquid crystals on the SLM, is adiabatically slow

compared to the motional speed of the atoms in the traps (∼ 1 m/s).

Our demonstration is currently limited by the laser power (currently up to N = 9 atoms),

the trap lifetime (∼13.4 s), the SLM update rate (60 fps), the moving loss, and the computer

data communication speed, some of which can be readily improved by a new integrated system

design. An operation with Ntr = 25 sites, for example, currently requires a look-up library

of 660 TB (terabytes) in memory, simply exceeding the conventional PC memory capacity.
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Figure 3.8: (a) Single-atom transport efficiency vs. the step distance in a 40-step (41 frames)

transport operation, where the values for moving in positive and negative directions are drawn

with dashed and dash-dot black lines, respectively, and the total average with the blue line with

‘star’ marks. The given transport (only) efficiency is the actually measured probability divided

by the probability without moving. (b) Single-atom transport efficiency vs. the travel distance

(with a fixed step distance of 250 nm) for various frame refresh rates and directions. (c), (d)

The single-step loss vs. the step distance and travel distance, calculated from the main data in

(a) and (b), respectively [36].
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Thus, a large number of atoms may be better processed with a real-time feedback generation of

phase patterns, rather than using memories, which is plausible with modest graphic processing

systems [63]. Also, 3D imaging of atoms in real time could be executed in a compact way with

rapid 3D microscopy with tunable lenses [64].
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Chapter 4. Defect-free atom array formation

Since single atom trapping probability per site is around one half [52] so far, the filling factor

and the configuration of the entire array is, in consequence, probabilistic. Assuming the trap

probability per site is 0.5, the probability of filling the entire array with N atoms equals 1/2N ,

which is far from unity. There has been improvement on increasing the site loading rate [65],

but the loading probability of defect-free arrays still remains distant from unity, especially when

a large number of atoms are to be used.

Here, we discuss a method of achieving defect-free arrays at a high probability by filling

vacancies with nearby reservoir atoms, as shown in fig 4.1 [66, 67]. In this scheme, without

atom loss, the probability of unity filling is not anymore 1/2N , but is P (N |M), where P (a|b)
denotes the probability of trapping more than or equal to a atoms out of the initial trap

array with b traps. For this, the experimental system has to be a closed-loop feedback system

to check the initial array status and relocate the trapped atoms accordingly. The operating

sequence would be: initial array trap, array imaging, identify the array status, path planning

for individual atoms, SLM phase calculation according to the path plan, perform the individual

atom transport, and return to the array imaging stage.

When atom loss is considered, trapping atoms more than or equal to the required number of

atoms does not guarantee unity filling anymore, so the loss rate is now to be taken into account.

Atom loss in this scheme can be specified into two kinds; one is collisional loss, which occurs by

colliding of a background atom which has high kinetic energy, and the other is moving loss, or

flicker loss, which is due to lowered intensity by frame-to-frame intensity flickering of traps. A

probability map to achieve unity filling of 3×3 square array from 7×7 initial array is shown in

Fig. 4.2 with moving loss and collisional loss as parameters. The success rate can be increased by

faster path planning, faster SLM operation, and some enhancement in experimental conditions.

The experimental regime in past and present is depicted on the map in a red dot. The success

rate of unity filling in such a scheme will be discussed in this chatper.

Figure 4.1: Array reconfiguration from an initial probabilistic array into a filled 3×3 array.

Defect-free arrays are achieved by filling vacancies with nearby reservoir atoms.
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Figure 4.3: Structure and procedure of GPU-accelerated phase calculation.

4.1 Closed-loop feedback system

4.1.1 Optical and computational layout

The optical and computational setup mostly follows Ref. [36], or Chaper 2 of this thesis.

A standard MOT was initially prepared and after a few seconds, dipole trap array beam was

turned on. An initial probabilistic array of atoms was trapped in 0.5 seconds. Then the first

readout of the initial array by an EMCCD was carried out. The image of the array was used for

identification of the trap status. Based on the trap status, a path plan for each atom for vacancy

filling was calculated by Hungarian algorithm, a matching algorithm which will be discussed

in Sec. 4.3. Once the path plan was decided, individual atom transport began, while the SLM

phase mask pattern was calculated in real-time during the operation. A different LCOS-SLM

device (Meadowlarks XY Spatial light modulator 512×512, 15 µm, 200Hz), from the one in

Chapter 2, is being used in ongoing continued experiment [68]. The real-time calculation of

phase patterns was accelerated by a GPU (Graphic Processing Unit; the model used here is

Nvidia GeForece GTX 1080), and will be discussed in the following subsection. After the first

reconfiguration of the atom array, the second readout by the EMCCD was done. Like in the

first operation, the atoms were controlled to fabricate a final defect-free array. If such an array

was obtained, the iteration procedure was terminated.

4.1.2 GPU-accelerated phase calculation

For real-time operation of trap geometry reconfiguration, calculation of the phase pattern

to be transferred to the SLM was accelerated by a graphics processing unit (GPU). The cal-

culation of such phase calculation is mostly done in pixel-by-pixel independently, so it can be
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much accelerated by exploiting a GPU’s parallel computing architecture, compared to CPU

computing.

The structure and procedure of the GPU-accelerated calculation system is depicted in

Fig. 4.3. First, the CPU initializes the GPU. When the EMCCD transfers the image of the

atom array to the CPU, it performs path planning and stores position information ~xi(tj) of

each atom i in time sequence tj in its memory, which runs in real-time. At each time step, the

position information ~xi(tj) is passed to GPU’s memory and the GPU carries out calculation

of the corresponding phase mask pattern φ(X,Y, tj), which is in 8-bit phase level and in size

that matches the beam size shining on the SLM. While the created phase pattern φ(X,Y, tj) is

transferreed to SLM and applied, the next phase pattern φ(X,Y, tj+1) is in turn calculated in

the GPU.

C++ code for real-time phase calculation and SLM control

In our method of single atom transport with an SLM, atoms move step-by-step, by a fixed

order of step size, therefore atom loss by trap lifetime can be reduced by faster refresh of frames,

or faster fps (frame-per-second). For this, we used C++ language, instead of MATLAB which

is more accessible but calculates rather slowly, for our phase-calculating and SLM controlling

computer program, along with GPU-assisted acceleration.

The program accepts a path plan, or a set of positions of each trap i at each time step tj ,

~xi(tj), as inputs. The unit of the position is arbitrary for now. It also takes the information

whether each site is designated to move to another site (if the site is trapping an atom and

has assigned destination) or stays (if the site is not trapping any atom or has no assigned

destination).

A prototype of the code using GPU-acceleration had been written in C++ and MATLAB

and it was optimized by a software company “ArrayFire”, so the code is on ArrayFire platform.

The code is as following.

1 #inc lude <a r r a y f i r e . h>

2 #inc lude <c s td io>

3 #inc lude <c s t d l i b>

4 #inc lude <f stream>

5 #inc lude <vector>

6 #inc lude <time . h>

7

8

9 #inc lude ” s tda fx . h” // Does nothing but #inc lude t a r g e t v e r . h .

10

11 #inc lude <vector>

12 #inc lude <c s td io>

13 #inc lude <con io . h>

14 #inc lude ”Blink SDK .H” // Re la t i v e path to SDK header .

15
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16 #inc lude <s t r i n g . h>

17

18 const i n t num init = 25 ;

19

20 us ing namespace a f ;

21

22 // Typedef f o r the conta ine r f o r our phase t a r g e t s .

23 typede f std : : vector<unsigned char> uchar vec ;

24

25 void loadArraysFromFiles ( array &posXpath , array &posYpath , array &as s i gned )

26 {
27 // posXPath and posYpath

28 {
29 std : : vector<f l o a t> posXpathVec ( num init ∗ 20) ; // Current s i z e

from f i l e s

30 std : : vector<f l o a t> posYpathVec ( num init ∗ 20) ; // Current s i z e from

f i l e s

31

32 std : : i f s t r e a m posXFile (” posXpaths . txt ”) ;

33 i f ( ! posXFile . i s o p e n ( ) )

34 std : : c e r r << ” Error : posXpaths . txt f a i l e d to open” << std : : endl ;

35

36 i n t i = 0 ;

37 whi l e ( ! posXFile . e o f ( ) ) {
38 posXFile >> posXpathVec [ i ++];

39 }
40

41 std : : i f s t r e a m posYFile (” posYpaths . txt ”) ;

42 i f ( ! posYFile . i s o p e n ( ) )

43 std : : c e r r << ” Error : posYpaths . txt f a i l e d to open” << std : : endl ;

44

45 i = 0 ;

46 whi l e ( ! posYFile . e o f ( ) ) {
47 posYFile >> posYpathVec [ i ++];

48 }
49

50 posXpath = array (20 , num init , posXpathVec . data ( ) ) .T( ) ;

51 posYpath = array (20 , num init , posYpathVec . data ( ) ) .T( ) ;

52 }
53

54

55

56 // as s i gned

57 {
58 std : : vector<f l o a t> ass ignVec ( num init ) ; // Current s i z e from f i l e s

59

60 std : : i f s t r e a m a s s i g n F i l e (” a s s i g n . txt ”) ;

61 i f ( ! a s s i g n F i l e . i s o p en ( ) )

27



62 std : : c e r r << ” Error : a s s i g n . txt f a i l e d to open” << std : : endl ;

63

64 i n t i = 0 ;

65 whi l e ( ! a s s i g n F i l e . e o f ( ) ) {
66 a s s i g n F i l e >> ass ignVec [ i ++];

67 }
68 as s i gned = array ( num init , ass ignVec . data ( ) ) . as ( u32 ) ;

69 }
70 }
71

72 void loadTr ig ( array &loading , array &t r i g ) {
73 // load ing and t r i g

74 {
75 std : : vector<f l o a t> loadingVec ( num init +1) ; // Current s i z e from

f i l e s

76

77 std : : i f s t r e a m l o a d i n g F i l e (” load . txt ”) ;

78 i f ( ! l o a d i n g F i l e . i s o p en ( ) )

79 std : : c e r r << ” Error : load . txt f a i l e d to open” << std : :

endl ;

80

81 i n t i = 0 ;

82 whi l e ( ! l o a d i n g F i l e . e o f ( ) ) {
83 l o a d i n g F i l e >> loadingVec [ i ++];

84 }
85

86 array loadingA ( num init +1, loadingVec . data ( ) ) ;

87 loadingA = loadingA . as ( u32 ) ;

88 load ing = loadingA ( seq ( num init ) ) ;

89 t r i g = loadingA ( end ) ;

90

91 // a f p r i n t ( loadingA ( end ) ) ;

92 }
93 }
94 i n t main ( i n t argc , char ∗argv [ ] )

95 {
96 try {
97 a f : : i n f o ( ) ;

98

99 // SLM i n i t i a l i z e

100 const i n t board number = 1 ;

101

102 // Construct a Blink SDK in s tance with Overdrive c a p a b i l i t y .

103

104 const unsigned i n t b i t s p e r p i x e l = 8U;

105 const unsigned i n t p ixe l d imens i on = 512U;

106 const bool i s n e m a t i c t y p e = true ;

107 const bool RAM write enable = true ;
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108 const bool u s e GPU i f ava i l ab l e = true ;

109 const char ∗ const r e g i o n a l l u t f i l e = ” slm4205 820 . txt ” ;

110 const char ∗ const l o a d l u t f i l e = ”slm4205 820nm P8 . l u t ” ;

111

112 unsigned i n t n boards found = 0U;

113 bool const ructed okay = true ;

114

115 Blink SDK sdk ( b i t s p e r p i x e l , p ixe l d imens ion , &n boards found ,

116 &constructed okay , i s nemat i c type , RAM write enable ,

117 use GPU i f ava i l ab l e , 2U, r e g i o n a l l u t f i l e ) ;

118

119 // load LUT f o r non−ove rd r i ve

120 // sdk . Load LUT fi le ( board number , l o a d l u t f i l e ) ;

121

122 // Check that everyth ing s t a r t e d up s u c c e s s f u l l y .

123 bool okay = const ructed okay && sdk . I s s l m t r a n s i e n t c o n s t r u c t e d

( ) ;

124

125 i f ( okay )

126 {
127 enum { e n t r u e f r a m e s = 3 } ;

128 sdk . S e t t r u e f r a m e s ( e n t r u e f r a m e s ) ;

129 sdk . SLM power ( t rue ) ;

130 okay = sdk . Load linear LUT ( board number ) ;

131 }
132 e l s e

133 {
134 p r i n t f (” gg ”) ;

135 }
136

137 //

138

139 // Load Arrays From F i l e s

140 array posXpath , posYpath , loading , t r i g , a s s i gned ;

141 loadArraysFromFiles ( posXpath , posYpath , a s s i gned ) ;

142 loadTr ig ( loading , t r i g ) ;

143 // These v a r i a b l e s are not used here . Def ine them l a t e r .

144 // array weights = constant (1 , l oad ing . e lements ( ) , f 32 ) ;

145 // array peakValues = constant (0 , l oad ing . e lements ( ) , c32 ) ;

146 //

147 // i n t frameNumber = posXpath . dims (1 ) ;

148

149 const array X = i o t a ( dim4 (1 , 512) , dim4 (512 , 1) , f32 ) − 256 . f ;

150 const array Y = i o t a ( dim4 (512 , 1) , dim4 (1 , 512) , f32 ) − 256 . f ;

151

152 array suminit = constant (0 , 512 , 512 , c32 ) ;

153 array suminit1 = constant (0 , 512 , 512 , c32 ) ;

154
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155 {
156 // prep work

157 s t a t i c const c f l o a t f a c t o r (0 , 0 . 0012) ; // same as 1 i ∗

0 .0012

158 // Generarte l oad ing . ee lements random numbers along 3 rd

dimension and then t i l e

159 array randVals = t i l e (2 ∗ Pi ∗ randu (1 , 1 , l oad ing .

e lements ( ) , f 32 ) , X. dims (0 ) , X. dims (1 ) , 1) ;

160

161 // This t i l e s each va lue s i n to a matrix and the 3 rd

dimension i s f o r k

162 // New dimensions are 512 x 512 x load ing . e lements ( )

163 array posXpathVals = t i l e (moddims ( posXpath ( span , 0) , 1 ,

1 , l oad ing . e lements ( ) ) ,

164 X. dims (0 ) , X. dims (1 ) , 1) ;

165 array posYpathVals = t i l e (moddims ( posYpath ( span , 0) , 1 ,

1 , l oad ing . e lements ( ) ) ,

166 Y. dims (0 ) , Y. dims (1 ) , 1) ;

167

168 suminit1 += sum( exp ( f a c t o r ∗

169 ( ( posXpathVals ∗ t i l e (X, 1 , 1 , l oad ing . e lements ( )

) )

170 + ( posYpathVals ∗ t i l e (Y, 1 , 1 , l oad ing . e lements

( ) ) )

171 + randVals ) )

172 , 2) ;

173

174 // Clear the temporary ar rays so that memory i s not

locked

175 randVals = array ( ) ;

176 posXpathVals = array ( ) ;

177 posYpathVals = array ( ) ;

178 }
179

180 array phaseGSW1 = arg ( suminit1 ) ;

181 // Do round in s t ead o f u32 ca s t . Important to do %256 a f t e r

182 array phaseGSW11 = round ( ( ( phaseGSW1 + 2 ∗ Pi ) ∗ (255 / (2 ∗ Pi ) )

) ) % 256 ; // Do Round

183 array phaseGSW2 = constant (0 , 512 , 512 , c32 ) ;

184 array phaseAmp = constant (1 , 512 , 512 , f32 ) ;

185 array phaseU = constant (128 , 512 ∗ 512 , u8 ) ;

186 s t a t i c const i n t numOver = 4 ;

187 s t a t i c const i n t numOver512 = 512 ∗ numOver ;

188

189 // These r e q u i r e +1 because meshgrid does 1 index

190 array XX = i o t a ( dim4 (1 , numOver512 ) , dim4 ( numOver512 , 1) , f32 ) +

1 ;

191 array YY = i o t a ( dim4 ( numOver512 , 1) , dim4 (1 , numOver512 ) , f32 ) +
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1 ;

192

193 const array gaussianForm = exp(−(pow(XX − ( numOver512 / 2) , 2) +

pow(YY − ( numOver512 / 2) , 2) )

194 / ( 2 . f ∗ 118 ∗ 118) ) ;

195 const array gaussianForm2 = exp(−(pow(X, 2) + pow(Y, 2) )

196 / ( 2 . f ∗ 118 ∗ 118) ) ;

197 array c i r c l e = 1 − f l o o r ( ( pow(XX − ( numOver512 / 2) , 2) + pow(YY

− ( numOver512 / 2) , 2) )

198 / ((512 / 2) ∗ (512 / 2) ) ) ;

199 array c i r c l e 2 = 1 − f l o o r ( ( pow(X, 2) + pow(Y, 2) )

200 / ((512 / 2) ∗ (512 / 2) ) ) ;

201 c i r c l e = c i r c l e > 0 ;

202 c i r c l e 2 = c i r c l e 2 > 0 ;

203

204 const array maske = gaussianForm ∗ c i r c l e ;

205 const array mask = gaussianForm2 ∗ c i r c l e 2 ;

206

207 array phaseover = constant (0 , numOver512 , numOver512 , c32 ) ;

208 array p h a s e o v e r f f t = constant (1 , numOver512 , numOver512 , c32 ) ;

209 array targetAmp = constant (0 , numOver512 , numOver512 , f32 ) ;

210 array phaseR = constant (0 , numOver512 , numOver512 , c32 ) ;

211

212 const i n t GSWiter = 5 ;

213 const f l o a t r f = 0 . 7 ;

214 const f l o a t s f = 1 ;

215

216

217 const array ps f = exp(−pow ( ( (X ∗ X) / r f ) + ( (Y ∗ Y) / r f ) , s f ) ) .

as ( f32 ) ;

218 array ps f2 = f f t 2 ( p s f ) ;

219 ps f2 = abs ( ps f2 ) / t i l e (max( abs ( f l a t ( ps f2 ) ) ) , p s f2 . dims ( ) ) ;

220

221 array weights = constant (1 , l oad ing . e lements ( ) , f 32 ) ;

222 array peakValues = constant (0 , l oad ing . e lements ( ) , c32 ) ;

223 i n t frameNumber = posXpath . dims (1 ) ;

224

225

226 s t a t i c const c f l o a t oneI (0 , 1) ;

227 array load ing0Idx = where ( l oad ing == 0) ; // load ing . e lements ( ) i s the

number o f e lements . seq ( l oad ing . e lements ( ) ) i s 0:1:#−1

228

229 array load ing1Idx = where ( l oad ing == 1) ;

230 array weighter = constant ( 0 . 1 , frameNumber , 1 , f32 ) ;

231 weighter (0 ) = 0 . 7 ; / / ( ( f l o a t ) 0 . 8 , ( f l o a t ) 0 . 6 , ( f l o a t ) 0 . 4 , ( f l o a t )

0 . 2 ) ;

232 weighter (1 ) = 0 . 4 ;

233 weighter (2 ) = 0 . 1 ;
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234 weighter ( frameNumber−5) = 0 . 1 ; // ( ( f l o a t ) 0 . 4 , ( f l o a t ) 0 . 6 , ( f l o a t

) 0 . 8 , ( f l o a t ) 1 , ( f l o a t ) 1) ;

235 weighter ( frameNumber − 4) = 0 . 1 ;

236 weighter ( frameNumber − 3) = 0 . 4 ;

237 weighter ( frameNumber − 2) = 0 . 7 ;

238 weighter ( frameNumber − 1) = 1 ;

239 a f p r i n t ( we ighter ) ;

240 array qq = ass i gned ( seq ( load ing0Idx . e lements ( ) ) ) − 1 ;

241 array qq1 ;

242 i f ( l oad ing0Idx . e lements ( ) == load ing . e lements ( ) ) {
243 load ing1Idx = load ing0Idx ;

244 qq1 = qq ;

245 }
246 e l s e {
247 seq qass ( load ing0Idx . e lements ( ) , l oad ing . e lements ( ) − 1)

; // seq qass ( a , a )=a

248 qq1 = ass i gned ( qass ) − 1 ;

249 }
250

251

252 // The o f f s e t s here are 0 indexed so that s why the increment /

decrement

253 const seq S( numOver512 / 2 − 256 , numOver512 / 2 + 255) ;

254

255 whi le (1 ) {
256

257 FILE ∗ f ;

258

259 whi l e (1 ) {
260 Sleep (1 ) ;

261 loadTr ig ( loading , t r i g ) ;

262 // p r i n t f (”%d” , t r i g . nonzeros ( ) ) ;

263 i f ( t r i g . nonzeros ( ) ) { // from here to qqq−fo r−loop : 13ms .

264

265 break ;

266 }
267

268 }
269 t r i g = 0 ;

270

271 loadArraysFromFiles ( posXpath , posYpath , a s s i gned ) ;

272

273 load ing0Idx = where ( l oad ing == 0) ;

274 load ing1Idx = where ( l oad ing == 1) ;

275

276 qq = ass i gned ( seq ( load ing0Idx . e lements ( ) ) ) − 1 ;

277

278 i f ( l oad ing0Idx . e lements ( ) == load ing . e lements ( ) ) {
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279 load ing1Idx = load ing0Idx ;

280 qq1 = qq ;

281 }
282 e l s e {
283 seq qass ( load ing0Idx . e lements ( ) , l oad ing . e lements ( ) − 1) ; // seq

qass ( a , a )=a

284 qq1 = ass i gned ( qass ) − 1 ;

285 }
286

287

288 t imer : : s t a r t ( ) ;

289 f o r ( i n t qqq = 0 ; qqq < frameNumber ; qqq++) {
290

291 f o r ( i n t g sw i t e r = 0 ; g sw i t e r < GSWiter ; g sw i t e r++) {
292 phaseGSW1 = abs ( i f f t 2 ( f f t 2 (phaseGSW11 . as ( f32 ) ) ∗

ps f2 ) ) . as ( f32 ) ; //+2Hz (5 i t e r )

293 phaseGSW2 = mask ∗ exp ( oneI ∗ (phaseGSW1 ∗

0 .0246) ) ; // ∗phaseAmp ;

294 phaseover (S , S) = phaseGSW2 ;

295 p h a s e o v e r f f t = s h i f t ( f f t 2 ( phaseover ) , phaseover .

dims (0 ) / 2 , phaseover . dims (1 ) / 2) ;

296

297 std : : s t r i n g fname str = ” p h a s e o v e r f f t ” + std : :

t o s t r i n g ( qqq ) + ” . bin ” ;

298 // a f : : saveImage ( fname str . c s t r ( ) , p h a s e o v e r f f t ) ;

299 a f : : saveArray (” phase ” , phas eove r f f t , fname str .

c s t r ( ) , f a l s e ) ;

300

301 // peakValues = diag ( p h a s e o v e r f f t (

302 // round ( posYpath ( span , qqq ) / (1 . 271 ∗ 8 /

numOver) + ( numOver512 / 2 − 1) ) ,

303 // round ( posXpath ( span , qqq ) / (1 . 271 ∗ 8 /

numOver) + ( numOver512 / 2 − 1) ) ) ) ;

304 peakValues = diag ( p h a s e o v e r f f t ( round ( posYpath (

span , qqq ) / (1 . 271 ∗ 8 / numOver) + (

numOver512 / 2 − 1) ) , round ( posXpath ( span , qqq

) / (1 . 271 ∗ 8 / numOver) + ( numOver512 / 2 −
1) ) ) ) ;

305

306 i f ( l oad ing0Idx . e lements ( ) == load ing . e lements ( )

| | l oad ing1Idx . e lements ( ) == load ing . e lements

( ) ) {
307 weights ( span ) ∗= t i l e (mean( abs ( peakValues

( span ) ) ) , l oad ing . e lements ( ) ) / abs (

peakValues ( span ) ) / t i l e (mean( weights (

span ) ) , l oad ing . e lements ( ) ) ;

308

309 targetAmp ( round ( posYpath ( span , qqq ) /
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(1 . 271 ∗ 8 / numOver) + ( numOver512 /

2 − 1) ) + round ( posXpath ( span , qqq ) /

(1 . 271 ∗ 8 / numOver) + ( numOver512 /

2 − 1) ) ∗ targetAmp . dims (0 ) )

310 = weights ( span ) ;

311 }
312 e l s e {
313 array pv1a = abs ( peakValues ( load ing1Idx ) )

;

314

315 array pv0a = abs ( peakValues ( load ing0Idx ) )

;

316

317 i f ( qqq > 2 && qqq < frameNumber − 3) {
318 weights ( load ing0Idx ) = t i l e (

we ighter ( qqq ) , l oad ing0Idx .

e lements ( ) ) ;

319 }
320 e l s e {
321 weights ( load ing1Idx ) ∗= t i l e (mean

( pv1a ) , l oad ing1Idx . e lements ( )

) / pv1a / t i l e (mean( weights (

load ing1Idx ) ) , l oad ing1Idx .

e lements ( ) ) ;

322 weights ( load ing0Idx ) ∗= ( t i l e (

mean( pv0a ) , l oad ing0Idx .

e lements ( ) ) / pv0a

323 / t i l e (mean( weights (

load ing0Idx ) ) ,

l oad ing0Idx . e lements ( )

) )

324 ∗ t i l e ( we ighter ( qqq ) ,

l oad ing0Idx . e lements ( )

) ;

325 }
326 //∗ (1 / ( ( f l o a t ) qqq + 1) + 1 / ( ( f l o a t )

frameNumber − ( ( f l o a t ) qqq + 1) + 1) ) ;

327

328

329 // Use l i n e a r index ing = y ∗ d0 + x

330 // Simply doing targetAmp (x , y ) w i l l

r e s u l t in M∗N number o f e lements .

331 // This worked in the f o r loop as both x

and y were 1 .

332 // But when us ing batched mode , x and y

are 121 each r e s u l t in 14641 va lue s

333 // whi le weights ( qq ) i s 121 only .

334 // So use l i n e a r index ing .
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335 targetAmp ( round ( posYpath ( qq , qqq ) /

(1 . 271 ∗ 8 / numOver) + ( numOver512 /

2 − 1) ) +

336 round ( posXpath ( qq , qqq ) / (1 . 271

∗ 8 / numOver) + ( numOver512 /

2 − 1) ) ∗ targetAmp . dims (0 ) )

337 = weights ( qq ) ;

338

339 targetAmp ( round ( posYpath ( qq1 , qqq ) /

(1 . 271 ∗ 8 / numOver) + ( numOver512 /

2 − 1) ) +

340 round ( posXpath ( qq1 , qqq ) / (1 . 271

∗ 8 / numOver) + ( numOver512

/ 2 − 1) ) ∗ targetAmp . dims (0 ) )

341 = weights ( qq1 ) ;

342 }
343 /∗ f o r ( i n t q = 0 ; q < l oad ing . e lements ( ) ; q++) {
344 array qq = ass i gned ( q )−1;

345 targetAmp ( round ( posYpath ( qq , qqq ) /

(1 . 271 ∗ 8 / numOver) + ( numOver512 /

2−1) ) ,

346 round ( posXpath ( qq , qqq ) / (1 . 271 ∗ 8 /

numOver) + ( numOver512 / 2−1) ) )

347 = weights ( qq ) ;

348 }∗/

349

350

351 phaseR = i f f t 2 ( s h i f t ( targetAmp ∗ exp ( oneI ∗ arg (

p h a s e o v e r f f t ) ) , numOver512 / 2 , numOver512 /

2) ) ;

352 //phaseR = i f f t 2 ( s h i f t ( targetAmp , numOver512 /

2 , numOver512 / 2) ) ;

353 phaseGSW1 = arg ( phaseR (S , S) ) ;

354 phaseGSW11 = round ( ( ( phaseGSW1 + (6 . 2832 ) ) ∗

( 40 . 5845 ) ) ) % 256 ; // Do Round

355 }
356

357

358 unsigned char ∗puc = phaseGSW11 . as ( u8 ) . host<unsigned char

>() ; // 7ms

359 // p r i n t f (” e lapsed seconds : %g\n” , t imer : : stop ( ) ) ;

360 okay = sdk . Wri te overdr ive image ( board number , puc ) ;

361 //okay = sdk . Write image ( board number , puc ,

p i x e l d imens i on ) ;

362 targetAmp = constant (0 , numOver512 , numOver512 , f32 ) ;

363 a f : : f r e eHos t ( puc ) ;

364

365
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366 }
367 sync ( ) ; p r i n t f (” e lapsed seconds : %g\n” , frameNumber / t imer : : stop

( ) ) ;

368

369 f = fopen (” load . txt ” , ”w”) ;

370 f o r ( i n t i = 0 ; i < l oad ing . e lements ( )+1 ; i++){
371 f p r i n t f ( f , ”%d\n” , 0) ;

372 }
373 f c l o s e ( f ) ; // 1ms

374 // p r i n t f (” e lapsed seconds : %g\n” , t imer : : stop ( ) ) ;

375 // system (”PAUSE”) ;

376

377 }
378

379 system (”PAUSE”) ;

380

381 } catch ( a f : : except ion& e ) {
382 f p r i n t f ( s tde r r , ”%s \n” , e . what ( ) ) ;

383 throw ;

384 }
385

386 return 0 ;

387 }

The summary of the code is as follows. The code starts at line 94 which is the starting point

of the main function. The code before this line is pre-defined functions and variables. The SLM

is initialized and setting is done in line 99-137. Next, it calls function “loadArraysFromFiles” in

line 141. It loads the information about time trajectory of the positions (i.e., paths) of individual

atoms and which site an atom comes from to each site, from the text file “posXpaths.txt”,

“posYpaths.txt”, and “assign.txt”. The function input arguments are the addresses of the

array variables. Function “loadTrig” in line 142 takes information about whether each site is

loaded and the reconfiguration trigger is on (a loop run continuously in operation which will

appear below and if the trigger is on, reconfiguration sequence begins) from text file “load.txt”.

When the first frame of phase pattern movie is generated by GSW algorithm, the initial pattern

is generated by superposition algorithm which is a decent guessing of the phase before iteration

and this phase pattern is generated in line 155-178. Phase pattern generation starts at line

255. The while loop in line 255 ensures the operation runs every time the trigger is turned on.

The while loop in line 259 runs until a trigger comes in and proceeds to next operation when

it’s on. “loading0Idx” / “loading1Idx” contains the indices of sites that doesn’t have / have

atoms, repectively. qq / qq1 contains the sites that are assigned to be atom source sites or

not, respectively. Actual part for phase generations starts at line 289; loop variable qqq runs

for time series of frame and gswiter runs for GSW iteration for each frame. Since the phase

generating part of the code is complicated with plenty of variables, the core structure of the

code, omitting any coefficients, is provided below.
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Field at SLM mask * exp[i phaseGSW1 ] → phaseGSW2

Zero padding phaseGSW2 (512×512)→ to the center of blank space phaseover (2048 × 2048)

Fourier transform phaseover → phaseoverfft (SLM to atom trap)

Weighting weights (obtained from phaseoverfft) → targetAmp

Field at atom trap targetAmp * exp[i arg(phaseoverfft)]

Inverse Fourier transform targetAmp * exp[i arg(phaseoverfft)] → phaseR (atom trap to

SLM)

Phase without zero padding phaseR (2048×2048) → phaseGSW1 (512×512)

Above is one cycle in GSW algorithm and the SLM phase is acquired by,

SLM phase acquisition phaseGSW1 ([0, 2π]) → phaseGSW11 ([0, 255])

4.1.3 MATLAB code for analysing the array status and assigning path

This code is for entering position information of the atoms, making decision about which

atom goes to which site (matching), and recording the path information, assignment information

and trigger information on a text file.

1 addpath ( ’C:\Program F i l e s \ArrayFire \v3\ examples\ModifiedGSWAlgorithm 180405

backup \ ’ )

2 posX = [−260 −130 0 130 260 −300 −233.3333 −166.6667 −100 −33.3333 33.3333 100

166.6667 233.3333 300 −300 −233.3333 −166.6667 −100 −33.3333 33.3333 100

166.6667 233.3333 3 0 0 ] ;

3 posY = [300 300 300 300 300 410 410 410 410 410 410 410 410 410 410 190 190 190

190 190 190 190 190 190 190]+25;

4 s o r t e r =1: l ength ( posX ) ;

5

6

7 xx = [96 134 173 212 251 84 104 123 144 164 183 204 223 243 263 84 104 123 144

164 183 204 223 243 2 6 3 ] ;

8 yy = [66 66 66 66 66 34 34 34 34 34 35 35 35 35 35 97 97 97 97 97 98 98 98 98

98]+18;

9 f o r k=1: l ength ( xx ) ;

10 imagesum ( k )=sum(sum(AA( yy ( k )−3:yy ( k ) +3,xx ( k )−3:xx ( k )+3) ,1 ) , 2 ) /49 ;

11 end ;

12

13

14 threscompat ib l e502 =[131 126 .8 122 .6 128 .2 129 .6 131 133 .8 133 .8 133 .8 124 125 .4

125 .4 131 125 .4 124 125 .4 126 .8 125 .4 129 .6 125 .4 128 .2 125 .4 125 .4 128 .2

1 2 6 . 8 ] ;

15

16 d i g i t a l =( s i gn ( imagesum−threscompat ib l e502 )+1) /2 ;

17 load ing=d i g i t a l ’ ;

18 t r i g=quo ;

19 sumloading=sum( load ing ) ;

20
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21

22

23 t a r g e t e r = [ 1 : 5 ] ;

24

25 % posXt=posX ( s o r t e r ( 1 : sumloading ) ) ;

26 % posYt=posY ( s o r t e r ( 1 : sumloading ) ) ;

27 posXt=posX ( t a r g e t e r ) ;

28 posYt=posY ( t a r g e t e r ) ;

29

30 costmat=ze ro s ( l ength ( posXt ) , l ength ( posX ) ) ;

31 f o r kq=1: l ength ( posXt ) ;

32 costmat ( kq , : ) =((posX−posXt ( kq ) ) .ˆ2+(posY−posYt ( kq ) ) . ˆ 2 ) . / loading ’ ;% d i s t ance

square

33 end ;

34

35 t a r g e t s o r t e d =[1: l ength ( posXt ) ] ;

36

37 costmat ( i snan ( costmat ) )=I n f ;

38 as s i gned =(munkres ( costmat ) ’ ) ;

39 % ass i gned ( a s s i gned==0)=f i n d ( a s s i gned==0) ;

40

41

42 load ing2=load ing ;

43 load ing2 ( a s s i gned==0)=1;

44 as s i gned ( as s i gned==0)=t a r g e t s o r t e d ( ( a s s i gned==0)) ;

45 unass igned=se txo r ( 1 : l ength ( l oad ing ) , a s s i gned ) ;

46

47

48 framenumber=20;

49 posXpath=( ze ro s ( l ength ( posX ) , framenumber ) ) ;

50 posYpath=( ze ro s ( l ength ( posY ) , framenumber ) ) ;

51 f o r kqq=1: framenumber;%%path genera t i on c o l l i d i n g path

52 posXpath ( : , kqq )=posX ;

53 posXpath ( ass igned , kqq )=(posX ( as s i gned )−(posX ( as s i gned )−posXt ) /( framenumber−1)∗(

kqq−1) ) ;

54 posYpath ( : , kqq )=posY ;

55 posYpath ( ass igned , kqq )=(posY ( as s i gned )−(posY ( as s i gned )−posYt ) /( framenumber−1)∗(

kqq−1) ) ;

56 i f kqq>framenumber /2 ;

57 posXpath ( load ing2 ( t a r g e t s o r t e d )==0,kqq )=posX ( as s i gned ( ass igned>l ength ( posYt ) ) ) ; %

d e t e r m i n i s t i c l oad ing

58 posYpath ( load ing2 ( t a r g e t s o r t e d )==0,kqq )=posY ( as s i gned ( ass igned>l ength ( posXt ) ) ) ;

59

60 % posXpath ( load ing ==0,kqq )=posX ( s o r t e r ( sumloading +1:end ) ) ;

61 % posYpath ( load ing ==0,kqq )=posY ( s o r t e r ( sumloading +1:end ) ) ;

62

63 end ;

64 end ;
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65

66 % f i x i n g the p o s i t i o n

67 %posXpath=posX ’ ∗ ones (1 , framenumber ) ;

68 %posYpath=posY ’ ∗ ones (1 , framenumber ) ;

69 %t r i g =0;

70

71

72 i f t r i g==1

73 save ( ’C:\Program F i l e s \ArrayFire \v3\ examples\ModifiedGSWAlgorithm 180405 backup\
posXpaths . txt ’ , ’ posYpath ’ , ’− a s c i i ’ )

74 save ( ’C:\Program F i l e s \ArrayFire \v3\ examples\ModifiedGSWAlgorithm 180405 backup\
posYpaths . txt ’ , ’ posXpath ’ , ’− a s c i i ’ )

75 save ( ’C:\Program F i l e s \ArrayFire \v3\ examples\ModifiedGSWAlgorithm 180405 backup\
a s s i g n . txt ’ , ’ unass igned ’ , ’ ass igned ’ , ’− a s c i i ’ )

76 save ( ’C:\Program F i l e s \ArrayFire \v3\ examples\ModifiedGSWAlgorithm 180405 backup\
load . txt ’ , ’ loading ’ , ’ t r i g ’ , ’− a s c i i ’ )

77 save ( ’C:\Program F i l e s \ArrayFire \v3\ examples\ModifiedGSWAlgorithm 180405 backup\
l o ad be f o r e . txt ’ , ’ loading ’ , ’ t r i g ’ , ’− a s c i i ’ )

78

79 e l s e

80 save ( ’C:\Program F i l e s \ArrayFire \v3\ examples\ModifiedGSWAlgorithm 180405 backup\
l o a d a f t e r . txt ’ , ’ loading ’ , ’ t r i g ’ , ’− a s c i i ’ )

81 end

The code sets the atom positions in lines 2-8. It catches which-atom-trappped information

in lines 9-19 with pre-measured threshold intensity information in line 14. Target sites are

decided in lines 23-28. The cost matrix is generated in lines 30-37 and the code for Hungarian

algorithm is called in line 38. Loading information and paths information are generated in lines

42-69 accordingly. The information is written in text files in lines 72-81.

4.1.4 MATLAB code of the Hungarian algorithm

This is an open source implementing the Hungarian algorithm with an input cost matrix

“costMat”. The algorithm consists of processing operations on matrices and the reference of

the procedure can be found in [69].

1 func t i on [ assignment , co s t ] = munkres ( costMat )

2 % MUNKRES Munkres ( Hungarian ) Algorithm f o r Linear Assignment Problem .

3 %

4 % [ ASSIGN,COST] = munkres (COSTMAT) re tu rn s the optimal column i nd i c e s ,

5 % ASSIGN ass i gned to each row and the minimum COST based on the ass ignment

6 % problem repre s ent ed by the COSTMAT, where the ( i , j ) th element r e p r e s e n t s the

co s t to a s s i g n the j th

7 % job to the i t h worker .

8 %

9 % P a r t i a l ass ignment : This code can i d e n t i f y a p a r t i a l ass ignment i s a f u l l

10 % assignment i s not f e a s i b l e . For a p a r t i a l assignment , the re are some
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11 % zero e lements in the r e tu rn ing ass ignment vector , which i n d i c a t e

12 % un−as s i gned ta sk s . The co s t returned only conta in s the co s t o f p a r t i a l l y

13 % ass i gned ta sk s .

14

15 % This i s v e c t o r i z e d implementation o f the a lgor i thm . I t i s the f a s t e s t

16 % among a l l Matlab implementat ions o f the a lgor i thm .

17

18 % Examples

19 % Example 1 : a 5 x 5 example

20 %{
21 [ assignment , co s t ] = munkres ( magic (5 ) ) ;

22 d i sp ( ass ignment ) ; % 3 2 1 5 4

23 d i sp ( co s t ) ; %15

24 %}
25 % Example 2 : 400 x 400 random data

26 %{
27 n=400;

28 A=rand (n) ;

29 t i c

30 [ a , b]=munkres (A) ;

31 toc % about 2 seconds

32 %}
33 % Example 3 : r e c t angu l a r ass ignment with i n f c o s t s

34 %{
35 A=rand (10 ,7 ) ;

36 A(A>0.7)=I n f ;

37 [ a , b]=munkres (A) ;

38 %}
39 % Example 4 : an example o f p a r t i a l ass ignment

40 %{
41 A = [ 1 3 I n f ; I n f I n f 5 ; I n f I n f 0 . 5 ] ;

42 [ a , b]=munkres (A)

43 %}
44 % a = [ 1 0 3 ]

45 % b = 1 .5

46 % Reference :

47 % ”Munkres ’ Assignment Algorithm , Modif ied f o r Rectangular Matr ices ” ,

48 % http :// c s c l a b . murraystate . edu/bob . p i l g r im /445/ munkres . html

49

50 % v e r s i o n 2 .3 by Yi Cao at Cran f i e l d Un ive r s i ty on 11 th September 2011

51

52 ass ignment = ze ro s (1 , s i z e ( costMat , 1 ) ) ;

53 co s t = 0 ;

54

55 validMat = costMat == costMat & costMat < I n f ;

56 bigM = 10ˆ( c e i l ( log10 (sum( costMat ( validMat ) ) ) ) +1) ;

57 costMat (˜ validMat ) = bigM ;

58
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59 % costMat ( costMat˜=costMat )=I n f ;

60 % validMat = costMat<I n f ;

61 va l idCo l = any ( validMat , 1 ) ;

62 validRow = any ( validMat , 2 ) ;

63

64 nRows = sum( validRow ) ;

65 nCols = sum( va l idCo l ) ;

66 n = max(nRows , nCols ) ;

67 i f ˜n

68 return

69 end

70

71 maxv=10∗max( costMat ( validMat ) ) ;

72

73 dMat = ze ro s (n) + maxv ;

74 dMat ( 1 : nRows , 1 : nCols ) = costMat ( validRow , va l idCo l ) ;

75

76 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

77 % Munkres ’ Assignment Algorithm s t a r t s here

78 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

79

80 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

81 % STEP 1 : Subtract the row minimum from each row .

82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

83 minR = min(dMat , [ ] , 2 ) ;

84 minC = min ( bsxfun (@minus , dMat , minR) ) ;

85

86 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

87 % STEP 2 : Find a zero o f dMat . I f the re are no s t a r r e d z e ro s in i t s

88 % column or row s t a r t the zero . Repeat f o r each zero

89 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

90 zP = dMat == bsxfun ( @plus , minC , minR) ;

91

92 starZ = ze ro s (n , 1 ) ;

93 whi l e any (zP ( : ) )

94 [ r , c ]= f i n d (zP , 1 ) ;

95 starZ ( r )=c ;

96 zP( r , : )=f a l s e ;

97 zP ( : , c )=f a l s e ;

98 end

99

100 whi le 1

101 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

102 % STEP 3 : Cover each column with a s t a r r e d zero . I f a l l the columns are

103 % covered then the matching i s maximum

104 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

105 i f a l l ( starZ >0)

106 break
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107 end

108 coverColumn = f a l s e (1 , n ) ;

109 coverColumn ( starZ ( starZ >0) )=true ;

110 coverRow = f a l s e (n , 1 ) ;

111 primeZ = ze ro s (n , 1 ) ;

112 [ rIdx , cIdx ] = f i n d (dMat(˜ coverRow , ˜ coverColumn )==bsxfun ( @plus , minR(˜ coverRow

) ,minC(˜ coverColumn ) ) ) ;

113 whi l e 1

114 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

115 % STEP 4 : Find a noncovered zero and prime i t . I f the re i s no s t a r r e d

116 % zero in the row conta in ing t h i s primed zero , Go to Step 5 .

117 % Otherwise , cover t h i s row and uncover the column conta in ing

118 % the s t a r r e d zero . Continue in t h i s manner u n t i l the re are no

119 % uncovered z e ro s l e f t . Save the s m a l l e s t uncovered value and

120 % Go to Step 6 .

121 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

122 cR = f i n d (˜ coverRow ) ;

123 cC = f i n d (˜ coverColumn ) ;

124 rIdx = cR( rIdx ) ;

125 cIdx = cC( cIdx ) ;

126 Step = 6 ;

127 whi l e ˜ isempty ( cIdx )

128 uZr = rIdx (1 ) ;

129 uZc = cIdx (1 ) ;

130 primeZ ( uZr ) = uZc ;

131 s t z = starZ ( uZr ) ;

132 i f ˜ s t z

133 Step = 5 ;

134 break ;

135 end

136 coverRow ( uZr ) = true ;

137 coverColumn ( s t z ) = f a l s e ;

138 z = rIdx==uZr ;

139 rIdx ( z ) = [ ] ;

140 cIdx ( z ) = [ ] ;

141 cR = f i n d (˜ coverRow ) ;

142 z = dMat(˜ coverRow , s t z ) == minR(˜ coverRow ) + minC( s t z ) ;

143 rIdx = [ rIdx ( : ) ; cR( z ) ] ;

144 cIdx = [ cIdx ( : ) ; s t z ( ones (sum( z ) ,1 ) ) ] ;

145 end

146 i f Step == 6

147 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

148 % STEP 6 : Add the minimum uncovered value to every element o f each

covered
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149 % row , and subt rac t i t from every element o f each uncovered

column .

150 % Return to Step 4 without a l t e r i n g any s ta r s , primes , or

covered l i n e s .

151 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

152 [ minval , rIdx , cIdx ]= oute rp lu s (dMat(˜ coverRow , ˜ coverColumn ) ,minR(˜

coverRow ) ,minC(˜ coverColumn ) ) ;

153 minC(˜ coverColumn ) = minC(˜ coverColumn ) + minval ;

154 minR( coverRow ) = minR( coverRow ) − minval ;

155 e l s e

156 break

157 end

158 end

159 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

160 % STEP 5 :

161 % Construct a s e r i e s o f a l t e r n a t i n g primed and s t a r r e d z e ro s as

162 % f o l l o w s :

163 % Let Z0 r e p r e s e n t the uncovered primed zero found in Step 4 .

164 % Let Z1 denote the s t a r r e d zero in the column o f Z0 ( i f any ) .

165 % Let Z2 denote the primed zero in the row o f Z1 ( the re w i l l always

166 % be one ) . Continue u n t i l the s e r i e s t e rminates at a primed zero

167 % that has no s t a r r e d zero in i t s column . Unstar each s t a r r e d

168 % zero o f the s e r i e s , s t a r each primed zero o f the s e r i e s , e r a s e

169 % a l l primes and uncover every l i n e in the matrix . Return to Step 3 .

170 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

171 rowZ1 = f i n d ( starZ==uZc ) ;

172 starZ ( uZr )=uZc ;

173 whi l e rowZ1>0

174 starZ ( rowZ1 ) =0;

175 uZc = primeZ ( rowZ1 ) ;

176 uZr = rowZ1 ;

177 rowZ1 = f i n d ( starZ==uZc ) ;

178 starZ ( uZr )=uZc ;

179 end

180 end

181

182 % Cost o f ass ignment

183 rowIdx = f i n d ( validRow ) ;

184 co l Idx = f i n d ( va l idCo l ) ;

185 starZ = starZ ( 1 : nRows) ;

186 vIdx = starZ <= nCols ;

187 ass ignment ( rowIdx ( vIdx ) ) = co l Idx ( starZ ( vIdx ) ) ;

188 pass = assignment ( assignment>0) ;

189 pass (˜ diag ( validMat ( assignment >0, pass ) ) ) = 0 ;

190 ass ignment ( assignment>0) = pass ;

191 co s t = t ra c e ( costMat ( assignment >0, ass ignment ( assignment>0) ) ) ;

192
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193 func t i on [ minval , rIdx , cIdx ]= oute rp lu s (M, x , y )

194 ny=s i z e (M, 2 ) ;

195 minval=i n f ;

196 f o r c =1:ny

197 M( : , c )=M( : , c )−(x+y ( c ) ) ;

198 minval = min ( minval , min (M( : , c ) ) ) ;

199 end

200 [ rIdx , cIdx ]= f i n d (M==minval ) ;

4.2 Flicker-free phase solution for dynamic holographic traps

A trap array is defined by the profile of the phase mask pattern applied to the LCOS-SLM.

Since only phase modulation is allowed, not amplitude modulation, generally there is no exact

solution for phase calculation, and iterative methods are widely used instead. GS algorithm

is one of typical iterative methods for such phase retrieving in many fields including optical

tweezers and x-ray diffraction analysis, because of its high fidelity and efficiency compared to

other algorithms [70].

However, when it comes to individual atom transport by sequential phase pattern operation,

frame-to-frame intensity flickering matters. This intensity flickering comes from phase jumps

in a large number of pixels (details in Chapter 2). Basic GS algorithm does not give frame-

to-frame phase proximity so it does not guarantee generation of flicker-free sequential phase

patterns. There exist flicker-free solutions at some cost of power efficiency. They also have

various computational times required. A comparison of these methods are presented in table 4.1.

Among them, superposition algorithm was used in this experiment because of its flicker-free

characteristic, its better efficiency than random distribution and limitation of calculation time.

Gerchberg-Saxton algorithm

Gerchberg-Saxton (GS) algorithm is a typical and widely used algorithm for phase retriev-

ing. It tries to find a Fourier transform of a complex function, in 2D or other dimensions, when

control of the phase part in the Fourier transform is only allowed, and the amplitude part is

Table 4.1: Comparison of phase generating algorithms.

Type Power per trap F-to-f proximity Frame rate (Nvidia GeForce Titan X)

GS 1/N X ≤ 100Hz

Random dist. 1/N2 O � 100Hz

Superposition 1/N O ≈ 100Hz

Inductive GSW 1/N O ≤ 100Hz
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given fixed. The phase retrieval is achieved, in terms of our purpose, by repeatedly perform-

ing forward and inverse Fourier transform and replacing the amplitude, between the fields on

the trap domain U(x, y) = A(x, y)eiθ(x,y) and the SLM domain V (X,Y ) = B(X,Y )eiφ(X,Y ) as

following:

set θ(x, y)← 0.

repeat for Niter times :

U(x, y)← A0e
iθ

V (X,Y ) = FT [U(x, y)]

V (X,Y ) = B0e
iφ

U(x, y) = IFT [V (X,Y )]

Retrieve φ(X,Y )

where |A0|2 and |B0|2 are repectively the target array intensity and the beam profile on the SLM.

The equality mark (“=”) here means substitution of the l.h.s. by the r.h.s., as in computational

fields. Usually the resultant trap array profile formed from the retrieved φ(X,Y ) converges to

the target profile as the iteration number increases.

GS algorithm shows good power efficiency of the result so it is good for general purpose

of phase retrieval. However it requires quite much amount of computation which comes from

the repeated forward and inverse Fourier transforms for real-time operation compared to other

non-iterative methods. Moreover, it occurs intensity flickering when used for sequential phase

mask operation since frame-to-frame phase proximity is not guaranteed. For transport of atoms,

flicker-free phase retrieval algorithms are considered as below.

Random distribution

Random distribution is a simple method for phase retrieving which is also intuitive. (See

Chapter 2, phase section, for details) The resultant phase pattern is given by a mixture of phase

patterns for each traps. The individual N phase patterns φn(i) (We use an index to represent

coordinates here. The index runs along the whole SLM plane and is not restricted to 1D.) are

mixed into the resultant phase pattern φmixed(i) as,

φmixed(i) = φM(i)(i) (4.1)

where M(i) is a random matrix which has integers between 1 and N as its elements. In other

words, each value of the mixed phase pattern φmixed(i) is drawn from one of the individual

φn(i)’s, with which one to draw from randomly. Individual phase patterns can be as Fourier

transform of single trap profiles and usually in simple form of linear (in the 2D plane) or

additioanl quadratic (perpendicular shift) phase profiles.

It is a flicker-free solution for atom transport because increment in trap position shift always

corresponds to increment of phase difference. Also, it does not demand much calculation time
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since it is mostly a set of simple additions. On the other hand, the method has low efficiency

which scales as 1/N2 per trap, because in this way the pixels on the SLM are independently

decided, failing to exploiting any constructive interference between components from different

pixels unlike other efficient methods which have efficiency of 1/N .

Superposition algorithm

Superposition algorithm is another algorithm that mixes individual phase patterns into a

synthesized phase pattern. In this method, the phase value at each pixel in the mixed pattern

is obtained as the argument of the complex sum of all the fields from the individual patterns at

the same index, i.e.,

φmixed(i) = arg

[
N∑
n=1

eiφn(i)

]
(4.2)

Unlike Random Distribution, this method allows fields to constructively interfere, so ef-

ficiency of this method is better, scaling as 1/N . The increment condition is satisfied, so is

flicker-free condition. Computational demand of this method is larger than that of Random

Distribution, but smaller than that of iterative methods.

However, superposition algorithm fails to generate images with highly periodic geometries.

The reason is that a simple Fourier transform of a periodic geometry shows amplitude peaks

(as in typical Fourier transform of monotonc signal), and modulation of the SLM finds it hard

to meet such a profile requirement only with phase modulation. GS algorithm is made to

iteratively converge to the target profile, so the periodicity problem is relieved in this method.

Inductive GSW

Inductive weighted GS (Inductive GSW) algorithm has two additional manipulation in its

procedure, starting from GS algorithm. First is the “weighted” part; to increase the uniformity

of the resultant array profile, it performs feedback control to each of the traps every iteration.

Ak+1
0 (x, y)|(x,y)∈P = Gk(x, y)Ak0(x, y)|(x,y)∈P (4.3)

where Ak0, P , and Gk(x, y) represent the target amplitude of the array in the k-th frame, the

set of trap points, and the gain value for each point in the k-th frame. The gain value can be

determined as various ways; it can be just the inverse of the previous target amplitudes, times

the mean of them, or given by a servo loop output.

Second, the “inductive” part means, in the iteration for calculating the (k + 1)-th frame

φk+1(X,Y ), the initial condition of the iteration is replaced by the resultant phase of the k-th

frame φk(X,Y ), instead of just setting θ(x, y) = 0. By applying this, frame-to-frame phase

proximity occurs, giving the sequential phase patterns flicker-free characteristic.
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4.3 Path planning

Neutral atom arrays in two or three dimensional space may play an important role in

quantum information processing (QIP), because of their scalability to a massive number of

qubits [29, 72, 75, 76, 77, 78]. Currently, arrays of several hundred atoms have been imple-

mented with optically-addressable spacings of a few µm [8, 79], and this number is expected to

increase to a few thousand as laser power permits. These atoms are confined by an array of

optical-dipole traps made through various methods including holographic devices [44], diffractive

optical elements [23, 80], micro-lens arrays [81], and optical lattices [82]. Ultimately, neutral-

atom platforms for QIP may require (i) a significant number of atoms, (ii) a high-dimensional

architecture, preferably with an arbitrary lattice geometry, (iii) single-atom loading per site, and

(iv) the ability to be individually addressable. However, no existing method satisfies all these

requirements. For example, optical lattices can provide a large number of atoms singly loaded

per site through the Mott insulator transition [82], but they have rather limited geometries and

often lack individual addressability; other methods have advantages of arbitrary configurations

and site addressability but fail the single-atom loading condition due to the collisional blockade

effect [52].

In optical-dipole traps, the probability of single-atom trapping per site is about 50 percent.

Both the filling factor and the configuration of the entire array are, in consequence, probabilistic.

The probability of filling an entire array with N atoms scales as 0.5N , which is extremely

small for a large N . Significant efforts are being devoted to achieve a deterministic or near-

deterministic single-atom loading; one approach uses an array of bottle-shaped blue-detuned

optical well potentials [71], and the others include light-assisted, controlled inelastic collision [73,

74, 65]. The loading probability of defect-free arrays however still remains distant from one,

especially when we consider a large number of atoms.

Recently, methods have been devised to achieve defect-free atom arrays at a high proba-

bility by filling vacancies with nearby reservoir atoms [66, 67, 36, 61, 83, 84], along with the

development of atom transport techniques [48, 50, 85, 45, 46, 86]. In this vacancy-filling scheme,

as illustrated in Fig. 4.1, the probability of achieving N completely filled lattice points is a prod-

uct of the probability of initially trapping more than or equal to N atoms and the probability

of successful transport of N atoms to target sites. Since the former is a conditional probability

that approaches one as the number of initial traps exceeds 2N , the vacancy-filling of the target

sites is mainly governed by the latter, or how N -atom transport is performed. The shorter

the overall travel path of all atoms, the smaller the loss that is given as a function of travel

time and distance. Thus, successful transport depends on a “good” atom-guiding plan that

minimizes the travel time and distance as well as any lossy transport paths. This is a com-

binatorial optimization problem, and can be specifically categorized as bipartite matching, for

which the solutions can be efficiently found with graph theories such as the Hungarian method,

or Hungarian matching algorithm [87].
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Designing an optimized path plan for compactifying an imperfect initial array into the

target deterministic filled array, there are things are to be considered. One is the amount

of required calculation time for computing path plan which is a critical factor regarding the

finite trap time. Calculation time should be sufficiently short compared to the trap decay

time and it depends much on which algorithm we use to obtain the path plan. Another is the

amount of required memory for the calculation. It is a pratical limitation which involves the

physical memory of the system. Another thing to consider, which is fundamental, is whether

the algorithm is complete. In other words, “If there is a solution for the current array situation,

does this algorithm always give a solution?”

Regarding the things, we can come up with some kinds of path planning algorithms; heuris-

tic move, backpropagtion, atom-target matching (brute force), and rigorous matching algorithm

such as the Hungarian algorithm. Comparisons of them in terms of the discussed factors is pre-

sented in table 4.3. The path plan algorithm is needed to obtain the optimized efficiency

considering passive loss, moving loss depending on the step displacement and travel distance,

number of sequence steps, total spent time, etc. Also, algorithms should not be complicated

for speedy overall operation. We simulated several methods stated here and decided to em-

ploy Hungarian mathing algorithm for complete matching with reasonably short calculation

time.The algorithms will be described in following in detail.

In the following descriptions, symbols stands; NA: number of trapped atoms, NT : number

of target sites, NU : number of total sites, d: spatial dimension in which traps and atoms exists,

s: allowed number of trial stages.

In this section, we consider the Hungarian matching algorithm as an efficient means to

achieve defect-free atomic lattice formation through vacancy-filling. In following subsections,

we first compare atom-site matching methods, namely the brute-force and heuristic approaches

as well as the Hungarian, to discuss their pros and cons, and then explain how to obtain collision-

free paths using the Hungarian algorithm in Sec. 4.4. The experimental procedure of capturing

atoms with optical-dipole traps, identifying the vacancies, calculating the optimal path plans

accordingly, and finally verifying the filling is described in Sec. 4.5. In Sec. 4.5.2, we present

the results of experiments utilizing the optimal path planning before concluding in Sec. 4.6.

Table 4.2: Comparison of path planning algorithms.

Algorithm Completeness Calculation time

Heuristic move Not comp. Very short

Brute force Comp. Very long

Hungarian matching Comp. Short
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4.3.1 Heuristic move

The simplest way of vacancy filling path plan one can think of is to make some heuristic

rules and let the atoms move based on it. Since this is not a rigorous way of planning, there could

be a range of various strategies. For example, if the target sites are all centered, a trivial and

macroscopic, or global rule should be move all atoms towards the center, if there is any vacancy,

like gravitation does. Once a global rule is set, additional microscopic, or local rules also have

to be decided, which could be quite different case by case according to the array geometry. One

issue for this kind of rule would be how to select one direction between two possible directions

which are equally close to the central direction, i.e., when they are symmetric. Another can be

how to distribute spatial atom population if it is localized in some regions and too sparse in

another.

This kind of strategy is simple and does not require much computation power and memory.

Instead, it is not complete; in some special situations, it might not find any solution for our

objective, even if there is. In order to maximize the success rate, we considered some further

strategies to overcome the issue.

4.3.2 Backpropagation method

One simple way to achieve rigorous solving of vacancy filling is to address all the cases of

array status and provide a pre-found solution for it in experiment. Then, how can we figure

out the predetermined solutions for all the cases? It can be found out by starting from the final

filled array we want to obtain (virtually, in simulation), and addressing all the configurations

after moving individual atoms along every possible path set; i.e., we record the path sets for all

possible cases of backpropagation of the atoms starting from the final objective configuration

and recall the corresponding one in experiment.

This method is rigorous because every single possible configurations is investigated and

addressed on the precalculation stage. It guarantees if the queried configuration is not on the

address list, there is no solution for it. On the other hand, it clearly requires much of memory

space since there are plenty number of cases of possible backpropagation, especially with a

large number of traps. It also requires long time when investigating all the possible path sets.

Moreover, the time required to query the address on the lookup table during experiment is not

short, either.

4.3.3 Atom-target site matching (source indexing)

Instead of investigating all possible configurations of atom locations on an array, there

exists a less time-demanding, memory-demanding and still rigorous way. The idea is to set our

objective to be assigning one atom to every target site, or finding out an one-to-one matching

between a set of atoms and all the target sites, with the constraint that the sum of the distances

for atoms to move by is minimized.
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This can be computationally realized as following. Identify the array status, and for each

target site g(xj), record distances from every trapped atom a(xi). This would constitute a

distance matrix dij . Now try to choose one atom from each target site, exclusively. No two

target sites could pick the same atom. Calculate the total distance. Repeating this way, find a

matching which gives the minial total distance, investigatively.

The amount of investigation could be much reduced by limiting the allowed atom-site

distance, and by sorting the candidate atoms in the order of distance so that the investigation

starts from the minimal distances. This source indexing method requires much shorter time

compared to the backpropagation method, but this way of finding the optimal matching still

requires somewhat long investigationg time and might not be sufficiently efficient for certain

real-time experiments.

When we consider the relocation of atoms to transform a partially-filled atomic lattice to

a completely-filled one, finding a set of relocation paths can be viewed as the problem to find

a match between every target site and a corresponding atom. Although there are a plethora

of algorithms to assign matching between the target sites and the same number of atoms,

we must consider their operational efficiency in actual experiments. Not only do atoms in

optical-dipole traps have a finite trapping time, but they also escape from the traps during

transport with a certain probability given as a function of both time and distance. In choosing

a specific algorithm, therefore, we need to consider the time and travel distance. The time is the

sum of computational time for the matching algorithm, and execution time for the subsequent

guiding operation (transport), with the latter closely related to the travel distance. In our

case of about half-filled lattices, the travel distance (or the execution time) does not change

much for various initial configurations and algorithms; however, the computation time changes

significantly depending on the choice of algorithm.

Figure 4.4 compares the computational times of various atom-site matching algorithms.

The brute-force algorithm requires a factorial increasing computational time as the size of the

target site N increases, and the Hungarian algorithm scales as N3 [88]. While the result of the

heuristic method (the shortest move method [83]) provides a shorter computational time, the

resulting matching is not only sub-optimal but also often involves path collisions (see Sec. 4.4).

The pros and cons of these algorithms are summarized in Table 4.3, with the details of each

method discussed in the following subsections.

Table 4.3: Comparison of atom-site matching algorithms

Algorithm Calculation complexity Rigorosity

Brute-force method O(N !) yes

Heuristic shortest-move O(N3) no

Hungarian matching O(N3) yes
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Figure 4.4: Computational time vs. the number of initial sites. The computational time of

atom-matching to target sites using the brute-force, heuristic shortest move, and Hungarian

algorithms, when the numbers of target sites, atoms and initial sites are given by N : NA : Ni =

1 : 2 : 4, respectively. Each errorbar represents the standard deviation [105].
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Brute-force atom-site matching

The brute-force method extensively searches all possible matching solutions; thus, it finds

the optimal solution without failure, but in an extremely time-inefficient way. In this method,

after identifying the initial configuration of atoms in the lattice, we calculate the distance matrix

D, of which the element di,j is the distance between each target site ti and the initial position

of each trapped atom aj . When all the target sites are indexed with T = {ti|1 ≤ i ≤ N}
and the positions of the trapped atoms with A = {aj |1 ≤ j ≤ NA}, the objective is to find a

one-to-one matching f : T → A which minimizes the total distance between atoms and target

sites, where dtotal =
∑

i di,f(i) and di,f(i) = |ti − f(ti)|. All possible subsets of A of size N are

sequentially selected with all possible permutations inspected. This method ensures the optimal

solution (i.e., the one-to-one function with the minimum total distance); however, it requires a

tremendous amount of calculation time. As shown in Fig. 4.4, the brute-force calculation time

scales factorially as a function of the total number of initial sites, Ni, and as a result it takes

more than an hour for Ni = 100, which is not practical in our experiments. (The comparative

benchmarking of matching computation time in Fig. 4.4 was performed with a MATLAB code

and an Intel CPU i5-4670.)

Heuristic shortest-move matching

Heuristic algorithms can find a solution in a time-efficient manner. One example used in

Ref. [83], which may be referred to as heuristic shortest-move matching, finds a solution in such

a way that N smallest elements are sequentially selected from the distance matrix D with the

condition of choosing only one element from each row and column. So, in the distance matrix,

this algorithm finds the smallest element dl,m and assigns am to tl, i.e., am = f(tl). Then, the

l’th row and m’th column are eliminated from the matrix D and the process repeats NT times

until all target sites are assigned to atoms. As shown in Fig. 4.4, the heuristic approach allows

fast calculation, with a computational time an order smaller than the Hungarian algorithm for

typical cases (30 times faster for Ni = 100). This algorithm is fast but not rigorous; this sub-

optimality can be improved by using additional restriction rules. Compared with the Hungarian

algorithm, which will be introduced in the following subsection, our computer simulation of the

heuristic shortest-move method, without additional rules, finds an optimal solution with a 50%

chance; the sub-optimal solutions involve either a longer travel distance (14%), atom-atom

collision en route (93%), or both (7%).

Matching with Hungarian algorithm

Finding a path set to fill the vacancies of the target array can be viewed as finding a

matching between every target site and a corresponding atom. We considered some matching

theories such as Hall’s marriage theorem, the Hopcroft-Karp algorithm, and the Hungarian

algorithm to achieve complete matching between target sites and atoms.
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First, Hall’s marriage theorem, or Hall’s theorem, gives necessary and sufficient condition

for the existance of a matching that covers at least one side of a bipartite graph. In our

experiment, there is the set of target sites T = {ti | 1 ≤ i ≤ NT } and each target site has its

candidate atoms Ai = {aj | d(ti, aj) ≤ range} which are adjacent the site itself. Interpreted

for our experiment, the theorem tells whether there exists any possible exclusive matching

M(ti, a(ti))between each target site and a corresponding atom among its candidates.

The Hopcroft-Karp algorithm finds an actual maximum matching from a bipartite graph.

It assigns as many as exclusive atoms for target sites, accomplishing complete filling if the

number of matched atoms equals the number of target sites.

The Hungarian algorithm finds a maximum matching in the constraint of minimizing the

cost. In our problem, the algorithm finds a matching between atoms and target sites where the

cost means the distance from an atom to a target site in this case. A formal description of the

mathmatical formalism of the algorithm is as following.

• Index all atoms {a(xi)} and construct a cost matrix, or in this case, distance matrix, dij

from the atoms to each goal site {g(xj)}.

• The objective is to find one-to-one matching between a set of goal sites and atoms

G(U, V,E) in which the total distance is minimized. U = {g(xj)}, V ⊂ {a(xi)}.

• This is an assignment problem which assigns atoms exclusively to each of goal sites, the

distances corresponding to the costs. Hungarian algorithm is known to be an efficient

algorithm to solve with time complexity of n3, where dimension of the cost matrix is

n× n.

The detailed procedure of the algorithm to solve the problem is beyond the topic of the

thesis, so is not to be discussed here. The calculation of path planning using this algorithm was

done by an open source computer program.

4.3.4 Hungarian matching algorithm

Graph theories, such as Hall’s marriage theorem, the Hopcroft-Karp algorithm, and the

Hungarian algorithm, provide useful theoretical backgrounds to achieve a fast and rigorous

matching between target sites and atoms. Hall’s marriage theorem [89], or Hall’s theorem,

provides the necessary and sufficient condition for the existence of a matching M that covers at

least one side of a bipartite graph G(U, V ;E), where U and V are two finite sets, and E is the

set of edges that connect U and V . In the current work, we consider U = T and V = A, and this

theorem tells whether there exists in G any possible exclusive matching between each target site

and a corresponding atom among all trapped atoms. The Hopcroft-Karp algorithm [90] finds

an actual matching M that allows the maximal one-to-one connection between U and V , from

a given bipartite graph G. When all elements in U = T are one-to-one connected to V = A, in
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other words maximal matching, the complete filling of the target sites in our case is possible.

This theorem however only finds possible matching, without considering distance minimization.

As total distance minimization is necessary, we focus on the Hungarian matching algorithm,

which can use cost functions when finding a maximal matching M in G [87]. The Hungarian

method efficiently finds the maximal matching with a time complexity of N3 for an N × N
cost matrix, when the constraint is given to minimize the cost function. Our Monte Carlo

simulation using the total travel distance as the cost function shows the same scaling behavior of

computational time as in Fig. 4.4. Furthermore, some modifications to the original Hungariam

algorithm can significantly reduce the calculation time, either by employing a sparse-matrix

Hungarian algorithm or by using the sub-domains of trapped atom sites to apply the algorithm

to each domain (a divide-and-conquer approach).

4.4 Collision-free property of matching with Hungarian algo-

rithm

Examples of actual atom-guiding plans obtained with the heuristic shortest-move and Hun-

garian algorithms are shown in Fig. 4.5. The initial configuration is a 7-by-7 square lattice

(Ni = 49) randomly occupied by NA = 21 atoms, as in Fig. 4.5(a), where filled circles represent

the initial atoms and unfilled circles the vacancies in the 3-by-3 target lattice (N = 9). The

result of the heuristic shortest-move method without any additional rule is shown in Fig. 4.5(b).

However, some guiding paths cross each other or trespass on existing atoms (orange dotted cir-

cles), which leads to possible atom loss or improper guiding due to the merging of optical-dipole

traps en route.

The Hungarian matching algorithm in Fig. 4.5(c), on the other hand, intrinsically shows

no path crossing. This is because the matching with path crossing gives a bigger travel dis-

tance than the corresponding collision-free matching that swaps the targets, and the Hungarian

algorithm minimizes the total distance. However, trespassing still remains, as shown with the

dotted circle in Fig. 4.5(c). In order to avoid such trespassing, we can employ an alternative

cost matrix D, for example, with a modified distance metric dαi,j . With the modified distance

metric, trespassing is avoided when α > 1. If, for example α = 2, since the matching A → B,

B → C (“relaying path”) in Fig. 4.5(d) gives lower cost (12 + 12 = 2) than A → C, B → B

(trespass) in Fig. 4.5(c) (22 + 02 = 4).

A similar principle can also apply to “nearly trespassing paths” where, for instance, atom

B is near the A → C path. Since atom traps have finite sizes in space, by avoiding the atoms

which are too close, atom loss could be reduced. In a similar manner to the trespassing case, a

relaying path is chosen when α > αc, in which the minimum interatomic distance is increased.

Sufficient αc can vary according to the array configuration. For the square lattice in our case,

it is found that α > 1.12 ensures the minimum interatomic distance of 1/
√

2, as follows. We

consider nearly trespassing configurations that involve the minimum interatomic distance, in
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which (0, 0) → (1, l) and (0, 1) → (0, 1) is the nearly trespassing path (see Fig. 4.6(a)). The

condition for choosing the relaying path (Fig. 4.6(b)) is 1α + (
√

1 + (l − 1)2)α < (
√

1 + l2)α.

For l = 1, a nearly trespassing path is allowable because the minimum distance in this case is

1/
√

2, which is sufficiently larger than the trap size. For l = 2, αc ≈ 1.12, and as αc has smaller

values for larger l’s, α > αc ensures the minimum distance not to be smaller than 1/
√

2, which

is the condition for collision-free matching.

4.5 Experiment

4.5.1 Procedure

The experimental setup, similar to what is described in our earlier work [36, 61], includes a

magneto-optical trap (MOT) for cold rubidium atoms (87Rb), a dipole-trapping laser beam pro-

grammable with a 2D spatial light modulator (SLM, Meadowlarks XY spatial light modulator,

512×512 pixels, 200 Hz frame rate) in the Fourier domain, a single-atom imaging system with

an electron multiplying charge-coupled device (EMCCD) and a high numerical aperture lens

(NA = 0.5), and a computing system that calculates possible atom-relocation paths. Atoms

were first cooled and trapped in the MOT which took 0.5 seconds. Simultaneously, the dipole-

trapping beams were turned on to prepare an initial array of atoms that were probabilistically

loaded in the collisional blockade regime [52], with a filling factor of about 50 percent. Then,

the imaging system read out the filling and vacancy configuration of the initial atom array, and

the computing system calculated an atom-transport path plan to a completely-filled smaller-

size lattice. The matching algorithm, such as the Hungarian algorithm, was used at this stage.

Once the atom guide plan was finalized, all the atoms to be relocated were simultaneously trans-

ported, while the mask pattern for the SLM was calculated in real time, which was accelerated

with a graphic processing unit (GPU, Nvidia Titan X). For hologram generation, we used a

modified GS (Gerchberg-Saxton) algorithm [91]. When the first trial of atom reconfiguration

was completed, the actual array configuration was confirmed through a second readout. If the

configuration was incomplete due to moving or collision loss during the operation, the whole pro-

cess was repeated until a defect-free array was achieved. The whole experiment was performed

in a closed feedback loop with up to nine iterations within the trap lifetime of τ = 18 s.

4.5.2 Result

Circular target with phase generation comparison

The experimental sequence was mainly iterations of vacancy filling operation. From an

initial MOT, atoms were loaded to an initial array of Nres traps. Trapped atoms were identified

and array reconfiguration for vacancy filling was performed. This operation was iterated for

sequential stages Nf at certain time period of T .

Fig. 4.7 shows several trial stages of vacancy filling with experimental parameter sequence
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on the top, and selected captured atom images, each followed by atom number histogram in

the final target array. After the initial trapping, the experimental parameters were repeated

for times. The leftmost column of the atom images shows the initial status of the array and

the other columns show the images after vacancy filling operations at corresponding trial stages

Nf . The upper demonstration collects the final array of NT = 10 with a reservoir of Nres = 20.

The lower one collects the final array of NT = 15 with Nres = 30. In both demonstrations, the

highest probabilities, 63% and 43% respectively, of defect-free array were acquiured after two

trials, which are over ×600 and ×14000 times of the natural trapping scheme of 0.5 per site.

The result shows possibility of preparation of filled single atom arrays for experiments on single

atom arrays in a reasonable number of trials.

Fig. 4.8 shows atom loss rate per a single transport step for various types of phase generation

method. The superposition algorithm shows better performance than GS algorithm because

of GS algorithm’s undermined frame-to-frame continuity. The superposition algorithm also

outperforms random distribution algorithm

Square target with matching algorithm comparison

Experimental demonstration of our defect-free atom-lattice formation using the Hungarian

algorithm is shown in Fig. 4.9. Representative atom lattice images at various stages are shown

in Fig. 4.9(a-d). The initial configuration was a partially filled 7-by-7 square lattice, having

three vacancies in the central 3-by-3 target zone, as shown in Fig. 4.9(a). As indicated by the

five arrows, the neighboring atoms were simultaneously moved to construct a completely-filled

central lattice. However, as the images in Fig. 4.9(b) and (c) show, some atoms in the target

lattice disappeared during transport due to time-dependent atom loss. To fill the vacancies,

neighboring atoms were additionally moved along the paths indicated with arrows, until a

completely filled 3-by-3 lattice was achieved, as shown in Fig. 4.9(d). The atom-site matching

in each stage and the corresponding guiding paths were obtained using the Hungarian algorithm

with α = 1.5. The success probability Ps, defined as the number of successful events (achieving

the defect-free 3-by-3 target lattice) divided by the total number of events (250), increased from

about 0.59 ' 0.2% in the initial configuration, to 24% after the first relocation, then 50% after

the second relocation, and ultimately 61% after the ninth relocation.

Figure 4.10 compares the experimental success probabilities of the Hungarian algorithm

with α = 0.5, 1.5 and 3 with that of the heuristic shortest-move matching. The experimental

data (circles) shows that the success probability to achieve a defect-free array is notably bigger

when the Hungarian matching algorithm with either α = 1.5 or α = 3 is employed rather

than the heuristic shortest-move algorithm or Hungarian with α = 0.5. This result is in good

agreement with the analysis in Sec. 4.4, where it was predicted that the former cases are collision-

free but the latter cases are not. Note that the success probability Ps first increases as a function

of the stage number, but decreases in the end, which is attributed to the fact that the longer

travel distance required for the later stages brings about bigger losses. In the experiment, each
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atom move between sites was divided into Nframe = 15 segmented moves, and each segmented

move was driven by the SLM frame evolution between two stationary frames. The atom survival

probability in each segmented move can be modeled as P = PtimePmovingPcross, where Ptime =

e−t/τ is the survival probability against the time-dependent loss due to background gas collision,

with τ the trap lifetime, Pmoving = e−βNframed
2

is the survival probability against the moving

loss due to intensity flickering of the optical dipole traps [61], with β the moving loss coefficient

and d the travel distance, and Pcross = 1 − e−γd2min is the survival probability against the loss

due to path collisions. In Fig. 4.10, the numerical simulation using the above models (dotted

lines) for each relocation stage are shown. The fitted parameters obtained through curve fitting

are given by τ = 18 s, β = 0.0079/a2, and γ = 84/a2, where a is the lattice constant. Each

data point is statistically averaged over 250 events, where the errorbar represents the standard

error.

Finally, Fig. 4.11 shows a few examples of atom arrays formed by the Hungarian matching

algorithm. In each of the demonstrations, the upper images show examples of the random initial

configurations with N ∼ 100 initial sites, and the lower images show the final configurations

following atom relocation. Each image was from a single shot. Success rates were 30.6%, 32.6%,

and 19.1%, respectively. For array-formation of various geometries of target sites, the Hungarian

algorithm performed best.

4.6 Conclusion

Three methods of vacancy site filling have been compared. The advantage of Hungarian

matching over the brute-force method is clear because the calculation time of the latter greatly

exceeds the former as the number of atoms increases. The heuristic shortest-move method

seemingly has an advantage in short calculation time, but the issue of path collisions becomes

serious, in particular when the vacancy occurs in the central region of the target lattice. It is

concluded that the Hungarian matching method has at least three advantages over the heuristic

shortest-move method: it provides rigorous solutions, high success probabilities, and advantages

in atom vacancy healing cases, where the second and third advantages are attributed to the

collision-free path planning of the Hungarian algorithm.
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Figure 4.5: Visualization of move solutions from (a) the 7-by-7 initial array, by (b) shortest-

move matching algorithm, and (c-d) Hungarian algorithm matching with α = 1 and 2, respec-

tively, to the central 3-by-3 target array. The orange dotted circles show overlapping of the

paths and trespassing of atom sites.
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Figure 4.6: (a) “Nearly trespassing path” and (b) “Relaying path” for a configuration with

two atoms and two targets in a 1-by-L lattice.
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Figure 4.7: Deterministic circular chain arrays. Several trial stages of vacancy filling with

experimental parameter sequence and selected captured atom images are shown, each followed

by atom number histogram in the final target array.

60



630540450360270180
10

-4

10
-3

10
-2

10
-1

S
in

g
le

 s
te

p
 l

o
ss

Single step size (nm)

GS
RM
SP
Theory

Figure 4.8: Single step loss for GS, Random Distribution, Superposition (SP), and theory.

61



O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

N N

N N

1 9 1 9

1 9 1 9

P  =24%

Initial configuration(a) (b)

(c) (d)

First relocation

Second relocation Ninth relocation

sP  =0.0087%s

P  =61%sP  =50%s

Figure 4.9: Experimental examples of the formation of a 3-by-3 atom array from a partially

filled 7-by-7 array using the Hungarian matching algorithm, where Ps is the success probability

of achieving a filled target lattice. Histograms of the atom number in the target lattice are

shown below from a total of 250 events [105].
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Figure 4.10: Success rate comparison for shortest-move and Hungarian algorithm matching

with various α values in the 7-by-7 lattice for the target 3-by-3 lattice in the central region.

The circles and errorbars correspond to the experimental data and the dotted lines show the

simulation results [105].
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Figure 4.11: Examples of defect-free atomic array formation: (a) a rectangular ring, (b) a

triple X, and (c) the capital letters of the word “atom” with upper and lower images showing

the initial and final configurations, respectively [105].
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Chapter 5. N-atom interacting system with Rydberg blockade

5.1 Introduction

Since evidence of quantum entanglement was discovered and advocating theories was made,

there has been demonstrations on quantum entanglement in many kinds, in forms of photon-

photon, photon-atom, etc. One of well-known interactions between atoms is dipole interaction,

which casts us possibility of creating and controlling atom-atom entanglement via a phenomenon

called dipole blockade, or in Rydberg state case, Rydberg blockade [9, 25, 93, 94, 95, 96, 97].

Let us consider dipole-dipole interaction between adjacent two atoms [30, 92]. The leading

term in dipole-dipole interation hamiltonian is expressed as,

V (~r1, ~r2) = (1− 3cos2θ12)
d1d2

R3
(5.1)

where θij is the angle between the interatomic axis and the quantization axis of the atoms,

di and dj are the electric dipole operators of the atoms, and R is the distance between them.

For a two-atom Rydberg state |rr〉, where |r〉 = |nd〉, the largest contribution to the energy

shift caused by the dipole interation comes from the state |r′r′′〉, where |r′〉 = |(n+ 1)p〉 and

|r′′〉 = |(n− 1)f〉. With these two atom-atom states as basis, the interaction Hamiltonian

becomes in the form of,

H =

(
0 C

R3

C
R3 δF

)
(5.2)

where C is a constant proportioanl to the dipole moments of the atoms and δF is the energy

difference between two states, called the Förster defect [30]. R is the distance between the two

atoms. As shown in Sec. 1.4, the energy shift is,

∆Vint(R) = ± C2

4δFR6
, (5.3)

which will be denoted simply as C6/R
6.

Let us now consider two levels of an atom, the ground state |g〉 and the Rydberg state

|r〉 with Rabi frequency Ω. Now two atoms are apart by a distance at which van der Waals

interaction occurs with basis of |gg〉, |gr〉, |rg〉, |rr〉. In this case, the Hamiltonian is,

H =
Ω

2
(|g〉 〈r| ⊗ 1 + 1⊗ |r〉 〈g|+H.c.)− C6

R6
|rr〉 〈rr|

=
Ω

2
(|gg〉 〈gr|+ |gg〉 〈rg|+ |gr〉 〈rr|+ |rg〉 〈rr|+H.c.)− C6

R6
|rr〉 〈rr| . (5.4)
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Note that the state |−〉 = (|gr〉− |rg〉)/
√

2 is decoupled from the system. Then we can use

new basis |gg〉, |+〉 = (|gr〉+ |rg〉)/
√

2, and |rr〉. Then the Hamiltonian becomes,

H =

√
2Ω

2
(|gg〉 〈+|+ |+〉 〈rr|+H.c.)− C6

R6
|rr〉 〈rr| (5.5)

Compared to single atom Rabi oscillation, the Rabi oscillation frequency between |gg〉 state

and an entangled state |+〉 state turns out to be enhanced by
√

2. In strong interaction regime

where |C6|
R6 � Ω, |rr〉 state decouples from the dynamics, which is called Rydberg blockade. Two

67S Rydberg atoms apart from each other by 6 µm, for example, have interaction energy of about

2π× 10 MHz, which is 10 times of single atom Rabi frequency if the frequency is 2π × 1 MHz.

Due to its strong interaction and versatility of single atom dipole trapping, Rydberg blockade

is studied as a promising way of interaction in neutral atom quantum computing [98, ?, 100]

and quantum simulation [101, 102, 103, 104].

5.2 Experimental setup

The experimental setup mostly follows previous experiments, except for Rydberg excitation

lasers and a set of Helmholtz coils for assignment of quantization axis. The interatomic distance

was around 5 µm, considering the magnitude of the interation energy between them. The

schematic diagram is as in Fig. 5.1 and the details will be discribed below.
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Figure 5.1: Schematic diagram of Rydberg atom experiment setup.

5.2.1 780 nm laser and 480 nm laser

Since two-photon excitation from the ground state to the Rydberg state requires the

linewidths of the lasers less than MHz, frequency locking of the 780 nm and 480 nm lasers

was achieved by locking to an ultra-low expansion (ULE) reference cavity.
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Figure 5.2: Energy level diagram for excitation of the atoms. The atoms initially in |g〉 =∣∣5S1/2

〉
state are excited to |r〉 =

∣∣67S1/2

〉
Rydberg state by non-resonant two-photon transition

through
∣∣5P3/2

〉
state.

The 780 nm and 480 nm Rydberg excitation lasers (Toptica diode laser and Toptica DL pro,

respectively) were locked to an ULE reference cavity. The detuning of the two lasers from the

intermediate state was about ∆ ≈ 660 MHz. If one of the transmission peaks the laser through

the ULE cavity approximately coincides the desired offset frequency, the laser frequency can be

locked with the transmission signal along with typical locking devices. If any of transmission

peaks are not in adjacency of the desired frequency, additional parts, like an EOM, for sideband

generation so that one of the sideband matches the frequency of the cavity transmission peak.

5.2.2 Quantization Axis

Since we expect the atoms to be excited from a well-defined hyperfine state, the mF states

needs to be well-defined with a certain quantization axis. This quantization axis for magnetic

states can be defined by applying some bias magnetic field along the direction of excitation

beam axis. The magnitude of the bias field was 3.2 G.

5.3 Experiment procedure

5.3.1 Atom Trap and Optical Pumping

The method to trap single atoms was as in the previous Chapters. Atoms were trapped

in two holographically generated microtraps and their seperation was 5 µm. There could be

four kinds of trap status after the initial traping: a) both traps are occupied, b) trap A is

occupied, c) trap B is occupied, d) none is occupied. The results for a), b), and c) are recorded

and analyzed for comparison of single atom Rydberg rabi oscillation and two-atom collective
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oscillation.

Two-photon Rydberg excitation goes from the ground state
∣∣5S1/2, F = 2,mF = 2

〉
, through

the intermediate state
∣∣5P3/2, F = 3,mF = 3

〉
to the Rydberg state

∣∣67S1/2,mJ = 1/2
〉
. The

initial state
∣∣5S1/2, F = 2,mF = 2

〉
therefore needs to be prepared after the first readout of the

atoms. This is realized by the MOT cooling beam
∣∣5S1/2, F = 2

〉
→
∣∣5P3/2, F = 3

〉
with angular

momentum mF = +1 which makes
∣∣5S1/2, F = 2

〉
a dark state. Then our desired initial state

becomes dark state and so the initial population is prepared.

5.3.2 Rydberg Excitation

The Rydberg transition from
∣∣5S1/2, F = 2,mF = 2

〉
through

∣∣5P3/2, F = 3,mF = 3
〉

to∣∣67S1/2,mJ = 1/2
〉

states is excited by two laser beams in 780 nm and 480 nm. After the first

readout and optical pumping, simultaneous shining of two excitation beams occurs Rydberg

rabi oscillation of trapped atoms. For accurate control of excitation timing, 480 nm laser shines

for a longer time window than 780 nm laser and control of excitation time is adjusted by 780 nm

laser time window.

5.3.3 State measurement by recapture method

After excitation beams are turned off, quantum population is measured by recapture

method. When the trap beam is turned on again after the excitation finishes, it only traps

atoms in the ground state and the atoms in the excited state are not captured again. So when

we image the atom array, only the atoms in ground state appear. For example, by measuring

a single atom in a resonance light, one can see Rabi oscillation between |cg(t)|2 and |ce(t)|2 of

the atom system |φ(t)〉 = cg(t)
∣∣5S1/2

〉
+ ce(t)

∣∣67S1/2

〉
by measuring the recapture rate in pulse

duration time t.

5.4 Rydberg blockade and collective excitation

Two holographic traps trapped atoms, the first readout verified which of the traps were

filled, then the initial state was prepared by optical pumping, and 780 nm and 480 nm excitation

pulses were applied along two trap sites for various pulse lengths. After applying the excitation

pulses, the second readout was carried out. The final population of two atoms was measured,

in terms of the excitation pulse length, through the recapture method. Figure 5.3 shows the

evidence of atom-atom Rydberg entanglement in our experiment. One, two, and three atoms

were excited respectively, with all atoms in the blockade radius in each set. |↑〉 = |r〉 =
∣∣67S1/2

〉
and |↓〉 = |g〉 =

∣∣5S1/2

〉
.

Due to Rydberg blockade, any double-excitation state population is near zero as expected

(not shown). Comparing the three plots where one, two and three atoms are involved in each

dynamics, Rabi oscillation frequency is enhanced by
√
N , by theory, when N qubits are max-
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Figure 5.3: Evidence of atom-atom Rydberg entanglement in our experiment. One, two,

and three atoms were excited respectively, with all atoms in the blockade radius in each set.

|↑〉 = |r〉 =
∣∣67S1/2

〉
and |↓〉 = |g〉 =

∣∣5S1/2

〉
.

imally entangled. The result shows the enhancement of 1.46, which is close to
√

2, and 1.73,

close to
√

3 that we expect from two atom entanglement, suggesting that entanglement actually

occured in this experiment.

5.5 Dynamics of N = 3 ∼ 5 atoms with environmental errors

Dipole-dipole interaction between neighboring Rydberg atoms shifts the energy of the dou-

ble excitation state, preventing excitation of an atom during the other is excited, which, for

example, can be implemented as a C-NOT gate. However, quantum evolution of neutral atoms

is still vulnerable to the environment which makes quantum computation using Rydberg atoms

practically hard.

Here, we investigate and analyze the effect of the environment in a dynamics of N=3∼5 Ry-

dberg atoms by fitting simulation with the environmetal effect to the data, including stochastic

atom loss, spontaneous emission from the intermediate state and the Rydberg state, and the

phase noise of the excitation lasers.

5.5.1 Main results

Hamiltonian of the dynamics

We regard the atomic system, under atom-light interaction, as an effective two-level system.

The Rabi-oscillating single atom Hamiltonian is,

Ho =
~Ω

2
σx +

~∆r

2
σz, (5.6)

with the Rabi frequency Ω and the detuning ∆r.
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We examine atom-atom interaction by Rydberg blockade in atom chains, which embeds 1d

Ising-like model,

H =
∑

1<j<N

{
~Ω

2
σjx +

~∆r

2
σjz

}
+
∑
k<l

Vklnknl (5.7)

for N atoms with interaction energy of Vkj between each pair of atoms. nk ∈ {0, 1} means if

the atom is excited.

Experimental setup and procedure

Here we briefly introduce the experimental setup and procedure (the schematic setup di-

agram is as Fig. 5.1; detailed explanation is in Sec. 5.5.2). From an 87Rb atom cloud trapped

in a MOT (magneto-optical trap), single atoms are trapped in far-off resonance dipole traps in

820 nm wavelength. To make a vacancy-free single atom array, trapped atoms are gathered into

the target array site by single atom reconfiguration technique [105, 106]. The atoms were lo-

cated in either linear or zig-zag configurations, for N = 3 ∼ 5 atoms, and the fluorescence of the

atoms was captured by an EMCCD (electron multiplying charge-coupled device). After optical

pumping, the atoms initially in |g〉 =
∣∣5S1/2

〉
state were excited to |r〉 =

∣∣67S1/2

〉
Rydberg state

by non-resonant two-photon transition through
∣∣5P3/2

〉
state with various pulse areas to track

the quantum evolution of the system (Fig. 5.2). The detuning from the intermediate state was

∆ ≈ 660 MHz. Projection measurement was conducted to distinguish whether each atom was

in |g〉 or |r〉 state, by checking whether it was recaptured or not after applying a beam nearly

resonant to
∣∣5P3/2

〉
and EMCCD capture, since the trap wavelength was designed to trap atoms

in |g〉 state while not to trap the atoms in |r〉. The dynamics data was obtained by varying the

evolution time from 0 to 3 µs, by 0.1 µs, total 31 time steps.

Environmental error consideration

Among many factors that causes decoherence on the dynamics, we focus on main four fac-

tors that affect the most; stochastic atom loss due to background collision and atom temperature

(depopulation), spontaneous emission from the Rydberg state to the ground state (depopula-

tion), fast spontaneous emission from the leakage to the intermediate 5P state to the ground

state (dephasing, ∼ 20 kHz), and finally the phase noise of the 780 nm and 480 nm excitation

lasers.

1. Stochastic atom loss

During quantum evolution of the atoms, stochastic loss of atoms occurs due to collision

with a background hot atom, excessive portion of its kinetic energy distribution, or any

environmental condition that results in failure in recapturing. The probability that an

atom that is trapped in the measurement before evolution is not trapped in the afterhand

measurement p(r|g) can be derived from the experimental data at time-zero (false negative

for ground state population). For a three-atom experiment, we can obtain P (r|g) =
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{Pggr(t = 0) + Pgrg(t = 0) + Prgg(t = 0)}/3 (the two-atom-loss case was neglected). The

probability is applied to the simulation by replacing diagonal density matrix elements at

each temporal step. For example, P ′ggg = {1 − p(r|g)}3Pggg, P ′ggr = {1 − p(r|g)}2Pggr +

p(r|g)Pggg, P
′
grg = {1− p(r|g)}2Pgrg + p(r|g)Pggg, and so on.

2. Spontaneous emission from the Rydberg state to the ground state

Rydberg state atoms have lifetime of ∼ 100 µs for n ∼ 60 states and the decay can cause

measurement error p(g|r) which is opposite of the atom loss error. The probability is

given as p(g|r) = 1 − e−trecap/τ for recapture time trecap and the atom lifetime τ . In our

experiment, the trap beam is turned off for trecap ≈ 3.5 µs and the lifetime of the Rydberg

67S state is τ ≈ 140 µs. Similarily to atom loss error, p(g|r) is applied to the simulation

in the way that P ′rrr = {1 − p(g|r)}3Prrr, P ′rrg = {1 − p(g|r)}2Prrg + p(g|r)Prrr, and so

on.

3. Fast spontaneous emission from the leakage to the intermediate 5P state to the ground

state

Despite the large detuing of the two-photon transition to the intermediate
∣∣5P3/2

〉
state,

a small portion of leakage to this state exists and it causes dephasing in evolution, al-

though depopulation is negligible. We use Lindblad equation to count the non-unitary

characteristic of the experimental system [107, 108, 109].

d

dt
ρ = − i

~
[H, ρ] + LρL† − 1

2
{L†L, ρ} (5.8)

In our case of quantum evolution, leakage to the intermediate
∣∣5P3/2

〉
state, from Rydberg

excitation, followed by rapid decay (∼ 30 ns) to the ground state, causes unintended non-

unitary evolution. We suppose the following form of the Lindblad operator,

L =

( √
γ/2 0

0 −
√
γ/2

)
(5.9)

with a dephasing rate γ. The rate γ is obtained when reducing the two-photon excitation

in a single atom, which is a three-level system of Hamiltonian, into an effective two-level

system per atom, and numerically comparing the rates from the two types of expression.

The three-level system evolves with Hamiltonian

Hthree−level =


0 ΩB 0

ΩB ∆ ΩR

0 ΩR 0

 (5.10)

and Lindblad operator for the spontaneous emission

Lthree−level =


0 0 0

0 0 0

0
√

Γ 0

 (5.11)
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where Γ ≈ 6 MHz is the spontaneous emission rate from
∣∣5P3/2

〉
to
∣∣5S1/2

〉
in Rb atoms.

Numerical simulation of a single atom dynamics for 3 µs with the two-level system Hamil-

tonian 5.6 with δ∆r = 0 and two-level Lindblad operator 5.9 fitted with the three-level

system Hamiltonian in Eq. (5.10) and three-level Lindblad operator in Eq. (5.11) gives

γ ≈ 2π × 20 kHz.

4. Phase noise of the excitation lasers

A laser has its intrinsic phase noise and the phase noise affects quantum evolution of the

dynamics. Since direct measurement of the laser phase noise is not possible in our setup, a

power spectral density of frequency noise Sν(f) from PDH locking electronics is obtained

to convert to phase noise φ(t) [110]. The measured Sν(f) is shown in Fig. 5.4. The power

spectral density of phase noise Sφ(f) is obtained as

Sφ(f) = Sν(f)/f2. (5.12)

The phase noise is given, from Sφ(f),

φ(t) =
∑
f

2
√
Sφ(f)cos(2πft+ φf )

√
∆f (5.13)

with some randomly assigned phase φf of which the actual value is unknown. The phase

noise of 780 nm and 480 nm laser, respectively, φ780(t) and φ480(t), is applied to the

simulated quantum evolution replacing Ω by Ωei{φ780(t)+φ480(t)} in Eq. 5.7. Since it contains

random phases, the evolution is averaged over 100 times to give a simulation result. As

in the result in later sections, the phase noise of the excitation lasers turns out to be the

largest dephasing source in our system.
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Figure 5.4: The Power spectral density of frequency noise Sν(f) from PDH error signal of the

(a) 780 nm and (b) 480 nm laser obtained by a spectrum analyzer from PDH locking electronics.
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Fitting parameters by scanning

To fit simulation to the experimental data, we use the R-squared value between simulation

and experimental data as the goodness measure of fitting. We scan two parameters, Ω, and ∆S,

where ∆S is a free parameter which is an offset to Sν (i.e., S′ν = Sν + ∆S), since a measured

Sν is a relative value of which the offset value is unknown. Other parameters are fixed to the

estimated values. γ is chosen as the value estimated in the above subsection. δΩ, the fluctuation

of Ω is measured to be ∼ 1% which is negligible in the evolution. ∆r and δ∆r, the fluctuation

∆r, is less than 200 kHz, which can be neglected, in our spectroscopy. The interaction strength

comes from the known values [111] and P (r|g) and P (g|r) comes from the measured data, as

stated in the previous subsection. The scanning and fixed values are summarized in Table. 5.1,

where the approximated values of Ω and ∆S appears in the following results.

Total six configurations are used; N = 3 ∼ 5 atom in both linear and zig-zag geometry.

The Rydberg blockade radius is about 8.8 µm and the lattice constant is 6.1 µm. Figure. 5.5

shows the fitting result for three atoms in the linear configuration. The schematic geometry and

the image of the atoms are shown in fig. 5.5(a) and the scan result is presented in fig. 5.5(b).

The scan range is 2π × 0.87 ∼ 1.17 MHz, by 2π × 50 kHz step, total 7 values, for Ω, and

2π × 1.405 ∼ 1.705 MHz, by 2π × 50 kHz step, total 7 values, for ∆S, which makes total 49

sets of paramters. The range is chosen heuristically by pre-scanning within the possible range.

There exists a local maximum at (Ω,∆S) = 2π × (0.97, 1.07) MHz in the scanning range in

which the R2 value exceeds 0.85 (red circle). The fitting curves at this point are drawn along

with the experimental data in fig. 5.5(c), for symmetric basis states (“0” in the basis indicates

|g〉 state and “1”, |r〉 state). The curves with different values of ∆S, apart from the maximal

R2 by 2 steps (gray circles in fig. 5.5(b)), are also drawn for comparison. The effect of difference

in Ω is thought to be rather trivial so curves of different Ω are not presented. The simulation

curve of the maximal R2 appears highly fitted to the experimental data, in comparison to the

curves with other paramters that do not fit well at all.

The same procedure is applied to the data of rest configurations, for the symmetric ba-

sis state for each configuration. Likewise, the simulation curves with the parameters of the

maximum R2 fit well to the experimental data, while other curves do not.

5.5.2 Detailed implementation

Experimental layout

1. Single atom configuration generation

A cold atom cloud of 87Rb was formed in magneto-optical trap (MOT). The temperature

was estimated < 70 µK. Stray B-field was compensated by hyperfine states spectroscopy

in the ground state. Stray E-field was shielded by grounded electrodes placed around the

chamber. 780 nm and 480 nm excitation lasers were frequency stabilized to < 30 kHz

by an ultralow expansion cavity. After MOT was made, a far-off-resonance trap beam
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Figure 5.5: (a) Geometry of N=3 atoms in linear configuration. (b) Scan of R2 between simula-

tion and experimental data of time-sampled projection measurement with two free parameters

∆S and Ω in simulation. The local maximum existed (red dashed circle). The curves in the

points of other ∆S values (gray dashed circles) were also examined in (c) for comparison. (c)

Experimental data (red circles) and simulation (red curves) with the best fitting parameters, for

symmetric basis states, along with non-best fit simulation with difference in ∆S by ± 3.1 dB.

“0” and “1” indicate |g〉 and |r〉 states, respectively.
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Table 5.1: Fitting and fixed parameters in simulation
Scanning parameters

Param. Value Description

Ω ≈ 1 MHz Rabi frequency of single atom

∆S ≈ 100 dB Frequency noise level offset

Fixed parameters

Param. Value Description

γ 2π× 20 kHz Dephasing due to spontaneous emission from 5P state

δΩ 0 kHz Shot-to-shot fluctuation width of Rabi frequency

∆r 0 kHz Detuning in two-photon transition

δ∆r 0 kHz (Shot-to-shot) fluctuation width of detuning

V = C6/R
6 (520 GHz/µm6)/R6 Interaction strength (67S state) [111]

P (r|g) ≈ 0.01 False negative for |g〉 (e.g. stochastic atom loss)

P (g|r) ≈ 0.03 False positive for |g〉 (e.g. spontaneous emission from 67S)
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Figure 5.6: (a) Geometry of the atoms, (b) Scan of R2 between simulation and experimental

data, and (c) Experimental data (red circles) and simulation (red curves) with the best fitting

parameters, for N = 3 atoms in triangle configuration
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Figure 5.7: (a) Geometry of the atoms, (b) Scan of R2 between simulation and experimental

data, and (c) Experimental data (red circles) and simulation (red curves) with the best fitting

parameters, for N = 4 atoms in linear configuration.
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Figure 5.8: (a) Geometry of the atoms, (b) Scan of R2 between simulation and experimental

data, and (c) Experimental data (red circles) and simulation (red curves) with the best fitting

parameters, for N = 4 atoms in zig-zag configuration.
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Figure 5.9: (a) Geometry of the atoms, (b) Scan of R2 between simulation and experimental

data, and (c) Experimental data (red circles) and simulation (red curves) with the best fitting

parameters, for N = 5 atoms in linear configuration.
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Figure 5.10: (a) Geometry of the atoms, (b) Scan of R2 between simulation and experimental

data, and (c) Experimental data (red circles) and simulation (red curves) with the best fitting

parameters, for N = 5 atoms in zig-zag configuration.
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array of 820 nm wavelength, each trap in 1.4 µm diameter, was turned on to create single

atom chain in the MOT volume. The trapped atoms were further cooled by polariza-

tion gradient cooling. Typical arrays were half-filled single atom arrays by collisional

blockade [52], imaged by the EMCCD (Electron-multiplying CCD). To obtain unity-filled

array, reconfiguration of existing atoms was processed [105, 106] by two time trials of

imaging-reconfiguration-cheking sequence.

2. Frequency stabilization of excitation lasers

The excitation lasers, 780 nm and 480 nm wavelength diode lasers (Homemade with

Toptica laser diode & DL pro, a Toptica commercial diode laser system), respectively,

were frequency stabilized to an ultralow expansion (ULE) reference cavity (Stable Laser

Systems) for getting extra narrow linewidth of the lasers. The ULE had finesse of 15,000

and AR coated at dual wavelengths 780 nm and 480 nm. PDH locking (Pound-Drever-Hall

locking) technique was used to lock the laser frequencies to the Fabry-Perot signal from

the reference cavity reflection, along with fast lock servos. (Stable Laser Systems PDH

module, Toptica PDD 110, Toptica FALC110) The wavelength of the lasers were roughly

monitored by a wavemeter (HighFinesse WS7-60) within 60 MHz accuracy. The linewidth

of the lasers, tens of kHz, were estimated by the width of the error signals, compared to

the PDH lock signal peaks, considering peak widths. See Fig. 5.11(a).

3. Quantum evolution

After reconfiguration phase, excitation lasers shed on the atom chain. The excitation was

two-photon transition, one in 780 nm wavelength and 10 µW and the other in 480 nm,

10 mW, which were resonant to the 5S-67S level and non-resonant to the intermediate 5P

state by ∆inter. In the excitation phase, first Helmholtz magnetic coils were turned on

to make bias B-field for quantization axis. Before excitation, optical pump (F=2→F’=2)

along with repump beam was applied for 2 ms. Then, the atom tweezers were turned off

for 3.4 µs to avoid ac stark shift by them when the atoms were under excitation, after

480 nm excitation laser was turned on. 780 nm laser was turned on for a certain length

of pulse time texp, to be measured, where the actual excitation happened in this period of

time. Right after the 780 nm laser ended, the trapping laser was turned on to recapture

the ground state populated atoms and the bias coil was turned off. The final state of the

atom array were obtained by the EMCCD. See Fig. 5.11(b).

4. Power stabilization of excitation lasers

The stabilization of the laser power was once conducted for examination, to verify whether

the power fluctuation afftecs the evolution. It turned out that the effect was negligible.

We present the procedure here anyway for recording. For stabilization of the 780 nm

excitation laser power, a photodiode was placed after the beam passed the experiment

chamber. The 780 nm laser was turned on for 3 µs a few miliseconds before the excitation

for measurement of the laser power. Based on the power measurement, the laser power
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was feedbacked through amplitude modulation of the AOM. The power flucatuation of

3% was improved to 0.7% after stabilization.

Enumeration of possible errors

Major and minor possible errors that may occur in the experiment are listed and discussed.

1. Individual atom dephasing sources

• Leakage to and spontaneous decay from intermediate level

During two-photon excitation to the Rydberg state, there occurs trainsition leakage

to 5P state by the 780 nm excitation laser despite of the large detuning ∼ 600 MHz

from the intermediate state. The leakage can be estimated from the amount of the

detuned Rabi oscillation Ω2/(∆2 + Ω2) ∼ 0.2%. The leaked population goes through

decay to the ground state ∼ 30 ns, causing decoherence in the quantum evolution.

This Markov process can be considered by Lindblad Master equation as in Sec. 5.5.1.

• Spontaneous decay from the Rydberg state

The excitation to the Rydberg state is two-photon transition via the intermediate

state 5P3/2 with detuning ∆ ≈ 600MHz The decay time of 67S Rydberg state is in

order of 100 µs. The experiment time scale is < 10 µs which is small compared to

the decay time, but the decay probability ∼ et/100 is still finite. The effect is applied

to the simulation by adjusting the population (see Sec. 5.5.1).

• Atomic thermal motion

Although the positions of the atoms are assumed to be at the center of corresponding

traps, they thermally move in a volume determined by the size of the trap and the

atom temperature. This might cause uncertainty in the interaction strength. Also,

due to finite velocity of the trapped atoms, the frequencies of the excitation lasers are

doppler-shifted. Assuming 30 µK of the atom temperature, one-dimensional velocity

is 0.058 m/s, which causes shift by (0.074, 0.12) MHz for 780 nm and 480 nm lasers

respectively. This would make a certain, but not much error.

Table 5.2: Individual dephasing sources.
Error sources Effective Rabi decay τ Treatment

5P3/2 decay, 26 ns

(causing dephasing)
' 15.5 µs

Two-level approximation and Lindblad operator

Li =
√
γ/2σiz ,

where γ = 2π × 20 kHz

67S1/2 decay, 100 µs, Ref. [112] - Population adjustment

Thermal motion

(80 µK), Ref. [113]

δV < 0.5V - -

δ∆r ' 100 kHz ' 100 µs -

2. Collective dephasing sources
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• Laser phase fluctuation / laser linewidth

The finite linewidth of the laser from the diode itself causes a certain amount of de-

coherence in the quantum evolution. The laser itself has noise in phase, which causes

degradation of the coherence of the quantum evolution. Our 780 nm / 480 nm exci-

tation lasers were frequency stabilized to an ULE reference cavity to < 30 kHz. The

phase noise can be estimated from the measurement of power spectral density [110]

which causes considerable dephasing effect. A detailed consideration is discussed in

Sec. 5.5.1.

• Laser power fluctuation

The laser power can fluctuate, which is due to the fluctuation of the power from

the laser diode itself, from error in AOM modulation, or from beam pointing error

in relaying fiber inputs. This results in flucuation of Ω and δ, by ac stark shift.

From the measurement in our setup, the fluctuation is about 3% without feedback

(0.7% with feedback), and the change in stark shift due to intensity change occurs

as δ∆r ∼ 2π × 40 kHz.

• Stray E-field fluctuation

Stray E-field can exist by electronics devices around the experiment chamber, al-

though most amount has been suppressed by grounded electrodes set up around the

chamber. Our spectroscopy measurement tells that δ∆r is less than 2π × 100 kHz.

Table 5.3: Collective dephasing sources
Error sources Effective Rabi decay τ Treatment

Rydberg lasers linewidth, ≤ 30 kHz ≤ 20 µs -

Rydberg lasers phase noise ' 1 µs
Replace Ω by Ωeiφ(t),

φ(t) converted from Sν(f)

Intensity fluctuation

4% (480), 2% (780)

δΩ ∼ 0.03Ω,

δ∆r ∼ 2π × 40 kHz ' 20 µs -

Static electric field drift δ∆r ∼ 2π × 50 kHz

3. Projection measurement error sources

• Atom loss at the second imaging (false negative)

– Background collision

After excitation, an atom is determined to collapse into the ground state by being

recaptured. However, atoms are lost by finite probability mainly by collision with

hot background gas atoms. This leads to wrong measurement that a certain

amount of ground state population is transfered to Rydberg state population.

Trap-off time trecap out of trap lifetime τ causes loss of p(r|g) = 1 − e−trecap/τ

and it is estimated 0.01 (see Sec. 5.5.1).
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– Leakage to other Rydberg states

A small portion of the excitation to the Rydberg states can evolve to other

Rydberg state than the intended state due to finite polarization extinction ratio.

• Atom incoming (false positive)

– Background incoming

Although with a low probability, background atoms sometimes income into va-

cancy traps at the post-excitation capture, occuring false positive measurement,

although the amount is negligible in our setup.

– Leakage to other ground states

The de-excitation to the ground state can evolve to other ground state than

the intended state due to finite polarization extinction ratio (additional to the

spontaneous emission from the intermediate state).

– Spontaneous emission from the Rydberg state after recapture time The atoms

that are in the Rydberg state can decay to the ground state by spontaneous

emission during the time between the recapture and measurement. For the time

length trm, the false-positive probability is p(g|r) = 1− e−trm/τ ∼ 0.01.

Table 5.4: Projection measurement error sources
Error sources 〈n̂〉 error Treatment

Atom image projection � 0.001 -

Background gas collision 0.015 Population adjustment

Leakage to the other Rydberg levels [37] < 0.001 -

Leakage to another ground level ' 0.003 -

Spontaneous emission from Rydberg state ∼ 0.01 -

5.5.3 Conclusion

We have analyzed the dynamics of N = 3 ∼ 5 dipole-trapped atoms in linear and zig-zag

configurations under interaction via Rydberg blockade. Based on the rather simple Hamilto-

nian with self-energy terms and interaction terms, environmental effects such as spontaneous

emission, stochastic atom loss, and phase noise of the excitation lasers have been considered as

dephasing sources.

For a specific set of fitting parameters, the simulated evolution agreed well with the experi-

mental data. It turned out in the result that the phase noise of the excitation laser is the major

factor of the dephasing in the dynamics. We expect the detailed analysis for the Rydberg atom

dynamics to be an useful background for further studies.
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5.6 Machine learning of N-atom dynamics

5.6.1 Curve fitting vs. machine learning: computational complexity

Understanding the Rydberg atom dynamics requires either performing a full set of quantum

tomography measurements or determining the governing equation, e.g., Lindblad equation.

However, both are daunting tasks due to the huge size of density matrix. Here we present our

machine learning approach, detouring the difficulty of classical computational complexity, to

the measurement-based analysis of the dynamics of our Rydberg-atom quantum simulators.

Curve fitting of the measured data ρexpii (tj) by the diagonal elements ρsimii (tj) of simulation

data, with a Hamiltonian H(Ω;N) and a master equation ρ̇ = f(ρ; γk), where γk are some set

of dephasing rates, the amount of time required for computation (simulation) of the N-atom

dynamics time-series increases exponentially in N. If our objective is to obtain fitting parameters

for some data set, Niter iterations of single N-atom evolution calculation which takes xN t1 is

needed where t1 indicates the required time for N=1 system (x might differ by the calculation

algorithm). The benchmark result of curve fitting (CF) calculation time for N = 5, 6, 7, 8 atoms

with a typical personal computer (CPU model Intel i5-4670) is shown in Fig. 5.12. The results

exactly falls on an exponential line in N. Fitting time of the dynamics of N = 9 atoms already

exceeds one hour in time, which makes numerical fitting impractical for more atoms.

In contrast, by machine learning the system using aftificial neural network (ANN) requires

no heavy calculation, even in real-time in many cases, when we are to retrieve the system

parameters from some data. The heavy calculation part can be transfered to ‘training phase’

which is done prior to the actual retreival of the outputs. In our benchmark, the retrieval time

using a neural network was less than or around 1 s. The ANN-feasible number of qubits is only

limited by long-term training time which can be reduced by a high-performance workstation.

So, by using ANN, analysis of experimental data can be done efficiently, at the cost of pre-

training time and resources. In this section, a toy model of quantum system machine learning

with N = 2, 3 atoms and the result fitted with experimental data are presented.

5.6.2 N-atom dynamics

The physical system we consider is an experimental Rydberg quantum simulation system

with N atoms trapped with an array of optical tweezers and entangled through excitation to

a Rydberg energy level. When the atoms are modeled with an effective two-level pseudo-spin

system of ground and Rydberg states [91], the Hamiltonian is the transverse-field quantum

Ising-like model,

H =
∑
j

~Ω

2
σix +

∑
j<k

Vjknjnk. (5.14)
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Figure 5.12: The computational complexity of computing N-atom dynamics.

The system dynamics is assumed to be under Markovian systematic decoherence, which follows

the Lindblad master equation:

d

dt
ρ = − i

~
[H, ρ] +

∑
i

[
LiρL

†
i −

1

2
{L†iLi, ρ}

]
. (5.15)

Based on this dephasing N-qubit Ising like model, we use a dephasing model which has two

dephasing rates, which approximately fits for N ≤ 3 atoms. In the model, one parameter is

γ1 which accounts for the dephasing of individual atoms, and the other is γ2 which is for the

global (collective) dephasing. The Lindbald operators are given, for the individual dephasing,

in forms of

L1 =

( √
γ1/2 0

0 −
√
γ1/2

)
⊗ IN−1, · · · , LN = IN−1 ⊗

( √
γ1/2 0

0 −
√
γ1/2

)
, (5.16)

where L1,··· ,N are for individual dephasing of each atom. For collective dephasing, a Lindblad

operator of the form

L0 =

( √
γ2/2 0

0 −
√
γ2/2

)
⊗ IN−1 + · · ·+ IN−1 ⊗

( √
γ2/2 0

0 −
√
γ2/2

)
(5.17)

was used.

5.6.3 Artificial neural network

Machine learning enables solving a variety of complex problems, by discovering visible

and/or hidden patterns of data. Here, we use an artificial neural network to determine system
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Dynamics

N-qubit entangled system

(Experimental / Numerical)

Artifitial Neural Network

Figure 5.13: The concept of dynamics mapping on ANN.

parameters in the Markovian dynamics for our experimental Rydberg-atom quantum simulator.

For determination of the system parameters from the experimental data, a four-layer feed-

forward artificial neural-network was used. The neural network we designed consisted of an

input layer which takes the time series of projection measurement data of dynamics, ρaa(tb)

(a = 1, 2, ..., 2N , b = 1, 2, ..., Nt), by nodes xi (i = 1, 2, ..., Nt2
N ). The output layer had nodes

yl (l = 1, 2, ..., Np) where each node was for each parameter to be retrieved. Additionally, the

artificial neural network had two hidden layers in-between, hj for Hidden layer 1 and gk for

Hidden layer 2. From each xi of input layer to each hj of the Hidden layer 1, there is a weight

wji from the first layer to Hidden layer 2, vkj , and from Hidden layer 2 to the output layer, ulk.

To obtain a set of output values from a dataset Xi through our neural network, “forward”

propagation had occured. The weights were set random initially. The value of a node hj in

Hidden layer 1 was determined by hj = σ (
∑

iwjiXi/βw). Similarily, the values of Hidden layer

2 were calculated as gk = σ
(∑

j vkjhj/βv

)
, and the output layer, yl = σ (

∑
k ulkgk/βu).

First, the neural network was trained through supervised learning with numerically gen-

erated data of projection measurements which are simulations of the actual experimental data

and the corresponding system parameters used to create the data. After training, the neural

network was used to determine the system parameters of the experimental data. A schematic

figure is shown in Fig. 1(a). The number of input layer nodes was 62, which was from 31, the

time sample length, times two, the number of projection states we used. The single hidden

layer had six nodes, being decided heuristically, and the output layer had two nodes to give γ1

(individual dephasing) and γ2 (global dephasing).

5.6.4 Program codes

• initialize.m

This code initializes the calculation; i.e., clears existing memories, sets the number of

qubits, time step and length, generates the basis, loads the experimental data, and gen-

erates the original Hamiltonian.

1 c l e a r a l l

2
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Figure 5.14: (a) The scheme of machine learning of multi-qubit dynamics. In the experimental

setup, a physical multi-qubit system evolves and is measured in time series. The measured data

is sent into the input layer of the neural network to determine the system parameters. The

neural network is pre-trained with numerically generated data. (b) Result of learning in N = 2

qubit system. A set of data and the corresponding reconstructed dynamics from the output of

the neural network. “0” indicates the probability in the state with zero excited atoms, and “1”

indicates the average of the probabilities of the one-atom excited states. (c) Result for N = 3

qubit triangular system.
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3 % addpath ( ’C:\ Users \woojun\Documents\MATLAB\ q i t ’ )

4 % i n i t

5

6 nOfTrainingSets =1;

7 nOfQubits =4;

8 length sample =31∗2;

9 t r a i n i n g s e t=ze ro s ( nOfTrainingSets , l ength sample ) ;

10 answer se t=ze ro s ( nOfTrainingSets , 2 ) ;

11

12 hbar =1.05e−34;

13

14 dt=1e−9;

15

16 l e n g t h t =3000;

17 t i m e a x i s =(1: l e n g t h t ) ∗dt ;

18 Omega=7e6 ;

19

20 b a s i s=decimalToBinaryVector ( 0 : 2 ˆ nOfQubits−1) ;

21 binDigitSum=sum( bas i s , 2 ) ;

22 % [ binDigitSum , I ]= s o r t ( binDigitSum , ’ descend ’ ) ;

23 % b a s i s=b a s i s ( I , : ) ;

24

25

26 mult Omega coef f =0.5 ;

27 mult Omega=1+random ( ’ normal ’ , 0 , mult Omega coef f ) ;

28 m u l t D e l t a c o e f f =0.5 ;

29 mult Delta=random ( ’ normal ’ , 0 , m u l t D e l t a c o e f f ) ;

30

31 c l e a r H 0

32 sigma x =[0 1 ; 1 0 ] ;

33 s igma z =[1 0 ; 0 −1];

34 f o r i =1: nOfQubits

35 H 0 temp=1;

36 f o r j =1: nOfQubits

37 i f j==i

38 H 0 temp=kron ( H 0 temp , sigma x ) ;

39 % H 0 temp=kron ( H 0 temp , mult Omega∗ s igma x+mult Delta ∗0 .5∗

s igma z ) ;

40 e l s e

41 H 0 temp=kron ( H 0 temp , eye (2 ) ) ;

42 end

43 end

44 H 0 ( : , : , i )=H 0 temp ;

45 end

46 H 0=hbar∗Omega/2∗sum( H 0 , 3 ) ;

47

48 c l e a r tau v

49 c l e a r purity m
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50 c l e a r V

51

52 mode=1;

53 i n t e r a c t i o n 4 q u b i t ;

54

55 H=H 0+V;

56

57 % f i g u r e ;

58 % hold on ;

59 f o r i t e r =1: nOfTrainingSets

60 i t e r

61

62 rand param=rand (2 , 1 ) ;

63 % rand param=[−99999 0 . 5 ] ;

64 % rand param=[−99999 −99999];

65 evo lu t i on ;

66 t r a i n i n g s e t ( i t e r , : )=rhodiag sample ( : ) .∗(1+random ( ’ normal ’ , 0 , 0 . 1 , 1 , numel

( rhodiag sample ) ) ) ’ ;

67 answer se t ( i t e r , : )=rand param ;

68

69 p l o t ( rhodiag )

70

71 end

• evolution.m

This code conducts the actual evolution of the system, with dephasing factors generated.

1 gamma=2∗pi ∗10 . ˆ (2∗ ( rand param ) +3.5) ;

2

3 L=ze ro s (2ˆ nOfQubits ) ;

4 l 1 =[ s q r t (gamma(1) /2) 0 ; 0 −s q r t (gamma(1) /2) ] ;

5 l 2 =[ s q r t (gamma(2) /2) 0 ; 0 −s q r t (gamma(2) /2) ] ;

6

7 % L1 1=kron ( kron ( l1 , eye (2 ) ) , eye (2 ) ) ;

8 % L1 2=kron ( kron ( eye (2 ) , l 1 ) , eye (2 ) ) ;

9 % L1 3=kron ( kron ( eye (2 ) , eye (2 ) ) , l 1 ) ;

10 % L1 ( : , : , 1 )=L1 1 ;

11 % L1 ( : , : , 2 )=L1 2 ;

12 % L1 ( : , : , 3 )=L1 3 ;

13 L1=ze ro s (2ˆ nOfQubits , 2ˆ nOfQubits , nOfQubits ) ;

14 f o r i =1: nOfQubits

15 L temp=1;

16 f o r j =1: nOfQubits

17 i f j==i

18 L temp=kron ( L temp , l 1 ) ;

19 e l s e

20 L temp=kron ( L temp , eye (2 ) ) ;

21 end
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22 end

23 L1 ( : , : , i )=L temp ;

24 end

25

26 % L2=kron ( kron ( l2 , eye (2 ) ) , eye (2 ) )+kron ( kron ( eye (2 ) , l 2 ) , eye (2 ) )+kron ( kron ( eye

(2 ) , eye (2 ) ) , l 2 ) ;

27 L2=ze ro s (2ˆ nOfQubits , 2ˆ nOfQubits , nOfQubits ) ;

28 f o r i =1: nOfQubits

29 L temp=1;

30 f o r j =1: nOfQubits

31 i f j==i

32 L temp=kron ( L temp , l 2 ) ;

33 e l s e

34 L temp=kron ( L temp , eye (2 ) ) ;

35 end

36 end

37 L2 ( : , : , i )=L temp ;

38 end

39 L2=sum(L2 , 3 ) ;

40

41 rho=ze ro s (2ˆ nOfQubits ) ;

42 rho (1 ) =1;

43

44 c l e a r y ryFrac pur i ty

45

46 rho reco rd=e v o l u t i o n c o r e ( dt , l eng th t , H, L1) ;

47 % toc

48 rho sample=time sample ( rho record , 151 , 20) ;

• evolutionCore.m The core part of the code where the Lindblad master equation is com-

puted with the Runge-Kutta method.

1 func t i on [ rho r e co rd ] = e v o l u t i o n c o r e ( dt , l eng th t , H, L1)

2 hbar =1.05e−34;

3

4 rho=ze ro s ( s i z e (H, 1 ) ) ;

5 rho ( end ) =1;

6

7 rho reco rd=ze ro s ( l e n g t h t +1, l ength ( rho ( : ) ) ) ;

8

9 rho ones=ones ( s i z e (H, 1 ) ) ;

10 L decom=ze ro s ( s i z e (H, 1 ) ) ;

11 f o r j =1: s i z e (L1 , 3 )

12 L temp=L1 ( : , : , j ) ;

13 L decom=L decom+( L temp∗ rho ones ∗ conj ( L temp ) −0.5∗( conj ( L temp ) ∗L temp∗

rho ones+rho ones ∗ conj ( L temp ) ∗L temp ) ) ;

14 end

15
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16 f o r i =1: l e n g t h t+1

17 rho reco rd ( i , : )=rho ( : ) ;

18

19 k1=1/1 i /hbar ∗(H∗ rho−rho∗H) + rho .∗ L decom ;

20 k2=1/1 i /hbar ∗(H∗( rho+dt /2∗k1 )−(rho+dt /2∗k1 ) ∗H) + ( rho+dt /2∗k1 ) .∗ L decom ;

21 k3=1/1 i /hbar ∗(H∗( rho+dt /2∗k2 )−(rho+dt /2∗k2 ) ∗H) + ( rho+dt /2∗k2 ) .∗ L decom ;

22 k4=1/1 i /hbar ∗(H∗( rho+dt∗k3 )−(rho+dt∗k3 ) ∗H) + ( rho+dt∗k3 ) .∗ L decom ;

23

24 drho=dt /6∗( k1+2∗k2+2∗k3+k4 ) ;

25 rho=rho+drho ;

26

27 end

28

29 end

• neuralNetwork.m

The code that conducts learning of an ANN. It came from an open source ANN code and

modified.

1 %% Very s imple and i n t u i t i v e neura l network implementation

2 %

3 % Carl L? ndahl , 2008

4 % emai l : c a r l ( dot ) londahl ( at ) gmail ( dot )com

5 % Feel f r e e to r e d i s t r i b u t e and/ or to modify in any way

6

7 % DATA SETS ; demo f i l e

8 % [ t r a i n i n g s e t , answer se t ] = mendez ;

9

10 c l e a r answer y v

11

12 n = 1 . 2 ;

13 nbrOfNodes1 = 6 ;

14 % nbrOfNodes2 = 5 ;

15 % nbrOfNodes3 = 5 ;

16 nbrOfEpochs = 150000;

17

18 % I n i t i a l i z e matr i ce s with random weights 0−1

19 w1 = rand ( nbrOfNodes1 , l ength ( t r a i n i n g s e t ( 1 , : ) ) ) ;

20 % w2 = rand ( nbrOfNodes2 , nbrOfNodes1 ) ;

21 % w3 = rand ( nbrOfNodes3 , nbrOfNodes2 ) ;

22 w4 = rand ( l ength ( answer se t ( 1 , : ) ) , nbrOfNodes1 ) ;

23

24 m = 0 ;

25 e = s i z e ( t r a i n i n g s e t ) ;

26 y v=ze ro s ( nbrOfEpochs , 1 ) ;

27 RMS best=100;

28

29 whi le m < nbrOfEpochs
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30

31 % Increment loop counter

32 m = m + 1 ;

33

34 % I t e r a t e through a l l examples

35 f o r i =1: e (1 )

36 % Input data from current example s e t

37 input = t r a i n i n g s e t ( i , : ) . ’ ;

38 answer = answer se t ( i , : ) . ’ ;

39

40 % Propagate the s i g n a l s through network

41 forward ;

42

43 % Output l a y e r e r r o r

44 d e l t a i = output .∗(1− output ) . ∗ ( answer−output ) ;

45

46 % Calcu la te e r r o r f o r each node in l a y e r (n−1)

47 % d e l t a j = hidden3 .∗(1− hidden3 ) . ∗ ( w4 ’∗ d e l t a i ) ;

48 % d e l t a k = hidden2 .∗(1− hidden2 ) . ∗ ( w3 ’∗ d e l t a j ) ;

49 d e l t a l = hidden1 .∗(1− hidden1 ) . ∗ ( w4 ’∗ d e l t a i ) ;

50

51 % Adjust weights in matr i ce s s e q u e n t i a l l y

52 w4 = w4 + n .∗ d e l t a i ∗( hidden1 ’ ) ;

53 % w3 = w3 + n .∗ d e l t a j ∗( hidden2 ’ ) ;

54 % w2 = w2 + n .∗ d e l t a k ∗( hidden1 ’ ) ;

55 w1 = w1 + n .∗ d e l t a l ∗( input ’ ) ;

56 end

57

58 RMS Err = 0 ;

59

60 % Calcu la te RMS e r r o r

61 f o r i =1: e (1 )

62 answer = answer se t ( i , : ) . ’ ;

63 input = t r a i n i n g s e t ( i , : ) . ’ ;

64 forward ;

65 RMS Err = RMS Err + norm( answer−output , 2 ) ;

66 end

67

68 y = RMS Err/e (1 ) ;

69 y v (m)=y ;

70 [m/10000 log10 ( y ) ]

71

72 i f RMS Err<RMS best

73 epoch best=m;

74 w1 best=w1 ;

75 w4 best=w4 ;

76 RMS best=RMS Err ;

77 end
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78

79 i f log10 ( y )<−1.5

80 n=0.9;

81 end

82

83 % p lo t ( 1 :m, log10 ( y v ( 1 :m) ) , ’∗ ’ ) ; drawnow ;

84

85 % input=t r a i n i n g s e t ( 1 0 , : ) ’ ;

86 % forward ;

87 % [ answer se t (10 ,1 ) output (1 ) ]

88 i f log10 ( y )<−2

89 break ;

90 end

91 end

92

93 input = t r a i n i n g s e t ( 8 , : ) . ’ ;

94 forward ;

95 rand param=output ;

96 evo lu t i on ;

97 RMS Err = norm( input−sample ) ;

98 y = RMS Err/e (1 ) ;

99 log10 ( y )

100 f i g u r e ; p l o t ( reshape ( input , 3 1 , 2 ) ) ; hold on ; p l o t ( rhodiag sample ) ;

101

102 rand param=rand (2 , 1 ) ;

103 param in i t=rand param ;

104 evo lu t i on ;

105 input=r e a l ( rhodiag sample ( : ) ) ;

106 forward ;

107 rand param=output ;

108 evo lu t i on ;

109 RMS Err = norm( input−sample ) ;

110 y = RMS Err/e (1 ) ;

111 log10 ( y )

112 f i g u r e ; p l o t ( reshape ( input , 3 1 , 2 ) ) ; hold on ; p l o t ( rhodiag sample ) ;

113

114 data=load ( ’ data . mat ’ ) ;

115 data=data . data ;

116 input = data ( : ) ;

117 forward ;

118 rand param=output ;

119 evo lu t i on ;

120 RMS Err = norm( input−rhodiag sample ( : ) ) ;

121 f i g u r e ; p l o t ( reshape ( input , 3 1 , 2 ) ) ; hold on ; p l o t ( rhodiag sample ) ;

122 r squared=1−sum ( ( input−rhodiag sample ( : ) ) . ˆ 2 ) / sum ( ( input−mean( input ) ) . ˆ 2 )

123 f i g u r e ; p l o t ( log10 ( y v ) )
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5.6.5 Results and discussion

The test results for a two-qubit system and a three-qubit system in triangular configuration

(all atoms in the Rydberg blockade) are shown in Figs. 1(b, c). We used time series data from

experiment, which were prepared in projection measurement basis and had a length of 31 for

3 µs. For dephasing model, we used the Lindblad master equation, with two parameters,

γ1, the individual dephasing parameter, and γ2, the global dephasing parameter. Among 2N

projection states in N -qubit system, only non-doubly excited states were used for learning

because otherwise the learning performance was poor.

The probabilities for ideally degenerate one-atom excited states were averaged before use

due to the same reason. The reconstructed numerical dynamics with the system parameters

determined by the trained neural networks well agreed with the test experiment data. The R-

squared values for two- and three-qubit system tests were 0.93 and 0.96, respectively. The spent

time for obtaining the system parameters was less than 10 ms in a PC, while the training time

was around 15 minutes with 50 training sets, taking up to 200,000 epochs. The pre-trained

neural network analyzed the systems in much less time, promising in-situ monitoring of the

experimental setup.
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Chapter 6. Conclusion and outlook

Experimental progress and their theoretical backgrounds in Rydberg atom array creation

and control for quantum information processing have been reported and discussed. Especially,

a novel method for transport and reconfiguration of single atom arrays, constructing defect-free

arrays using this method and analysis of dynamics of N atom quantum system in Rydberg

blockade regime are suggested.

Construction and setting of a magneto-optical trap, the basic of experimental setup required

for single atom array creation and control, was dicussed in Chapter 2. Designing and operating

of the parts of the magneto-optical trap, vacuum chamber, cooling and repump lasers, anti-

Helmholtz coil, Earth’s magnetic field compensation coil were introduced. Our MOT condition

had temperature of < 100 µK (30 ∼ 70 µK typical), density of 1010 /cm3 in vacuum pressure

of 3× 10−10 Torr.

In chapter 3, the novel method of single atom transport and array reconfiguration was

discussed. Since the GS algorithm does not guarantee frame-to-frame phase continuity, huge

frame-to-frame flicker caused by phase jump in large portion of the SLM, makes single atom

transport impossible with this method. Instead, we devised and applied flicker-free phase algo-

rithms, random mask, superposition, and GSW algorithms, enabling single atom array transport

and reconfiguration.

In chapter 4, methods for constructing a defect-free array, out of naturally half-filled arrays

limited by collisional blockade effect were discussed. A novel method of atom-site matching for

path planning was introduced and applied to show it causes less atom loss than the existing

heuristic methods, in reasonably short time compared to brute-force methods. Also, GPU-

acceleration and feedback system in experimental setup to make the phase calculation and the

vacancy-filling operation in real-time scale was introduced.

Applying atom-atom interaction via Rydberg blockade is introduced in chapter 5. An

experimental evidence of Rydberg blockade is demonstrated, and N-atom Rydberg dynamics

data is analyzed considering the environmental condition such as laser intensity fluctuation,

frequency fluctuation (or phase noise), error in absolute frequency of the laser, Doppler shift,

spontaneous decay, population leakage, beam pointing fluctuation, stray fields, thermanl motion,

atom loss, etc. Also, analysis of data with artificial neural network is suggested, with application

of real-time diagnosis of the experiment condition.

Further studies can be done in single atom array reconfiguration and Rydberg dynamics

analysis. Although reconfiguration of single atom arrays has been done even in three dimen-

sions, simultaneous imaging of multiple image planes in atom array region is not yet done. This

can be accomplished by setting up a tunable lens in front of the EMCCD camera and synchro-

nizing it with the imaging and reconfiguration sequence. In Rydberg dynamics experiment, full

95



consideration of the environmental condition can be done by setting up devices that control

relavent experimental parameters. With this, more precise modeling and error analysis will be

possible for Rydberg atom experiment.
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[83] D. Barredo, S. De Léséleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom

assembler of defect-free arbitrary 2d atomic arrays,” Science, aah3778, (2016).

[84] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Krajenbrink, and M.

D. ... Lukin, “Atom-by-atom assembly of defect-free one-dimensional cold atom arrays,”

Science, aah3752, (2016).

[85] J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko,Y. R. Sortais, A. M.
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