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In the past years, many quantum algorithms have been proposed to tackle hard combinatorial problems. In
particular, the maximum independent set (MIS) is a known NP-hard problem that can be naturally encoded in
Rydberg atom arrays. By representing a graph with an ensemble of neutral atoms one can leverage Rydberg
dynamics to naturally encode the constraints and the solution to MIS. However, the classes of graphs that can be
directly mapped “vertex-to-atom” on standard devices with two-dimensional capabilities are currently limited
to Unit-Disk graphs. In this setting, the inherent spatial locality of the graphs can be leveraged by classical
polynomial-time approximation schemes (PTAS) that guarantee an ε-approximate solution. In this work, we
build upon recent progress made for using three-dimensioanl arrangements of atoms to embed more complex
classes of graphs. We report experimental and theoretical results which represent important steps towards
tackling combinatorial tasks on quantum computers for which no classical efficient ε-approximation scheme
exists.
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I. INTRODUCTION

In the past decade, quantum processing units (QPUs) con-
sisting of atoms trapped in arrays of optical tweezers have
been used extensively to address quantum simulation prob-
lems with spin systems [1,2]. The techniques and methods
developed can also be leveraged to explore the resolution
of combinatorial optimization problems, as all of Karp’s 21
NP-complete problems can be reformulated as ground states
of Ising models [3]. The authors of the pioneering publica-
tion [4] noticed that the Hamiltonian of interacting Rydberg
atoms naturally realizes the cost function of the maximum
independent set (MIS) problem on the graph induced by the
atoms in interaction. This feature enables the implementation
of adiabatic or variational schemes such as the QAA [5] or
the QAOA [6] algorithms to approximately solve the MIS
problem. The set of graphs that can be solved corresponds
to Unit-Disk (UD) graphs, where vertices are represented as
points in the Euclidean plane and two vertices are connected
by an edge if the distance between the two corresponding
points is lower than a threshold value.

A recent implementation on more than 280 atoms has at-
tracted a lot of attention [7], with the observation of heuristic
resolution of the MIS problem on a large set of UD graphs.
To grasp the performances of such quantum approximation
algorithms, we need to compare them to their classical coun-
terparts. In the case of the MIS problem on UD graphs,
there exist efficient classical approximation algorithms with
guaranteed performance ratios called polynomial-time ap-
proximation schemes (PTAS). In Sec. III, we analyze the
effects of graph locality on the approximability of the solu-
tions to the problem, illustrating that the presence of structure

(locality, planarity) in a graph can provide enough information
for a classical algorithm to find good approximations in poly-
nomial time, which leaves little room for quantum advantage
perspectives in those cases. To leave the classes of efficient
classical approximation schemes, several strategies can be
adopted and/or combined, including the incorporation of an-
cillary vertices [4,8,9]. In this paper, we use, in addition, the
capabilities of neutral atom devices to solve the MIS problem
in three dimensions [10,11]. In Sec. IV, we start to expand the
class of graphs on which one can approximately solve MIS by
considering K+

33, a non-UD graph with seven vertices in three
dimensions. This graph is the smallest graph known for which
the optimal classical greedy algorithm fails most of the time.
In Sec. V, we then present a systematic and efficient method
to map a MIS of any general graph of max-degree 6 onto the
ground state of an ensemble of interacting neutral atoms in
three dimensions. For such graphs, no classical algorithm is
known to find an ε-approximate solution in polynomial time.

II. SOLVING MIS ON LOCAL GRAPHS

Given a graph G = (V, E ), an independent set is defined as
a subset S of the vertices such that no two vertices of S share
an edge in G. Mathematically, S is an independent set of G iff
S ⊆ V/∀(x, y) ∈ S2, (x, y) /∈ E . A maximum independent set
S∗ corresponds to an independent set of maximum cardinality.

Any possible solution to this problem consists in separating
the vertices of G into two distinct classes: an independent
one and the others. We attribute a status z to each vertex,
where zi = 1 if vertex i belongs to the independent set and
zi = 0 otherwise. The MISs correspond to the minima of the
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following cost function:

C(z1, . . . , zN ) = −
N∑

i=1

zi + U
∑
〈i, j〉

ziz j, (1)

where U � �(G), and �(G) is the degree of the vertex with
maximum degree, 〈i, j〉 represents nodes in E (the edges), and
N = |V |. This cost function favors having a maximal number
of atoms in the 1 state, but the fact that U � 1 strongly
penalizes two adjacent vertices in state 1.

Interestingly, the cost function of Eq. (1) can be natively
realized on a neutral atom platform [4], with some constraints
on the graph edges. Placing N atoms at positions r j in a
two-dimensional (2D) plane and coupling the ground state
|0〉 to the Rydberg state |1〉 with a laser system enables the
realization of the Hamiltonian

H =
N∑

i=1

h̄�

2
σ x

i −
N∑

i=1

h̄δ

2
σ z

i +
∑
j<i

C6

|ri − r j |6 nin j . (2)

Here, � and δ are, respectively, the Rabi frequency and detun-
ing of the laser system and h̄ is the reduced Planck’s constant.
The first two terms of Eq. (2) govern the transition between
states |0〉 and |1〉 induced by the laser, while the third term rep-
resents the repulsive van der Waals interaction between atoms
in the |1〉 state. More precisely, ni = (σ z

i + 1)/2 counts the
number of Rydberg excitations at position i. The interaction
strength between two atoms decays as |ri − r j |−6 and C6 is a
constant which depends on the chosen Rydberg level.

The shift in energy originating from the presence of two
nearby excited atoms induces the so-called Rydberg blockade
phenomenon. More precisely, if two atoms are separated by
a distance smaller than the Rydberg blockade radius rb =
(C6/h̄�)1/6, the repulsive interaction will prevent them from
being excited at the same time. However, the sharp decay of
the interaction allows us to neglect this interaction term for
atoms distant of more than rb. The Rydberg blockade radius
therefore corresponds to the distance at which the interac-
tion between two Rydberg atoms becomes significant enough
compared to the driving laser to prevent them from both being
excited at the same time. As such, for � = 0, the Hamiltonian
in Eq. (2) is diagonal in the computational basis and enables
to realize H |z1, . . . , zN 〉 = (h̄δ/2)C(z1, . . . , zN )|z1, . . . , zN 〉,
with the cost function specified in Eq. (1) and for which there
is a link between atoms i and j if they are closer than rb apart.

III. LOCAL GEOMETRIC STRUCTURE IMPLIES PTAS

Unit-Disk graphs are inherently local in the sense that two
vertices v and w are connected by an edge if and only if the
distance between the two vertices is inferior to a given thresh-
old. While finding the exact solution remains NP-hard, there
exists efficient approximations to the solution. The known
results about approximations to the general MIS problem are
presented in Fig. 1. Interestingly, the quality of the approxima-
tion depends on the type of graph under study: for Unit-Disk
graphs, classical algorithms can leverage the locality of the
edges to efficiently estimate an approximation of the MIS.
The main idea is to split the graph into local subgraphs for
which MIS is solved exactly. Aggregating the solutions of the

FIG. 1. Standard approximability classes of NP-hard problems
(under the assumption P 	= NP). While solving MIS exactly is NP-
hard, finding an approximate solution of useful quality can be easy,
depending on the nature of the graph at hand. The complexity class
NPO corresponds to the class of optimization problems whose under-
lying decision problem is in NP. A polynomial-time approximation
scheme (PTAS) is a family of ε-parameterized algorithms that output
approximate optimal solutions that are ε > 0 away from the exact
solution in polynomial time. When the family of algorithms is also
polynomial in the parameter ε, it is a Full-PTAS (F-PTAS) and is
very efficient. The APX class corresponds to problems for which a
polynomial-time algorithm can only achieve a constant approxima-
tion ratio. For MIS, if the graph is Unit-Disk or planar, there exists a
PTAS. In our work, we propose a polynomial embedding of general
bounded-MIS (�-MIS) problems which are known to be in APX.
�-MIS is even APX-Complete, meaning that no PTAS exists for it
unless P = NP. In the case of a general graph with no underlying
structure, it was proven that for any ε > 0, MIS is inapproximable
within approximation ratio nε−1, corresponding to the complexity
class poly-APX.

subgraphs yields a good solution as a subgraph only affects
its neighboring subgraphs. It was shown that this method
corresponds to a PTAS that guarantees a 1 − ε approximation
ratio in polynomial time [12]. In the case of planar graphs,
another PTAS exists that also guarantees high approximation
ratios. In the same flavor as for the Unit-Disk case, it re-
lies on dividing the graph into subgraphs with k-outerplanar
forms [13].

However, more general graphs such as bounded-degree
graphs do not present enough structure for classical al-
gorithms to ε-approximate maximum independent sets in
polynomial time. In the case of a graph with bounded-degree
�, finding an approximation solution to the MIS problem is
known to be APX-complete [15]. In other words, this means
that the best approximation ratio that can be guaranteed by a
polynomial-time classical algorithm is constant; to the best of
our knowledge this approximation ratio is r = 5

�+3 [16]. This
ratio cannot be improved without adding an exponential time
overhead for a classical algorithm. The approximation guaran-
teed by a polynomial-time approximation scheme worsens in
the case of a general graph. It was proven that for any ε > 0,
MIS is inapproximable within approximation ratio nε−1 unless
P = NP [17]. A summary of the approximability classes of
MIS on these specific classes of graphs is shown in Fig. 1.
The key takeaway is that the presence of structure (locality,
planarity) in a graph can provide enough information for a
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FIG. 2. Solving MIS on unit-ball graphs with Rydberg atoms. The graph K+
3,3 represented in (a) is the smallest example of a unit-ball graph

for which the Greedy algorithm fails. This graph is embedded with a 3D array of atoms and the positions (x, y, z) (in μm3) are plotted. (b) The
adiabatic evolution path corresponds to a linear detuning � from �i = 2π × 0.7 MHz to � f , while the Rabi frequency � is ramps up to
�0 = 2π × 0.7 MHz. (c) The experiment is tested by changing the final detuning � f . (d) The microstates probability histogram is presented
for � f = 2π × 1.5 MHz. The SPAM error P(g|r) = 0.15 and P(r|g) = 0.05 is corrected following the method proposed in [14]. The MIS
solution probability is improved up to PMIS = 0.25, in stark contrast to the other microstates.

classical algorithm to find good approximations in polynomial
time.

The difference in the approximability of these problems
motivates the need for efficient hardware embedding of graphs
which present less geometrical structure than UD or planar
graphs. Unit-disk graphs can be extended to a higher di-
mension where they are referred to as unit-ball graphs of
dimension d . It can be shown that any n-vertex graph can be
embedded as a unit-ball graph of dimension d = n − 1 [18].
The dimension of the embedding is therefore a parameter of
hardness for MIS approximation since for d = 2 there exists
a PTAS but for d = n − 1 it is inapproximable within the
approximation ratio nε−1 for any ε > 0. A natural step in
finding a hard approximation zone is therefore to increase
the dimension d , which we do in the following section by
embedding unit-ball graphs where d = 3.

IV. EXPERIMENTALLY SOLVING MIS ON UNIT-BALL
GRAPHS IN 3D ARRAYS OF ATOMS

A common strategy employed to find an approximate so-
lution to the MIS problem is to use a greedy algorithm. This
iterative method involves local optimal choices at each step
and yields an acceptable solution in polynomial time. For ex-
ample, a greedy algorithm on MIS selects a random vertex in
G at each step, deletes its neighbors, and repeats this step until
the graph is empty. By construction this method guarantees

that the selected vertices form an independent set. The greedy
algorithm therefore provides an 1/n approximation to MIS as
in the worst case it returns a single vertex. Surprisingly, the
inapproximability result for general MIS below nε−1 implies
that the greedy algorithm is an optimal approximation algo-
rithm [19]. It is also proven to be optimal for bounded-degree
graphs [20]. An improvement to the greedy algorithm is to
select at each step the vertex with the lowest degree as it
deletes less neighboring vertices. As the greedy algorithm
runs in polynomial time and MIS is an NP-complete problem,
there exists a class of graphs for which the greedy algorithm
fails completely. The smallest graph of this class [21] is K+

3,3
and is represented in Fig. 2. It corresponds to the bipartite
graph K3,3 augmented with edges such that one class forms a
clique [in our figure it corresponds to vertices (4, 5, 6)] and a
single vertex (0) is connected to the other class (1,2,3). In this
case, the degree-informed greedy algorithms fails. Interest-
ingly, K+

3,3 is a unit-ball graph for which we give an embedding
on the right of Fig. 2. We therefore embed K+

3,3 experimentally
in three dimensions using an array of atoms and follow a
quantum annealing scheme to prepare its MIS [11,22]. In our
experiment, the Rydberg level is n = 71 and the maximum
driving Rabi frequency is � = 2π × 0.7 MHz, which corre-
sponds to an effective Rydberg blockade radius rb of 10.6 μm.

The first trial adiabatic evolution path is tuning the de-
tuning � linearly from �i to � f , while the Rabi frequency
� is fixed to �0. The experiment is tested by changing
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FIG. 3. Mapping a non-UD graph with Rydberg atoms using 3D quantum wires. The graph on the left is the smallest example of a
non-Unit-Disk graph (otherwise the vertex 2 would be connected to 1 and 3). This graph is embedded in a 3D array of atoms (right). The red
atoms correspond to the original graph vertices, while the chains of black atoms encode the edges of the original graph. The procedure enables
to map any general graph, including non-UD and nonplanar graphs with a bounded-degree up to � = 6.

the final detuning � f . The full 27 microstates probability
histogram is presented for � f = 2π × 1.5 MHz. The state
preparation and measurement errors (SPAM) error P(g|r) =
0.15 and P(r|g) = 0.05 are corrected [23]. The MIS solution
probability is improved up to PMIS = 0.25, in stark contrast
with the other microstates. These very encouraging results
show that it is possible to prepare the MIS of K+

33 using a
quantum annealing scheme on a three-dimensional (3D) array
of neutral atoms. On the classical side, K+

33 is the smallest
example for which a greedy algorithm, optimal in approx-
imation, fails. Other classical methods, however, known as
slicing [24] can return the optimal solution in polynomial time
on such instances. There are classes of graphs, however, for
which the inapproximability is stronger. This is the case for
bounded-degree graphs and we will demonstrate how such
graphs can be embedded on a neutral atom device in the
following section.

V. EMBEDDING BOUNDED DEGREE GRAPHS
IN 3D ARRAYS OF ATOMS

Recent and previous works propose to represent nonlocal
edges of graphs with chains of ancillary atoms [4,11], in two
and three dimensions respectively. Building upon this idea,
we present an efficient and systematic method to represent
any graph of degree inferior or equal to 6 with a 3D array of
atoms. An illustration of our method is given in Fig. 3. It runs
in polynomial time and numerical simulations suggest a low
overhead in the number of added ancillary atoms (sublinear).

We define the drawing of a graph as the realization or
layout of a graph in a 3D space, where no two vertices overlap
and no vertex-edge intersection occurs unless its incidence
exists in the original graph. We say that a drawing is crossing-
free if no two edges cross. A growing interest emerged in 3D
drawings of graphs for circuit designs [25] or for information
visualization [26,27]. In our case, we focus on 3D orthogonal
grid drawings (OGD) of a graph G = (V, E ) for which the
vertices of G are represented as distinct points of the grid

Z3, while all edges E = (u, v) ∈ V 2 are restricted to being
drawn on lines parallel to one of the three axes. This restriction
implies that only graphs with maximum degree six can have
such a drawing; given a vertex at coordinates (x, y, z) ∈ Z3,
the only authorized directions for an edge are (x ± 1, y ±
1, z ± 1). It is proven that every graph of bounded-degree �

admits a crossing-free OGD if � � 6.
Theorem 1 ([28]). Let G be a graph with n vertices and

maximum degree � � 6. Then G has a three-dimensional
orthogonal grid drawing such that no pair of edges cross.

The general idea behind our method is to construct an
OGD for the original graph and replace the edges by chains
of ancillary atoms. Ideally, we would like to find an OGD
that minimizes the edge lengths to have as little ancillary
atoms as possible. Although it is NP-hard to find an OGD
that minimises the total length of the edges [28], a positive
result shows that any general �-bounded graph G = (V, E )
with � � 6 can be embedded in a volume O(|V | 3

2 ) [29],
meaning that the worst-case embedding grows polynomially
with the number of nodes. Many algorithms were proposed to
optimize the total volume [30] or the average number of bends
per edge [31] of an OGD. Here, we present a simple heuristic
to construct an OGD with a small total length of edges.

Given a general �-bounded graph G = (V, E ) with � �
6, we place the vertices of V in R3 using the Fruchterman-
Reingold algorithm (FR) [32] that runs efficiently in O(|V |3)
steps. Note that other algorithms could be used at this step but
FR yielded the best results in our simulations. The vertices are
then moved to the closest grid point in Z3, insuring that no two
vertices get the same coordinates.

We then use Dijkstra’s algorithm [33] to find the shortest
route restricted to the underlying grid between connected
vertices. Dijkstra’s algorithm is very efficient and runs in
O(|V | + |E | log |V |) in the worst case [34]. One can also
use another shortest-path algorithm called the A* algorithm
that exclusively identifies the shortest route between a des-
ignated source and a specific goal rather than constructing
the shortest-path tree extending from a designated source to
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FIG. 4. Local detuning on ancillary atoms. In the top, an edge
between vertexes 1 and 2 is augmented with two ancillary atoms 3
and 4. With no local detuning, the ground state of the augmented
edge corresponds to exciting {1, 2}. This, however, is inconsistent in
the initial graph (1 and 2 cannot be simultaneously in the MIS). We
therefore add local detuning to all ancillary atoms to ensure that the
ground state corresponds to the antiferromagnetic state. (b) Energy
diagram of the spectrum as a function of the local detuning δi ap-
plied to the ancillary atoms. A red atom corresponds to an excited
state. The independence condition of the original link is respected if
0.05 × U � δi � 0.95 × U , where U is the interaction between two
neighboring atoms. In these values of local detuning, the ground state
corresponds to the antiferromagnetic state.

all potential destinations. It is optimally efficient and runs in
O(|E | log |V |) [35]. In both cases, the resulting shortest-path
is transformed into a chain of ancillary vertices. We previously
ensure that two distinct edges are separated by at least a two-
grid-point distance to avoid any unwanted interaction between
ancillary atoms of two distinct chains. Finally, the parity of the
length of the path has to be checked to ensure it conveys the
proper independent-set constraint. If the path length is odd, we
add an ancillary vertex at each Z3 coordinate of the path. If the
path is of even length p, we add p + 1 evenly spaced ancillary
vertices along the path. After this procedure, we obtain an
augmented graph G+ = (V+, E+) of size |V+| = N+.

The advantage of an OGD is that two distinct edges only
intersect at common endpoints, thereby preventing ancillary
atoms from interacting if they are not part of the same chain.
By representing all vertices with atoms, one can encode a MIS
of G in the ground state of an Ising Hamiltonian on Rydberg
atoms [36] over the augmented graph G+:

H+ =
N+∑
j=1

h̄�

2
σ x

j −
N+∑
j=1

h̄

2
(δ + δ j )σ

z
j +

∑
j<i

C6

|ri − r j |6 nin j,

(3)
where ni = (σ z

i + 1)/2 and δ j represents the local detuning
applied to each atom, ensuring that the MIS is achieved when
the chain is in an antiferromagnetic state.

In Fig. 4, we show explicitly on a single augmented edge
how one can choose the values of local detuning on ancillary
atoms to ensure that the MIS of the edge corresponds to the
ground state of the Hamiltonian H+. In this example, there
are three MISs in the augmented graph {1, 4}, {2, 3}, which
are acceptable solutions, but also {1, 2} which does not corre-
spond to a MIS of the original graph. With a reasonable global

FIG. 5. Scaling of additional atoms in our method. For each size,
20 random Erdos-Renyi graphs of maximum degree 6 are generated.
Our method is then applied and we plot the mean size N+ of the
augmented graphs and the standard deviation of the sample. The
power-law fit suggests a sublinear growth of the required additional
atoms.

detuning δ > 0, this latter state is actually the ground state of
the chain. To guarantee that {1, 4}, {2, 3} correspond to the
ground states of the Hamiltonian associated to the augmented
path, we apply an additional local detuning δi to each ancil-
lary atom with δi = U/2, where U = C6/r6 is the interaction
energy between two closest atoms of the augmented graph.

Keeping 0.5 × U � δi � 0.95 × U ensures that the MIS
returned by the algorithm preserves initial constraints (the
proof is given in the Appendix A). The simple two-node graph
extension of Fig. 4 is the building block of the method. It
illustrates the importance of adding a local detuning to the an-
cillary atoms to guarantee that the ancillary chain of atoms has
an AFM state as the ground state. This small building block of
two ancillary atoms can be glued with another two ancillary
atomic chain and thereby be extended to a 2p chain, where p is
any given integer. In that case, the same deterministic choice
of local detuning ensures that the chain effectively represents
an edge between the two extremal nodes. In this effective
chain, the ground state corresponds to one of the extremal
node being excited while the other one is not. Applying the
same reasoning for each edge of the graph, we effectively
encode the edges constraints of the initial graph in the ground
state of the atoms. Therefore, using the determined value of
the local detuning that will be applied on all the ancillary
atoms of that chain, the ground state is assured to correspond
to the solution to the MIS problem of the original graph.

The procedure described above enables us to replicate the
connectivity of any input graph G of maximum degree six in
three dimensions, at the expense of adding ancillary vertices.
To assess the overhead incurred by this embedding, we test
the procedure of general graphs of maximum degree 6. For
each size, 20 Erdos-Renyi graphs are generated and the size
N+ of the augmented graph is recorded. Our simulations seem
to indicate a sublinear overhead in the number of ancillary
atoms, as illustrated in Fig. 5 where we show the number of
vertices in the augmented graph N+ with respect to the size of
the original graph N . Our method would be impractical if the
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number of ancillary atoms exploded or if the size of the edges
grew exponentially with respect to the graph size. Indeed,
the Lieb-Robinson bounds [37] would imply that information
could not propagate efficiently through the ancillary paths.
Luckily, the necessary volume to draw the OGD of a graph
was proven to be polynomially bounded [28]. Precisely, every
N-vertex degree-6 graph admits an OGD in O(N3/2) volume
and that bound is best possible for some degree-6 graphs. The
authors give an explicit algorithm that places all vertices on a
O(N ) × O(N ) grid in a 2D plane and draws each edge with
at most 16 bends. The growing number of atoms that can be
experimentally trapped in recent experimental setups [38] is
an encouraging sign that the overhead in the number of atoms
required in our method is reasonable.

VI. CONCLUSION

We described here the versatility of neutral atom platforms
at solving hard graph problems. Previous implementations of
MIS solutions using atoms trapped in optical tweezers were
either limited to UD graphs [7,39] or using a large number of
ancillary qubits [8]. We successfully illustrated that this ap-
proach can be extended to a larger class of graphs by solving
the MIS problem on a minimal nonunit disk hard graph using
a 3D array of atoms. The results showcase the validity of the
approach for unit-ball graphs.

Furthermore, we described a method embedding the MIS
problem over nonlocal graphs as Unit-Ball graphs in 3D
space. This procedure is guaranteed to run in a time growing
polynomially with the input graph size, and can be used,
in particular, to encode bounded-degree graphs of maximum
degree 6, for which no PTAS exists unless P = NP. As neutral
atom platforms develop and benefit from additional hardware
features, we expect our method to become more and more
relevant. In particular, the validity of the OGD relies on the
ancillary chains being in an antiferromagnetic state, which
can be enforced using local detunings. A very intriguing

and exciting prospect is to qualify both theoretically and
experimentally the capabilities of quantum devices in approx-
imately solving the MIS on this classes of hard graphs like the
bounded-degree graphs. We believe that understanding from a
theoretical perspective the capabilities of quantum approaches
in finding the guaranteed performance ratio for NP-complete
problems is an important question in the quest for practical
quantum advantage.

ACKNOWLEDGMENTS

We thank M. Porcheron, E. J. V. Leeuwen, L. Leclerc, A. B.
Grilo, E. Kashefi, T. Lahaye, and A. Browaeys for thoughtful
discussions and remarks. We acknowledge support from the
region Ile-de-France through the AQUARE project, as part of
the PAQ program.

APPENDIX: OPTIMAL LOCAL DETUNING
ON ANCILLARY ATOMS

We estimate in this proof the lower and upper bounds for
the local detuning on the two ancillary atoms of an augmented
edge. Let Ei1i3i4i2 be the energy associated to the bit-string
i1i3i4i2, where ik ∈ {0, 1} and k is the label of the atom (1,2
are the main atoms and 3, 4 the ancillas). We want to ensure
the following inequalities:

E1010 < E1001,

E1010 < E0110. (A1)

We show calculations in the case δi = 0 for original atoms
(1 and 2). We therefore have that

−2δ − δi + 1
26 U < −2δ + 1

36 U

−2δ − δi + 1
26 U < −2(δ + δi ) + U

⇐⇒ δi ∈
[(

1

26
− 1

36

)
× U,

(
1 − 1

26

)
× U

]
. (A2)

Taking δi = U/2 for all ancillary atoms is a safe spot.
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