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ABSTRACT

The ability of controlling the evolution of quantum systems by applying interaction with shaped laser

pulse, known as coherent control or quantum control, has attracted significant interest in many fields

of researches over the last two decades. Coherent control has been applied to photo-induced selective

chemical reaction processes, controlling the direction of electron motions in semiconductors, multi-photon

excitation fluorescence microscopy, and the optimization of nonlinear light-matter interactions. Quantum

systems subjected to control have been ranged from atoms and molecules to semiconductors and biological

samples. Especially, great efforts have been devoted to managing the transition probabilities between

quantum states in atomic systems.

Previous transition probability controls are mostly restricted to a ladder-type system. The controlled

transition in a ladder-type system is readily monitored by detecting the fluorescence decay from a target

excited state. On the other hand, the two-photon transition between the excited states in a V -type

quantum system is not straightforward to measure, and thus has been difficult to control. It is because the

state population of the target excited state is coherently mixed with the dominant one-photon transition

population from the ground state. This difficulty is overcome, in this thesis, with the combined use of

two-dimensional Fourier-transform optical spectroscopy and a coherent control technique.

In this thesis, we present a new method that harnesses coherent control capability to two-dimensional

Fourier-transform optical spectroscopy. For this, three ultrashort laser pulses are individually shaped

to prepare and control the quantum interference involved in two-photon inter-excited state transitions

of a V -type quantum system. In experiments performed with atomic rubidium, quantum control for

enhancement and annihilation of 5P1/2 → 5P3/2 transition is successfully tested, where the engineered

transitions are distinguishably extracted in the presence of dominant one-photon transitions. Experi-

ments for quantum interference engineering have revealed that the target transition strength is tripled

in spectral phase-shaping, and enhanced by 60% in spectral amplitude shaping. Also, we show that the

conventional coherent transients in a simple two-level system is mimicked by two-photon coherent control

in a V -type three-level system. Here, higher order chirps of a shaped laser pulse play the roles of time

and linear chirp in coherent transients. In a three-pulse coherent control experiment of atomic rubidium,

the phase and amplitude of controlled transition probability is retrieved from a 2D Fourier-transform

spectral peak.

Finally, we propose the application of the novel coherent control technique or advanced two-dimensional

Fourier transform spectroscopy to semiconductor quantum well systems. For this, we have considered

semiconductor heterostructures made of III-V compounds for the V -type three-level systems along with

numerical calculations. It is hoped that the devised coherent control for excited-state transitions become

useful in untangle the unknown nature of chemical and biological reaction processes.

Keywords: coherent control, 2D Fourier transform optical spectroscopy, inter-excited state transition,

two-photon transition, rubidium atom
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Chapter 1. Introduction

Coherent control is a quantum mechanical based method for controlling the evolution of an initial

wavefunction toward a desired final wavefunction [1, 2, 3]. Among many possibilities the target wavefunc-

tion is selected and, by applying shaped laser pulses, the evolution is controlled to the desired direction.

Coherent control is started and used in Chemistry to generate selectivity of chemical reaction processes

by light such as optimizing the branching ratios of photo-dissociation reaction channels. In the middle of

1980s, coherent control was proposed by D. J. Tannor and S. A. Rice in Journal of Chemical Physics with

the title of “Control of selectivity of chemical reaction via control of wave packet evolution” [3] and also

by M. Shapiro and P. Brumer in Journal of Chemical Physics with the title of “Laser control of product

quantum state populations in unimolecular reactions.” [4] Both showed that chemical reaction processes

can be controlled by shaped laser pulses. After their remarkable proposal, coherent control has been

demonstrated for manipulating both simple and complex systems such as atoms, molecules, and semi-

conductors [5, 6, 7, 8]. Moreover, the complete population transfer has been achieved in atomic systems

based on the adiabatic passage, and the coherent control concept has been applied to the multi-photon

excitation fluorescence microscopy toward a high degree of substance classification [9].

The early approaches in coherent control used narrowband pulsed lasers or continuous-wave lasers.

Target reaction channels were controlled either by the laser frequency that corresponds to the resonant

frequency or the vibration frequency of chemical bonds in a reaction process. However, this method

was rather limited because the temporal characteristic of intrinsic interactions, such as natural decay or

intramolecular vibrations, could be shorter than the laser pulse width. In 1982, the first femtosecond

Ti:sapphire laser was constructed [10, 11]. Consequently, the study of ultrafast dynamics of quantum

systems in a shorter time scale than a few picoseconds of intrinsic interaction time was achieved, which

was followed by the coherent manipulation the systems [12]. Furthermore, The unprecedented high peak

intensity of a femtosecond laser pulse has enabled the study of nonlinear light-matter interactions in the

strong-field interaction regime.

In chemical reactions involved in molecules, biological and semiconductor materials, obtaining an

analytical coherent control solution is nearly impossible, because either the Hamiltonian is insufficiently

known or the processes are too complicated to approach analytically. Therefore, coherent control re-

searches have been focused on, so called, “adaptive closed-loop control” [13]. The results of adaptive

control provided, however, only limited information about the system, leaving the system as a “black-

box”. On the other hand, analytic control approach has been successful with a simple quantum system

like atoms [14, 15, 16, 17], in which the transition probability in a multi-photon process, for example, has

been found sensitively changing to the detailed shape of an interacting laser pulse. It is noted that the

early studies on the transition probability control have been mostly restricted to the transitions initiated

from the ground state: for example, resonant-(three-level ladder systems) [14] and nonresonant (two-level

systems) two-photon absorption processes [17]. In these cases, the transition probability can be easily

measured by detecting the fluorescence signal decayed from the excited states. However, in a V -type

system, which is the subject of this thesis, the transition from one of the excited states to the other, or

the inter-excited states transition, is not simple to measure, thus difficult to control. It is because the

final population of the target state comprises transferred electrons not only from the initial excited state

– 1 –



but also from the ground state. This difficulty can be resolved with a special detecting scheme, known as

two-dimensional Fourier transform optical spectroscopy (2D-FTOS) [18, 19, 20]. 2D-FTOS is an optical

extension of the 2D NMR [21], a recently developed spectroscopic tool for probing femtosecond electronic

and vibrational dynamics and can be applied to molecules as large as small proteins. The femtosecond

time resolution achieved in 2D-FTOS is crucial in understanding reaction dynamics and energy transfer

processes [22]. In 2D-FTOS, a sequence of three ultrashort laser pulses interacts with a quantum sys-

tem, and the fluorescence signal, S(τ1, τ2), is detected as a function of two inter-pulse delays τ1 and τ2.

Fourier transformed signal, represented as a 2D complex-valued 2D spectral function, S(ω1, ω2), reveals

the linear and nonlinear response of the quantum system, where ω1 and ω2 are the conjugate Fourier

frequencies of τ1 and τ2. Especially, the off-diagonal peaks of S(ω1, ω2) directly map the inter-excited

state coupling of great interest.

However, another great merit of 2D-FTOS is not used yet, that is coherent control pulse shaping

technique. By spectrally programming the broadband spectral components of a femtosecond laser pulse,

the combination of coherent control technique and 2D-FTOS is realized resulting a more powerful tool,

that is 2D Fourier transform coherent control spectroscopy (2D-FTCCS). In this thesis, using this newly

developed 2D-FTCCS, the preparation of a quantum systems, and an annihilation or enhancement of

specific couplings, and the detection of the quantum state and coupling coefficients are described. We

experimentally demonstrate the control of two-photon inter-excited state transition in a V -type system

of atomic rubidium. Among the three optical pulses of 2D-FTOS, the first pulse was synthesized to

selectively initiate the quantum system in a simple quantum state. The second pulse is pulse-shaped in

terms of linear chirp rate or spectral block phase function to control the inter-excited state transitions.

Then, quantum control enhancement and annihilation of 5P1/2 → 5P3/2 transition are tested, where

the engineered transitions need to be distinguishably extracted in the presence of dominant one-photon

transitions. In these simple coherent control experiments with a V -type system, the ability of advanced

2D-FTOS scheme harnessed with coherent control technique, 2D-FTCCS is demonstrated. Furthermore,

we show the striking similarity between a two-photon inter-excited state transition in a V -type system

and a one-photon transition in two-level systems results to coherent transient phenomena along with

experimental demonstration in use of 2D-FTCCS.

In this thesis, we demonstrate a combined technique of coherent control and 2D-FTOS in a quantum

mechanical model system. We expect that this newly developed combined techniqe can be applied to

various fields of research. As an application, this 2D-FTCCS technique will be useful to probe time-

dependent coupling paths among multi-level electronic energy states in complex quantum systems. Also,

we envision that this technique further combined with semiconductor nano fabrication may be a possible

candidate for quantum computing. For example, a suitably designed multi-level system can be controlled

by shaped laser pulses to perform quantum computing so that the resulting quantum wavefunction are

measured with 2D-FTCCS.

This thesis contains 7 chapters. In Chapter 2, we review the two typical coherent control approaches:

the adaptive control scheme and the analytic control scheme. Then, we discuss the pulse-shaping tech-

nique which provides crucial ability in coherent control. Next, we discuss the three pulse coherent control

scheme, or 2D-FTOS, in Chapter 3. For a theoretical description of 2D-FTOS, the transition probability

amplitudes in a V -type system are thoroughly derived. In Chapter 4, we demonstrate the combination

of these two powerful techniques, the coherent control of pulse shaping and 2D-FTOS. For this, three

ultrashort laser pulses are individually shaped to prepare and control the quantum interference involved

in the two-photon inter-excited state transitions of a V -type quantum system. Then, an annihilation
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and enhancement of the inter-excited states couplings are verified. In Chapter 5, we show that the two-

photon coherent control in a V -type three level system is projected to a one-photon coherent transient

in a simpler two-level system. In this experiment, it is shown that the roles of time and linear chirp in

the latter are duplicated by linear and quadratic chirp rates in the former. For an experimental demon-

stration, we use 2D-FTCCS, to retrieve the phase and amplitude of the controlled transition probability.

In Chapter 6, we propose a new coherent control experiment with a semiconductor material to further

demonstrate the advanced ability of the 2D-Fourier transform coherent control spectroscopy. Finally,

Chapter 7 concludes the thesis.
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Chapter 2. Review of coherent control

Quantum control, or coherent control, is an active operation in a system’s evolution to maximize

the probability toward a desirable target state (see Fig. 2.1). The controlled evolution can be a chemical

reaction pathway, a direction of electronic dynamics in semiconductors, light absorption process, or large

transition probability in atomic systems. The quantum systems which may be the object of coherent

control can be single atoms, molecules, and collective modes of solid-state matters such as excitons and

phonons. Also, finding out how to coherently control the evolution of a system provides a refined means

to understand the system itself.

Femtosecond laser pulse shaping provides a synthesized broadband coherent spectrum in optical

frequency and has become one of the most useful tools for coherent control. Laser spectrum can be

programmed to match the multiple resonant frequencies of the electronic and vibrational transitions of a

quantum system. The shaped pulses can be simply either a shortened or stretched optical pulse in time

domain, or can be of an arbitrarily complex temporal shape. The optical waveform synthesis has been

rapidly developed for diverse applications such as ultra high speed optical networks, chemical reaction

triggering, and biological process monitoring, etc.

After the proposal of coherent control soon followed by its experimental demonstration, a significant

volume of research has been performed to develop the ability of quantum control both in a variety of

quantum systems. In some simple systems, analytic solutions have been obtained directly from the

interaction Hamiltonian between the quantum system and laser field. However, in a relative complex

system such as molecules, biological or semiconductor materials, obtaining an analytical solution has

turned out to be nearly impossible. The reason is either that the Hamiltonian is insufficiently known or

that the control interaction is too complicated to trace analytically.

Instead, adaptive coherent control which tests various electric field shapes positively fed by ex-

perimental feedback has been successful in many problems. As a practical application of the coherent

control, the optimization problem in many photo-induced processes, for example, determination of a

photo-chemical reaction channel, the adaptive coherent control has been developed [13, 23, 24, 25, 26].

On the other hand, for a simple system like alkali atoms, analytic control approach can be more

effective. The system can be easily controlled by a predetermined electric field, which is analytically

designed by solving the Hamiltonian problem of the given light-matter interaction [14, 15, 16, 17, 27, 28].

The analytic approach can be accessed based on two kind of analysis: in frequency domain analysis and

in time domain analysis. The time domain analysis uses the time evolution of the quantum system by

directly solving the time-dependent Schrodinger equation. The evolution of the system can be alter-

natively controlled in frequency domain by programming the quantum interference between the several

passages that lead to the target wavefunction.

In Sec. 2.1, we study two basic pulse-shaping methods: the frequency domain pulse shaping with a

spatial light modulator in Sec. 2.1.1, and the time domain pulse shaping with an acousto-optic modulator

in Sec. 2.1.2. In Sec. 2.2, the adaptive approach on coherent control is briefly introduced. Also in Sec.

2.3, the analytic control scheme both in frequency domain (Sec.2.3.1) and in time domain (Sec.2.3.2)

will be discussed.
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Figure 2.1: Quantum coherent control influencing the evolution of a wavefunction. The system’s initial

wavefunction ψi evolves to a coherent superposition of the all possible final states ψ
(n)
f under the influence

of the control-free Hamiltonian Ho. On the other hand, with an externally controlled term added to

the Hamiltonian, for example, the interaction with a control laser pulse (electric field) in our case, the

wavefunction evolution is directed along the desired direction to the target state.
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2.1 Femtosecond pulse shaping

In 1981, the invention of the colliding pulse mode-locked ring dye laser enabled one to make ultrashort

laser pulses below 100 fs in time duration [29]. After the subsequent nonlinear pulse compression, the

even shorter pulses as short as 6 fs has been produced [30]. The femtosecond Ti:Sapphire laser has been

developed in early 1990s providing a number of important advantages compared to the dye lasers: output

power and stability have been considerably improved and also the laser has become a convenient turn-key

system. Nowadays, a Ti:Sapphire oscillator can produce extremely short pulses below 6 fs directly from

the laser without a pulse compression.

Using the Ti:sapphire short pulse lasers, optical waveform synthesis methods, or pulse shaping

techniques, have been developed over the last decades. The programmed light forms have been used for

ultrafast spectroscopy as well as quantum coherent control. A number of approaches for ultrafast pulse

shaping have been demonstrated, but they can be grouped in the following two methods: one is, to be

discussed in Sec.2.1.1, the frequency domain pulse shaping with a spatial light modulator which operates

on a spatially dispersed optical frequency spectrum, and the other is the time domain pulse shaping with

an acousto-optic modulator, to be described in Sec. 2.1.2.

2.1.1 Spatial light modulator

The pulse shaping apparatus in frequency domain is shown in Fig. 2.2, which was first reported by

Froehly [31]. The overall pulse shaping is performed in a 4f geometry that comprises two lenses and two

gratings. To achieve an exact pulse shape as programmed, the gratings and the lenses must be aligned

to make a ”zero dispersion pulse compressor”. Simply, the output pulse should be identical to the input

pulse when the spatial light modulator (SLM) is removed. However, the thickness of the lenses and their

aberration, as well as the unwanted spectral deformation by the gratings, hinder the perfect operation of

the pulse shaper. The perfect ”zero dispersion pulse compressor” can be checked by the distortion-free

propagation of the output pulse [33, 34] or an absence of spatial chirps. If the output pulse is free of

any spatial chirp, the beam profile is smoothly wiped out uniformly, instead of being partially deformed,

when a part of the spectrum is blocked from one side to the other in the Fourier plane of the pulse

shaper.

The femtosecond pulse shaping in frequency domain is achieved in an intuitive way. First we consider

the input pulse as a Fourier-transform limited (FTL) pulse, i.e., the shortest pulse in time domain, or

the spectral components of the pulse are all in phase. The first step of the pulse shaping is that the

individual frequency components contained within the input pulse to be dispersed spatially by a grating,

as shown in Fig. 2.2. And then, the spreading envelope is collimated by a lens located at a distance of

its focal length from the grating, and, in the meantime, individual spectral components are focused to

small diffraction limited spots. Basically, the first lens operates as a Fourier transformer which converts

the angular dispersion from the first grating to a spatial separation at the focal plane of itself. Then,

spectral components pass through a programmed mask or SLM which controls amplitudes and delays,

or phases, of each spectral components. The second lens performs the inverse procedure of the first lens

and the second grating recombines all the spectral components to a collimated beam. As a result, the

output pulse in time domain is the Fourier transform of the sum of the spectral components of which

the amplitudes and phases are programmed by the SLM.

Liquid crystal SLM uses an array of nematic liquid crystals, which are made out of rod-like molecules

aligned with their long axes in the absence of an external electric field, or voltage. When voltage is applied
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Figure 2.2: Schematic of femtosecond pulse shaping in frequency domain with spatial light modulator.

Gratings and lenses are arranged in a 4f configuration. The pulse shaping procedure is described in the

text. [32]

to them in the perpendicular direction relative to their long axes, the liquid crystal molecules tilt along the

voltage direction and the refractive index changes for a light polarized along their long axes. Therefore,

individual phases of spectral components can be controlled by the strength of the voltages applied to

the corresponding liquid crystal cells. The controllable number of spectral components is limited by the

pixel number of the liquid crystals, and the spectral resolution is related to the diffraction limit of the

lens used in the 4f geometry.

2.1.2 Acousto-optic pulse shaper

Acousto-optics effect deals with the interaction between an optical wave and an acoustic wave in a

material medium, especially the diffraction of laser light by ultrasound or sound in general. The first

prediction of this interaction was achieved by Brillouin in 1922 [35] and was experimentally verified in

1932 by Debye and Sears [36] and also by Lucas and Biguard [37]. The most interesting phenomenon in

acousto-optics is the diffraction of light by the acoustically perturbed medium. Acousto-optic effects are

based on the change of the index of refraction of the medium by the acoustic wave. In a medium through

which an acoustic wave propagates, strain field or pressure fluctuation is produced. As a periodic function

of the position of the acoustic wave, a change in the index of refraction, known as the photoelastic effect

occurs. Then, due to the periodic change in the index of refraction, a propagating optical wave is diverted

via Bragg diffraction. The acousto-optic effect is extensively used in ultrasonic wave measurements,

nondestructive testing, structural health monitoring, and biomedical applications. Also, a number of

acousto-optic effect based devices such as acousto-optic modulators, filters and deflectors are developed

and actively in use.

The acousto-optic programmable dispersive filter (AOPDF) which can be used in femtosecond pulse

shaping [39] is based on a quasi collinear acousto-optic interaction [40]. The phase of individual frequency

component of an optical wave is controlled by the corresponding acoustic frequency component which is

varied as a function of time. Also, the amplitude of the optical frequency component can be tuned by

the intensity of the acoustic wave launched in the AOPDF medium. AOPDF performs a good shaping
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resolution without precise alignment procedure.

Figure 2.3 (a) shows the schematic of AOPDF. A piezoelectric transducer excites a programmed

temporal signal into the acousto-optic medium, and the acoustic wave propagates along the z-axis with

a velocity V . The acoustic wave, induced by the temporal shape of the transducer signal, builds pressure

fluctuation spatially in the medium as a periodic function of position z. If we consider a monochromatic

optical wave of frequency ω which is incident in fast ordinary axis to the medium, then, two optical modes,

mode 1 in fast ordinary axis and mode 2 in slow extraordinary axis, can be coupled by acousto-optic

interaction as shown in Fig. 2.3 (b), as long as the condition of phase matching is satisfied, i.e.,

ω2 = ω1 +Ω (2.1)

k2 = k1 +K, (2.2)

where ω2 and ω1 are the frequency of the optical fields in mode 2 and mode 1, respectively, and Ω the

acoustic frequency. Also k2 and k1 are the wavevector of the optical fields in mode 2 and mode 1, and K

the acoustic wavevector. Then, the incident optical energy is transferred to the diffracted optical wave,

when the phase matching conditions are satisfied, given by

E2(ω2) exp
[
i(ω2t− k2z)

]
= E1(ω1) exp

[
i(ω1t− k1z)

]
∗ S(Ω) exp

[
i(Ωt−Kz)

]
, (2.3)

where E2 is the diffracted optical field, E1 the incident optical field, and S the acoustic signal. Therefore,

the optical frequency is diffracted at a position z where the spatial frequency is induced by the acoustic

wave at z(ω). The incident optical wave initially in mode 1 travels a distance before it faces to z(ω), and

at z(ω), some amount of energy of the optical wave is diffracted to mode 2 and the amount is relative to

the intensity of the acoustic signal. The travel time inside the medium is caused by the refraction index

difference between mode 1 and mode 2 times the position z(ω), i.e., ∆t = ∆nz(ω). Likewise, if the input

optical wave is a femtosecond pulse with a broadband spectrum, instead of a monochromatic wave, the

spectral components diffracted to mode 2 by acoustic wave can be controlled both in amplitude and in

phase by the acoustic power and the position of z(ω), respectively. The relation between the output

optical pulse and the input optical pulse can be expressed with the acoustic signal as [39]

E2(t) ∝ E1(t)⊗ S(t/α), (2.4)

where ⊗ means convolution and the scaling factor α = ∆n(V/c) is the ratio of the speed of sound to

the speed of light times the index difference between the ordinary and the extraordinary waves. Also, α

means the ratio of the acoustic frequency Ω to the optical frequency ω, α = Ω/ω, and Eq. (2.4) can be

written in the frequency domain as

E2(ω) ∝ E1(ω)S(αω). (2.5)

Therefore, by generating a proper function S(t), one can achieve any desired waveform. Although the

above explanation is given for the case of a collinear interaction scheme, but the same formulation holds

for a quasi-collinear case which has been used in our experiments [40].

The nonlinear crystal we have used in our experiment is the TeO2 crystal of d = 2.5cm length.

In our case, the index difference of TeO2 crystal between the ordinary and extraordinary polarization

axes for the given propagation direction is ∆n = 0.04. Therefore, the maximally achievable group delay

is ∆T = ∆n·d/c = 3.33 ps. The speed of sound V of TeO2 in the z direction is 1000 m/s, and the

matched acoustical frequency is f = ∆nV
c ω0 = 52.5 MHz, where ω0 is laser center frequency, 375 THz

at 800 nm. The bandwidth of the transducer is about 20 MHz at 52.5 MHz, which corresponds to an

optical bandwidth of 150 THz at 375 THz. Then, the associated temporal resolution is about 6.7 fs.
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Figure 2.3: (a) AOPDF top view. The output beam is diffracted by 1 degree from the input beam, in

the 90-degree-rotated linear polarization. (b) Schematic of AOPDF. Mode 1 in fast ordinary axis and

mode 2 in slow extraordinary axis, are coupled by acousto-optic interaction when the phase matching

condition is satisfied. [38]
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Figure 2.4: Synthesis of the pulse shaping function parameters of the acoustic wave. Acoustic wave

parameters are categorized into amplitude shaping and phase shaping parts. The frequency domain

acoustic wave is Fourier transformed to the time domain signal and applied to the acousto-optic medium

via a transducer.

Figure 2.4 shows the categorized pulse shaping parameters of the acoustic wave. The actual acoustic

wave signal applied to acousto-optic medium is given by

S(Ω) = A(Ω) ∗ exp(iΦ(Ω)), (2.6)

where Ω is the calibrated acoustic wave frequency, Ω = αω. The parameters are divided into two groups,

the amplitude shaping A(Ω) and the phase shaping Φ(Ω). Also, the three pulses can be generated by

summation of three acoustic waves, S(Ω) = S1+S2 +S3, where S1, S2, and S3 refer to the first, second,

and third pulses with different values of the time delay, a1’s.

2.2 Adaptive coherent control

In this section, we discuss about the adaptive quantum control scheme using a closed-loop learning

algorithm [23]. For a complex system, the adaptive control has proven to find the nearly best control

solution toward the desired direction, even without knowing a priori information of the Hamiltonian of

the systems. The control parameters are optimized iteratively using the feedback signal of the reaction

of the system. This approach might be regarded as a ”active observation” rather than simple, passive

observation by controlling the dynamical evolution of the wavefunctions of the system, and has been

applied to a number of systems [13, 23, 24, 25, 26, 41, 42, 43].

Figure 2.5 shows an experimental setup of adaptive femtosecond coherent control. A femtosec-

ond pulse shaper, a SLM for this case, generates a phase and amplitude profile of a pulse. After the

programmed pulse interacts with the target system, the reaction of the system is given to a learning
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algorithm as a feedback signal. Then, the pulse profile is re-prepared as a result of the feedback. And this

sequence is iteratively performed to find the optimum pulse for the purpose. Because a brute-force full

scan of the the complete control parameter space is an enormous time consuming process, the learning

algorithm helps to reduce the scanning time significantly with directional change of parameters. The

optimum pulse found in the iterative process may not be the ultimately optimal, but often an acceptable

best solution in a local optimum.

Figure 2.6 shows (a) the drawing of the MLCT chromophore [Ru(dpb)3]
2+, (b) the absorption

and emission spectra of [Ru(dpb)3](PF6)2 [44], and (c) the schematic of the energy level structure of

[Ru(dpb)3](PF6)2, where MLCT refers metal-to-ligand charge-transfer. Gerber and his co-workers per-

formed adaptive coherent control on this system only by changing the phases of a femtosecond pulse

with a 128-pixel SLM. The fluorescence from 3MLCT state given at 620 nm, shown in Fig. 2.6(c), was

used as feedback signals which was proportional to the population of 1MLCT band. 1MLCT band of

[Ru(dpb)3]
2+ molecule could not be excited from a single 800 nm photon but, could be from two-photon

excitation process. The central issue of this study was that, in this two-photon transition process, the

excitation probability could be enhanced beyond the intensity maximum pulse, or a FTL pulse, and could

be depressed while increasing the intensity by changing the individual phases of the pulse. Note that, the

intensity of the pulse dominated the excitation in multi-photon transition process in most cases. To test

this, the phase-shaped laser pulses were applied to the [Ru(dpb)3](PF6)2 sample and the fluorescence

was measured at 620nm. Also, the second-harmonic generation (SHG) intensity was measured as an

intensity reference signal.

Figure 2.7 shows the experimental excitation results for the two optimization goals; maximization

(solid circles) and minimization (open circles) of the ratio between the emission and SHG. From these

data, it is clear that the most intense pulse does not satisfy the condition for optimal excitation, but

specific pulse shapes are more adequate for the two-photon excitation of the molecular systems.

2.3 Analytic coherent control

Now, we will study about previous researches on quantum control of transition probability in atomic

systems based on analytic analysis. Analytic approach of quantum control can be mainly classified to the

frequency domain approach proposed by Brumer and Shapiro and the time domain approach proposed

by Rice and Tannor.

In this chapter, we focus on the resonant two photon absorption case studied by Silberberg et al.

for the frequency domain approach [14] in Sec. 2.3.1, and the coherent transient phenomena studied by

Girard et al. for the time domain approach [46] in Sec. 2.3.2.

2.3.1 Resonant two-photon transition

In this section, we will consider a resonant two-photon absorption in an atomic system, which is

sensitively changed with the shape of femtosecond pulses in weak-field regime. It was known that, in

nonresonant two-photon (or multi-photon) transition cases, the Fourier-transform limited (FTL) pulse,

which has the strongest peak intensity, is the most efficient pulse in weak-field regime [27]. However, in

resonant two-photon transition case, this assumption does not hold and transition efficiency above the

limit of FTL pulse is achievable.

In a ladder system, which comprises a ground state |g〉, an intermediate state |n〉, and an excited
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Figure 2.5: Experimental setup of adaptive coherent control. A SLM or femtosecond pulse shaper is

used to shape the pulse with a help of feedback signal and closed-loop learning algorithm. The learning

algorithm iteratively finds optimum pulses for different types of experiments.
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Figure 2.6: (a) Drawing of the MLCT chromophore [Ru(dpb)3]
2+. (b) Normalized absorption (dashed

line) and emission spectra (solid line) collected for the molecule dissolved in methanol at 298 K. (c)

The schematic of the control methodology where multiphoton absorption of a shaped 800 nm laser pulse

excites the 1MLCT band, and emission from the lower energy 3MLCT state accessed via nonradiative

relaxation is used as a feedback signal. [43]

Figure 2.7: Experimental results of adaptive control on [Ru(dpb)3](PF6)2. Solid circles are for maxi-

mization and open circles are for minimization of the ratio excitation/SHG. [43]

– 13 –



state |f〉, as shown in Fig. 2.8 for rubidium atom, the transition probability amplitude from |g〉 to |f〉
via |n〉 can be obtained from the second order time dependent perturbation theory as

af (t) =− 1

~2

∑
µfnµng

∫ t

−∞

∫ t1

−∞
E(t1)E(t2) exp(iωfnt1)exp(iωngt2)dt2dt1, (2.7)

where µfn and µng are the dipole moment matrix elements, ωij the resonance frequencies, ωij ≡ (Ei −
Ej)/~. In a resonant ladder system, i.e., a intermediate state |n〉 is within the spectral range of the

femtosecond pulse, and ωng, ωfn > 0, Eq. (2.7) can be approximated to the following form given by

c
(2)
ni = i

µfiµig

~2

[
iπE(ωig)E(ωfi) + ℘

∫
dω
E(ω)E(ωfg − ω)

ωig − ω

]
, (2.8)

where |i〉 is the resonant intermediate state, ℘ is the principal value of Cauchy, and ωig, ωfg−ωig = ωfi are

the resonance frequencies of the transitions. Equation (2.8) shows different behavior from the nonresonat

case in [27]. Equation (2.8) can be distinguished into two parts: the first term relevant to resonant part

depends only on the spectral components of the pulse at the resonance frequencies, and the second term

of nonresonant part integrates over the contributions of all other spectral components of the pulse. In

the case of the FTL pulse, the nonresonant part destructively interferes around at the point ωig since the

integration excesses over both negative and positive contributions. Therefore, a transform-limited pulse

is not optimal pulse of two-photon transition for the resonant case. Simply, blocking all red (or blue)

detuned spectral components around ωig can enhance the transition. Also, a larger enhancement can be

achieved by applying a phase step function π/2 at ωig making constructive interference that inverts the

sign of E(ω)E(ωfg − ω) about that point.

To demonstrate the enhancement of the first guess, Silberberg and co-workers placed an adjustable

slit at the Fourier plane of 4f configuration, which was described in Sec. 2.1.1, to block spectral com-

ponents symmetrically around ωfg/2 as shown in Fig. 2.9(a). Fluorescence signal was measured as a

function of ”cutoff wavelengths”. ωfg/2 is the two-photon resonance frequency as well as center fre-

quency of the laser. The experimental and calculation results are shown in Fig. 2.9(b). As expected, the

maximum enhancement was achieved when the cutoff frequency is approached, from long wavelength to

short wavelength, to the one-photon resonant frequency ωig, reaching a factor of 2, while the power of the

pulse at that point was reduced by 71%. As the blocking slit passing by the position corresponds to ωig,

the fluorescence signal drops rapidly because the pulse through the slit becomes small and completely

disappears at 778 nm, ωfg/2. At the point where slit approaches at ωig position, the calculated temporal

profile is illustrated in Fig. 2.9(c) with a comparison with a FTL pulse. The values are normalized to

the peak intensity of the FTL pulse. The peak intensity of blocked pulse was reduced a factor of 38 but,

the two-photon transition was doubled.

2.3.2 Coherent transients

Coherent transient (CT) phenomena refers that the population fluctuation of an excited state during

the interaction of a system with a highly linear chirped femtosecond pulse. It was directly shown

experimentally for the first time by Girard et al. [45] and studied extensively [46, 47, 48]. Coherent

transient occurs due to the interference between resonant and nonresonant excitation.

In weak field regime, the transition probability amplitude between the ground state |g〉 and the

excited state |e〉 can be calculated using the Schrodinger equation within the first order perturbation
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Figure 2.8: Energy level diagram of a resonant TPA in Rb. The frequencies of the 5S-5P (ωig) and 5P-

5D (ωfi) resonant transitions correspond to 780.2 nm and 776.0 nm, respectively. The pulse spectrum

is centered on the two-photon transition frequency (ωfg/2) at 778.1 nm, with a bandwidth of ∆ω =

18nm (FWHM). The excited atoms spontaneously decay to the ground level through the 6P, emitting a

fluorescence signal at ωflr (≈420 nm) [14].
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Figure 2.9: Experimental and calculated results performed on resonant two-photon transition in Rb

atom. (a) Schematic expression of tested scheme: spectral components of the pulse was blocked symmet-

rically around ωfg/2 by an adjustable slit. (b) The transmitted power of the pulse (diamonds) and the

experimental results of detected fluorescence (circles) and calculated transition(line). The two-photon

transition doubled when the cutoff wavelengths approached the resonant transition wavelengths. (c) Cal-

culated temporal intensities of the optimal shaped pulse (solid curve) and the transform-limited pulse

(dashed lines), normalized to peak intensity of the transform-limited pulse. . [14]
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theory written as

ceg(t) ∝
∫ t

−∞
exp

(
−2ln2t′2

τ2c

)
exp

(
−i (t

′ − to)
2 − t2o

2φ′′

)
, (2.9)

where τc is the pulse width of the chirped pulse, φ′′ the linear chirp coefficient, and to = (ωeg − ω)φ′′

the time when the laser sweeping frequency goes through the atomic resonance [45]. Also, the above

equation can be derived to frequency domain calculation given as [47, 46]

ce(t) =
µeg

~

[
1

2
A(ωeg)e

iφ(ωeg) +
i

2π
℘

∫ +∞

−∞
dω
A(ω)e−i[(ω−ωeg)t−φ(ω)]

ω − ωeg

]
, (2.10)

where ωeg is the transition frequency, µeg the dipole moment matrix element, |g〉 and |e〉 the ground

and excited states, respectively, and A(ω) and φ(ω) the amplitude and phase of the pump electric field

spectrum. ℘ is the principal Cauchy value. Here again, the first term is resonant part and the second

term is nonresonant part. The CT phenomena can be observed clearly during the time remnant of the

pulse after the resonant frequency component interacts. It is because of the interference between the

excitation and the following nonresonant transitions, when the femtosecond pulse is heavily chirped.

Girard and his co-workers used atomic rubidium for this study as shown in Fig. 2.10. The 5S1/2 −
5P1/2) transition at 794.7 nm is resonantly excited with a chirped shaped pulse having bandwidth of ∼8

nm. Note that, the resonance wavelength of the transition to 5P3/2 state at 780 nm is not included in

the pulse spectrum. The excited state population during the interaction with the pulse is observed by

the other highly detuned pulse at 607 nm exciting the 5P1/2 state to higher levels extends from 6D to

10S.

Interesting part of this study is that, by slicing the section of the pulse in time domain corresponds

to the first downward oscillation, the transition probability enhanced as shown in Fig. 2.11(a). When the

pulse centered at 794.7 nm has linear chirp value of φ′′ = −4.9× 105fs2, the first downward oscillation

occurs at about 2 ps. Therefore, if we slice the pulse at the section during the first decreasing part of

the CT, the final population can be enhanced. The slicing the pulse in time with the order of ∼ 100 fs is

achieved by calculating the pulse in frequency domain and pulse shaped accordingly. As expected, the

experimental results show the same results with the calculation as shown in Fig. 2.11 (b). Note that,

the hole-shaped pulse in time domain to enhance the transition has a bigger spectral amplitude at the

resonance frequency ωeg.
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Figure 2.10: Excitation scheme of rubidium. τ is the pump-probe delay. [46]
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(a)

(b)

Figure 2.11: (a) Calculation results of excited transient population with unshaped (in amplitude) chirped

pump pulse (black line) and with hole-shaped (in amplitude) in time domain chirped pulse (solid gray

line) as the inset. The amount of chirp is same for both pulses. (b) Experimental results of excited

state population (dots) and numerical calculation (line) with the pulse hole-shaped chirped pulse, with

φ′′ = −4.9× 105fs2. [46]
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Chapter 3. 2D Fourier transform optical

spectroscopy

Today, the most important interests in Chemicophysics and Biophysics have been focused to the

structural change of complex molecular systems during the chemical reactions or interactions with light

and how the dynamics are related to important chemical and biological processes. Two-dimensional

nuclear magnetic resonance(2D-NMR) technique simply comprises a series of one-dimensional NMR

experiments, providing elevated information about molecules for the analysis of molcular structure.

Despite the admirable capabilities, 2D-NMR is primarily limited to relatively small molecular systems,

and their structural evolution which occurs in subpicoseconds time scale is too fast for 2D-NMR to

trace. Alternatively, 2D Fourier transform optical spectroscopy (2D-FTOS), an optical extension of 2D-

NMR, has been recently developed to probe femtosecond electronic and vibrational dynamics. It can be

applied to molecules as large as small proteins and provides ultrafast time resolution which is crucial for

understanding reaction dynamics and energy transfer processes [22].

Figure 3.1(a) shows an energy diagram of a V -type three-level system which comprises a ground

state |g〉, and two adjacent excited states |a〉, and |b〉. Let us consider a case that the system interacts

with a broadband laser pulse whose laser frequency, ω0, is near resonant to the excitation of |a〉 and

|b〉. Then, for example, the population of |b〉 being transferred from |a〉 is coherently mixed with, and

is difficult to separate from, the dominant one-photon transitions from the ground state. Therefore, the

inter-excited state transition is difficult to measure. This difficulty of distinguishing the inter-excited

state transition from the others is overcome by using quantum coherence of the system in 2D-FTOS. A

2D spectrum, which can be obtained in 2D-FTOS, represents a number of peaks as shown in Fig. 3.1(b).

The peaks are inherent to their own transition pathways, and thereby the inter-excited state transition,

or coupling, can be obtained from the 2D spectrum.

In this chapter, we discuss about 2D-FTOS. In Sec. 3.1, the notations used throughout the thesis

for electric field is defined. In Sec. 3.2, the equation of transition probability amplitudes for a V -type

system is derived in weak field interaction regime, where we use the perturbation theory. In Sec. 3.3, we

discuss further about the principle of 2D-FTOS.

3.1 Electric field notation

We start by defining the electric field in frequency domain as

E(ω) = A(ω) exp(iφ(ω)), (3.1)

where A(ω) is the spectral amplitude, and φ(ω) the spectral phase. For the case of gaussian pulse

spectrally centered at ω0, the spectral amplitude is given as A(ω) = E0 exp
[
− (ω−ω0)

2

∆ω2

]
, where E0 is the

peak amplitude, ∆ω the spectral bandwidth. φ(ω) can be generally defined as a Taylor series expansion

given by

φ(ω) = a1(ω − ω0) +
a2
2!
(ω − ω0)

2 +
a3
3!
(ω − ω0)

3 + · · · . (3.2)
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Figure 3.1: (a) Energy diagram of a V -type three-level system with one ground state |g〉 and two excited

states |a〉 and |b〉. The transition energies of |a〉 and |b〉 from |g〉 are ~ωa and ~ωb, respectively. The

transition between |a〉 and |b〉 via |g〉 is presented by a red line and transition between |b〉 and |g〉 by

a blue line. (b) 2D Fourier transformed spectra S(ω1, ω2). The peak positions contain the transition

pathways, and, for example, the transition |a〉 → |b〉 is presented by the red circle, and the transition

|g〉 → |b〉 by the blue circle.

For the negative frequency regime, we use the relation E(−ω) = E∗(ω), which is simply derived from

the condition that E(t) is real for all t, or

√
2πE(t) =

∫ ∞

−∞
dωE(ω)e−iωt

=

∫ 0

−∞
dωE(ω)e−iωt +

∫ ∞

0

dωE(ω)e−iωt

=

∫ ∞

0

dωE(−ω)eiωt +

∫ ∞

0

dωE(ω)e−iωt

=

∫ ∞

0

dω
(
E(−ω)eiωt + E(ω)e−iωt

)
, (3.3)

Im
[
E(−ω)eiωt

]
= −Im

[
E(ω)e−iωt

]

→ E(−ω) = E∗(ω). (3.4)

Here, we assign E(t) as the inverse Fourier transform of E(ω), and the last equation comes from that

the imaginary part of the integrand must be zero for any E(t). Hence, the negative frequency electric

field can be defined as

E(ω) = A(ω) exp(−iφ(ω)). (3.5)

Note that the negative frequency electric field is defined only for the negative frequency region, i.e.,

ω < 0, ω in Eq. (3.5) is positive.

Now, we derive the electric field in time domain for both in the positive and negative frequency

regions. First, we start with the electric field of a gaussian pulse having the spectral components all
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in phase, i.e., φ(ω) = 0. As defined in Eq. (3.3), we use the relation that E(t) is the inverse Fourier

transform of E(ω) for the positive spectral region. Then, the electric field is written as

E(t) =
1√
2π

∫ ∞

−∞
dωE(ω) exp(−iωt)

=
E0√
2π

∫ ∞

−∞
dω exp(− (ω − ω0)

2

∆ω2 ) exp(−iωt)

=
E0√
2π
e−iω0t

∫ ∞

−∞
dω exp(− ω2

∆ω2 − iωt)

=
E0√
2π

∆ω
√
π exp(−iω0t) exp(−

∆ω2t2

4
)

=
E0∆ω√

2
exp(− t2

τ20
− iω0t), (3.6)

where τ0 = 2/∆ω is the pulse width. Eq. (3.6) shows that the electric field spreads in time with a pulse

width τ0 centered at zero and oscillates with a laser frequency ω0. Likewise, the negative component can

be written as

E−(t) =
1√
2π

∫ ∞

−∞
dωE∗(ω) exp(iωt)

=
E0∆ω√

2
exp(− t2

τ20
+ iω0t). (3.7)

Note that, E−(t) is Fourier transform of E∗(ω) for negative region.

Let us consider an electric field having a nonzero phase function. First, the pulse having the simplest

phase function, which is the delay term, or a1 of Taylor expansion coefficients, time domain electric field

for positive frequency case is given by

E(t) =
1√
2π

∫ ∞

−∞
dωE(ω) exp(−iωt)

=
E0√
2π

∫ ∞

−∞
dω exp(− (ω − ω0)

2

∆ω2 ) exp[ia1(ω − ω0)] exp(−iωt)

=
E0√
2π
e−iω0t

∫ ∞

−∞
dω exp[− ω2

∆ω2 − iω(t− a1)]

=
E0∆ω√

2
exp(− (t− a1)

2

τ20
− iω0t). (3.8)

The pulse in Eq. (3.8) is centered at t = a1.

Another useful example of the phase function is the linear chirp (a2). For this case, time domain

electric field is

E(t) =
1√
2π

∫ ∞

−∞
dωE(ω) exp(−iωt)

=
E0√
2π

∫ ∞

−∞
dω exp(− (ω − ω0)

2

∆ω2 ) exp[i
a2
2
(ω − ω0)

2] exp(−iωt)

=
E0√
2π
e−iω0t

∫ ∞

−∞
dω exp[− (1− ia2

2 ∆ω2)ω2

∆ω2 − iωt]

=
E0√
2π
e−iω0t

∆ω
√
π√

1− ia2

2 ∆ω2
exp[− ∆ω2t2

4(1− ia2

2 ∆ω2)
]

=
E0∆ω√

2

√
τ0
τ
exp[

i

2
tan−1(

2a2
τ20

)] exp[− t2

τ20
− i(ω0t+

2a2
τ40 + 4a22

t2)], (3.9)
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where τ = τ0
√
1 + 4a22/τ40 is the chirped pulse width.

In the same way, the electric field in the negative frequency region can be written as following: for

φ(ω) = a1(ω − ω0),

E(t) =
E0∆ω√

2
exp(− (t− a1)

2

τ20
+ iω0t), (3.10)

and for φ(ω) = a2

2 (ω − ω0)
2,

E(t) =
E0∆ω√

2

√
τ0
τ

exp[− i

2
tan−1(

2a2
τ20

)] exp[− t2

τ20
+ i(ω0t+

2a2
τ40 + 4a22

t2)]. (3.11)

3.2 Inter-excited state transitions in a V -type system

In this section, we derive the transition probability amplitudes for a V -type system. The system

under consideration comprises one ground state |g〉 and two adjacent excited states |a〉 and |b〉 as shown
in Fig. 3.1(a). Transitions of |g〉 ↔ |a〉 and |g〉 ↔ |b〉 are allowed and the direct transitions between |a〉
and |b〉 are forbidden. In this case, the hamiltonian of the system is

H(t) =H0 + V (t)

=




0 0 0

0 ~ωa 0

0 0 ~ωb




+




0 −µgaE(t) −µgbE(t)

−µagE(t) 0 0

−µbgE(t) 0 0


 , (3.12)

where H0 is time-independent bare hamiltonian of the quantum system,
∑

nEn|n〉〈n|, E(t) the electric

field interacting with the quantum system, µga and µgb the transition dipole moments between the

ground state |g〉 and the excited states |a〉 and |b〉, respectively. Note that, µng is equal to µgn (n=a or

b) and µba is zero.

The time evolution of the wavefunction |ψ〉 of the quantum system is given by the well known

Schrödinger equation as

i~
∂

∂t
|ψ〉 = H |ψ〉. (3.13)

The transition probability amplitudes is obtained using solely the interaction between the quantum

system and the electric field. We use the interaction picture as follows. The wavefunction defined in the

interaction picture, |ψ(t)〉I , is
|ψ(t)〉I = eiH0t/~|ψ(t)〉S , (3.14)

and the interaction picture Hamiltonian, VI(t), is

VI(t) = eiH0t/~V (t)e−iH0t/~. (3.15)

Then, the time evolution of wavefunction |ψ〉 in the interaction picture (i.e. Schrödinger equation in the
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interaction picture) can be written as

i~
∂

∂t
|ψ(t)〉I = i~

∂

∂t
(eiH0t/~|ψ(t)〉S)

= −H0e
iH0t/~|ψ(t)〉S + eiH0t/~H |ψ(t)〉S

= −H0e
iH0t/~|ψ(t)〉S + eiH0t/~(H0 + V )|ψ(t)〉S

= eiH0t/~V e−iH0t/~eiH0t/~|ψ(t)〉S
= VI |ψ(t)〉I , (3.16)

where the interaction picture Hamiltonian VI(t) is given by

VI(t) = eiH0t/~V (t)e−iH0t/~

=




0 −µgaE(t)eiωgat −µgbE(t)eiωgbt

−µagE(t)eiωagt 0 0

−µbgE(t)eiωbgt 0 0


 . (3.17)

By integrating the Eq. (3.16), we obtain the transition probability amplitude between two states |i〉
and |n〉 as

cni(t) = 〈n|UI(t, t0)|i〉, (3.18)

where UI is a time evolution operator in the interaction picture given by

UI(t, t0) = 1− i

~

∫ t

t0

VI(t
′)UI(t

′, t0)dt
′

= 1− i

~

∫ t

t0

VI(t
′)[1− i

~

∫ t′

t0

VI(t
′′)UI(t

′′, t0)dt
′′]dt′

= 1− i

~

∫ t

t0

VI(t
′)dt′ + (

−i
~
)2
∫ t

t0

dt′
∫ t′

t0

dt′′VI(t
′)VI(t

′′, t0)dt
′′dt′

+ · · ·+ (
−i
~
)n
∫ t

t0

dt′
∫ t′

t0

dt′′ · · ·
∫ t(n−1)

t0

dt(n)VI(t
′)VI(t

′′)· · ·VI(t(n))

+ · · · . (3.19)

By separating UI by the order of VI , we can expand cni(t) as

c
(0)
ni (t) = δni (3.20)

c
(1)
ni (t) =

−i
~

∫ t

t0

〈n|VI(t′)|i〉dt′

=
−i
~

∫ t

t0

eiωnit
′

Vni(t
′)dt′ (3.21)

c
(2)
ni (t) = (

−i
~
)2Σm

∫ t

t0

dt′
∫ t′

t0

dt′′eiωnmt′Vnm(t′)eiωmit
′′

Vmi(t
′′), (3.22)

where c
(1)
ni (t) is the first order in VI(t), c

(2)
ni (t) the second order in VI(t), and so on. The population of

the state |n〉 that is transferred from the state |i〉 is

P (i→ n) = |c(0)ni + c
(1)
ni + c

(2)
ni + · · · |2. (3.23)

Now, we limit the integration intervals t0 and t as −∞ and∞ respectively, because we want to obtain

the transition probability amplitudes after the interaction is over. The pulse duration is assumed here
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considerably shorter than all lifetimes involved. Then, the first order transition probability amplitude

c
(1)
ni is obtained as

c
(1)
ni =

iµni

~

∫ ∞

−∞
dt1E(t1)e

iwnit

=
iµni

~

√
2πE(ωni) (3.24)

where E(ωni) is the resonance frequency component of the electric field. The second order transition

probability amplitude, c
(2)
ni , can be derived from Eq. (4.6). We consider the case that, for example, |n〉

and |i〉 are the two excited states |b〉 and |a〉. The transition is achieved via the ground state |g〉. In this

case, −ωag and ωbg are the resonance frequencies, respectively. Then, c
(2)
ba is given by

c
(2)
ba (t) = −µbgµga

~2

∫ t

t0

dt′
∫ t′

t0

dt′′eiωbgt
′

E(t′)eiωgat
′′

E(t′′)

= −µbgµga

2π~2

∫ t

t0

dt′
∫ t′

t0

dt′′eiωbgt
′

[∫ ∞

−∞
dω1e

−iω1t
′

E(ω1)

]
e−iωagt

′′

[∫ ∞

−∞
dω2e

iω2t
′′

E∗(ω2)

]
.

(3.25)

Note that, since the first one-photon transition process involved in the t′′ integration is de-excitation, we

use the complex conjugate of the frequency domain electric field and its Fourier transform. Then, c
(2)
ba (t)

becomes

c
(2)
ba (t) = −µbgµga

2π~2

∫ ∞

−∞
dω1E(ω1)

∫ ∞

−∞
dω2E

∗(ω2)

∫ t

t0

dt′ei(ωbg−ω1)t
′

∫ t′

t0

dt′′e−i(ωag−ω2)t
′′

= −µbgµga

2π~2

∫ ∞

−∞
dω1E(ω1)

∫ ∞

−∞
dω2E

∗(ω2)

∫ t

t0

dt′ei(ωbg−ω1)t
′ e−i(ωag−ω2)t

′ − e−i(ωag−ω2)to

−i (ωag − ω2)

= −µbgµga

2π~2

∫ ∞

−∞
dω1E(ω1)

∫ ∞

−∞
dω2E

∗(ω2)

×
[
ei(ωbg−ω1−ωag+ω2)t − ei(ωbg−ω1−ωag+ω2)to

−i (ωag − ω2) i (ωbg − ω1 − ωag + ω2)
− ei(ωbg−ω1)t − ei(ωbg−ω1)to

−i (ωag − ω2) i (ωbg − ω1)
e−i(ωag−ω2)to

]
.

(3.26)

Finally, using the Residue Theorem, c
(2)
ba is arranged as

c
(2)
ba = i

µbgµga

~2

[
iπE∗(ωag)E(ωbg)− ℘

∫
dω
E∗(ω)E(ωba + ω)

ωag − ω

]
, (3.27)

where ℘ is the Cauchy principal value. Further discussion of Eq. (3.27) are provided in Chap. 5 in

comparison with the case of one-photon transition in a two-level system.

3.3 Three pulse coherent control scheme

Common 2D-FTOS experiments are performed with three optical pulses, which are used to interact

with a quantum system. Briefly, each pulse has distinct role as follows: the first pulse (α) can be regarded

as a preparation pulse which starts coherence of the quantum system, the second pulse (β) is a coupling

pulse which transfers the coherence among the excited states, and the third pulse (γ) is a measurement

pulse which measures the evolution trajectory of the wavefunction of the system. Here again, we consider

a V -type system composes |g〉, |a〉, and |b〉. All the other conditions are the same as in the previous

section except that the interacting electric field is now three optical pulses. The first pulse interacts with

the system at time zero, t = 0, and the second and the third pulses at t = τ1 and t = τ1+τ2, respectively.
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The quantum system is initially in the ground state, i.e.,

|ψ(t = 0−)〉 = |g〉. (3.28)

If we assume the interaction between the quantum system and the electric field is in the weak field

regime, µniE(t)
~

≪ 1 for all t, we can neglect the higher order terms of VI . By considering the lowest

order for each transition path, the time evolution operator in the interaction picture for the first pulse

(α) can be written as

UI(α) =




1 α
(1)
ga α

(1)
gb

α
(1)
ag 1 α

(2)
ab

α
(1)
bg α

(2)
ba 1


 . (3.29)

Note that, if the initial and final states are switched, the one-photon transitions are simply the complex

conjugates, i.e., α
(1)
ga = α

(1)∗
ag . However, this relation does not hold for two-photon transitions, α

(2)
ba 6=

α
(2)∗
ab . The wavefunction after the interaction with the first pulse becomes

|ψ(t = 0+)〉 = UI(α)|ψ(t = 0−)〉
= |g〉+ α(1)

ag |a〉+ α
(1)
bg |b〉. (3.30)

During the delay time between the first pulse and the second pulse, 0 < t < τ1, the interaction

hamiltonian is an identity, i.e.,

UI(0 < t < τ1) =




1 0 0

0 1 0

0 0 1


 . (3.31)

So, the wavefunction is unchanged. The delay is appended to the evolution operator of the second pulse

as relative phase shift corresponding to the energy of each state. To separate the effect of the delay from

the transition probability amplitude, we change the variable t̃ = t′ − τ1, so that the center of second

pulse is centered at t̃ = 0. Then, the one-photon transition probability amplitudes becomes

c(1)ng =
−i
~

∫ ∞

−∞
eiωngt

′

Vng(t
′)dt′

=
−i
~

∫ ∞

−∞
eiωng t̃eiωngτ1Vng(t̃)e

−iω0τ1dt̃

= ei(ωng−ω0)τ1β(1)
ng , (3.32)

and for the two-photon transition,

c
(2)
ni = (

−i
~
)2
∫ ∞

−∞
dt̃

∫ t̃

−∞
dt̂eiωng t̃eiωngτ1Vng(t̃)e

−iω0τ1eiωgi t̂eiωgiτ1Vmi(t̂)e
iω0τ1

= ei[(ωng−ω0)τ1−(ωig−ω0)τ1]β
(2)
ni , (3.33)

where the rotating wave approximation is used. In this way, if the first pulse and the second pulse are

the same except for the delay, then the transition probability amplitude in both cases are the same, i.e.,

αni = βni. Then, the interaction hamiltonian for the second pulse is given by

UI(β) =




1 e−i∆ωagτ1β
(1)∗
ag e−i∆ωbgτ1β

(1)∗
bg

ei∆ωagτ1β
(1)
ag 1 ei(∆ωag−∆ωbg)τ1β

(2)
ab

ei∆ωbgτ1β
(1)
bg e−i(∆ωag−∆ωbg)τ1β

(2)
ba 1


 , (3.34)
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coeff. τ1 τ2

α
(1)
bg 0 0

β
(1)
bg ∆ωbg 0

γ
(1)
bg ∆ωbg ∆ωbg

α
(1)
ag β

(2)
ba ∆ωbg −∆ωag 0

α
(1)
ag γ

(2)
ba ∆ωbg −∆ωag ∆ωbg −∆ωag

β
(1)
ag γ

(2)
ba ∆ωbg ∆ωbg −∆ωag

α
(1)
ag β

(1)∗
ag γ

(1)
bg ∆ωbg −∆ωag ∆ωbg

α
(1)
bg β

(1)∗
bg γ

(1)
bg 0 ∆ωbg

α
(1)
bg β

(2)
ab γ

(2)
ba 0 ∆ωbg −∆ωag

Table 3.1: Probability amplitude coefficients of |b〉 are sorted in accordance with the phase dependence

on inter-pulse delays. |b〉 in Eq. (3.37) can be retrieved from this table: for example, the coefficient of

fourth line, α
(1)
ag β

(2)
ba , times phase dependence on τ1, e

(∆ωbg−∆ωag)τ1 , times phase dependence on τ2, unity,

equals α
(1)
ag β

(2)
ba e

i(∆ωbg−∆ωag)τ1 .

where ∆ωag = ωag − ω0. And the wavefunction is given by

|ψ(t=τ1+)〉 =




1 + α
(1)
ag β

(1)∗
ag e−i∆ωagτ1 + α

(1)
bg β

(1)∗
bg e−i∆ωbgτ1

β
(1)
ag ei∆ωagτ1 + α

(1)
ag + α

(1)
bg β

(2)
ab e

i(∆ωag−∆ωbg)τ1

β
(1)
bg e

i∆ωbgτ1 + α
(1)
ag β

(2)
ba e

−i(∆ωag−∆ωbg)τ1 + α
(1)
bg


 . (3.35)

During the time delay between the second and the third pulses, τ1 < t < τ1 + τ2, the wavefunction

remains unchanged. The interaction hamiltonian for the third pulse is given by

UI(γ) =




1 e−i∆ωag(τ1+τ2)γ
(1)∗
ag e−i∆ωbg(τ1+τ2)γ

(1)∗
bg

ei∆ωag(τ1+τ2)γ
(1)
ag 1 ei(∆ωag−∆ωbg)(τ1+τ2)γ

(2)
ab

ei∆ωbg(τ1+τ2)γ
(1)
bg e−i(∆ωag−∆ωbg)(τ1+τ2)γ

(2)
ba 1


 . (3.36)

The final wavefunction after all the interactions with three pulses is written as follows:

|ψ(t=τ1+τ2+)〉

=




|g〉
|a〉

|b〉 = γ
(1)
bg e

i∆ωbg(τ1+τ2) + α
(1)
ag β

(1)∗
ag γ

(1)
bg e

i(∆ωbg−∆ωag)τ1+i∆ωbgτ2 + α
(1)
bg β

(1)∗
bg γ

(1)
bg e

i∆ωbgτ2

+β
(1)
ag γ

(2)
ba e

i∆ωbgτ1+i(∆ωbg−∆ωag)τ2 + α
(1)
ag γ

(2)
ba e

i(∆ωbg−∆ωag)(τ1+τ2) + α
(1)
bg β

(2)
ab γ

(2)
ba e

i(∆ωbg−∆ωag)τ2

+β
(1)
bg e

i∆ωbgτ1 + α
(1)
ag β

(2)
ba e

i(∆ωbg−∆ωag)τ1 + α
(1)
bg




.

(3.37)

We omit the notation |g〉 and |a〉, since we can explain the entire physical meaning of the three pulse in-

teraction from |b〉 without them. The coefficients of probability amplitude of |b〉 are sorted in TABLE 3.1

according to the frequency dependence on τ1 and τ2.

The final population, or the probability, Pb = |〈b|ψ〉|2 is given by (up to the lowest order of each τ1

and τ2 dependence)

Pb = (α
(2)
bg

2
+ β

(2)
bg

2
+ γ

(2)
bg

2
+ . . . ) + · · ·+ α(1)∗

ag β
(2)∗
ba γ

(1)
bg e

i(∆ωagτ1+∆ωbgτ2) + . . . (3.38)
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where, for example, the term α
(1)∗
ag β

(2)∗
ba γ

(1)
bg exp(i∆ωagτ1 + i∆ωbgτ2) denotes the quantum interference

between the two transitions |g〉 → |a〉 → |b〉 → and |g〉 → |b〉. The coefficient α
(1)∗
ag β

(2)∗
ba γ

(1)
bg is retrieved

from |〈b|ψ〉|2, as the amplitude and phase of the temporally modulated component with the function

exp(i∆ωagτ1 + i∆ωbgτ2). The modulations exp(i∆ωagτ1) and exp(i∆ωbgτ2) are due to the phase evolu-

tions of the atom, respectively, in state |a〉 during τ1 and in state |b〉 during τ2. The 2D Fourier-transform

spectrum is then defined as

S(ω1, ω2) =

∫ ∫
Pb(τ1, τ2)e

−i(ω1τ1+ω2τ2)dτ1dτ2, (3.39)

which has 49 peaks including a zero frequency peak. The coefficients of the spectral peaks of S(ω1, ω2) of

the two-dimensional plane are listed in TABLE 3.2 and TABLE 3.3. Aside from the constant α
(1)∗
ag γ

(1)
bg ,

the inter-excited state transition probability amplitude β
(2)∗
ba is then retrieved from the peak located at

(ω1, ω2) = (∆ωag,∆ωbg). As a result, the three-pulse coherent control scheme devised for 2D Fourier-

transform spectroscopy can be used to measure the two-photon inter-excited states transition coefficients.
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Figure 3.2: Peaks of 2D Fourier transform plane of |〈b|ψ〉|2 state population coefficients (left part).

Row and column are Fourier transform of τ1 and τ2 respectively, and categorized with the coefficients

of τ1 and τ2. This table directly map the dependence of peak values of 2D-FT spectra on the three

pulse transitions. For example, the peak at (∆ωag,∆ωbg) represents the quantum interference between

|g〉 → |a〉 → |b〉 → and |g〉 → |b〉 transitions. Note that, (n, m) coefficient, where n is row index and m

is column index, is complex conjugate of (8-n, 8-m) coefficient.
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Figure 3.3: Peaks of 2D Fourier transform plane of |〈b|ψ〉|2 state population coefficients (right part).

Row and column are Fourier transform of τ1 and τ2 respectively, and categorized with the coefficients

of τ1 and τ2. This table directly map the dependence of peak values of 2D-FT spectra on the three

pulse transitions. For example, the peak at (∆ωag,∆ωbg) represents the quantum interference between

|g〉 → |a〉 → |b〉 → and |g〉 → |b〉 transitions. Note that, (n, m) coefficient, where n is row index and m

is column index, is complex conjugate of (8-n, 8-m) coefficient.
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Chapter 4. 2D Fourier transform coherent control

spectroscopy (2D-FTCCS)

Quantum mechanical control of matters, known as quantum control or coherent control, utilizes

programmed light forms, and has become one of the general scientific subjects of extreme interest because

of its unprecedented control capability over the dynamics of atoms and molecules as discussed in Chap. 2.

However, not many analytical solutions are known despite the great efforts to describe the shaped-pulse

control of transition probabilities even in simple atomic systems. Moreover, these previous researches

are restricted to the transitions from a ground state to excited states, mainly due to the limitation

of detection techniques. In ladder-type systems, for example, the transition probability can be easily

measured by detecting the target excited-state fluorescence. On the other hand, in a V -type system,

especially if we consider the transition from one of the excited states to the other, the inter-excited state

transition is not straightforward to measure and thus difficult to control. This difficulty in the V -type

system can be resolved in 2D-FTOS as discussed in Chap. 3.

Now, we discuss about the coherent control capability in 2D-FTOS, or 2D Fourier transform coherent

control spectroscopy (2D-FTCCS) [49]. In this chapter, we give the experimental demonstration of

coherent control of inter-excited states transitions in rubidium atom. To do this, we adopt the three-

pulse coherent control scheme in 2D-FTOS setting [60]: the target transition probability can be retrieved

from the distinct 2D Fourier-transform spectral peaks that are inherent to their transition pathways, and

thereby the controlled transition probability amplitude is obtained.

This chapter contains 3 sections. The experimental setup is given in Sec. 4.1. In Sec. 4.2, we

discuss the advantage of pulse-shaping of the first pulse: for example, spectral hole shaping is used to

prepare special initial wave function of the quantum system. In Sec. 4.3, we represent two experiments

of coherent control of inter-excited state transitions: one is the selective turn on and off of the 5P1/2-

5P3/2 transition of atomic rubidium (Rb), and the other is the quantum interference engineering which

utilizes both amplitude- and phase-shaping of the second pulse. The experimental demonstrations in

this chapter are focused on effective detecting of the directional inter-excited state transitions, |a〉 → |b〉.

4.1 Experimental description

For the experimental demonstration of 2D-FTCCS, we have used the three-pulse coherent control

scheme described in Chap. 3. Briefly to summarize, we use three optical pulses among which the second

pulse (β) is the control pulse shaped to induce two-photon inter-excited state transition from |a〉 to |b〉.
(See Fig. 4.1(a)). Prior to the second pulse, the atoms need to be excited to |a〉 by the first pulse (α).

In addition, the third pulse (γ) induces the quantum interference which is used to measure c
(2)
ba . After

the all three interactions, the excited state population Pb(τ1, τ2) is measured as a function of two time

intervals τ1 and τ2. Then, from the 2D Fourier-transform spectrum of Pb(τ1, τ2), that is S(ω1, ω2), the

spectral peak located at (ω1, ω2) = (ωag − ω0, ωbg − ω0) reveals the controlled transition probability

amplitude c
(2)
ba (a2, a3).

In the experiment, we used the lowest three energy levels of Rb (See Fig. 4.1(b)) at room temperature
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273 K. The energy states |a〉=5P1/2 and |b〉=5P3/2 were resonantly excited from the common ground

state |g〉=5S1/2, so these three energy states comprise an ideally coupled V -type system. D1 transition

has resonant angular frequency at ωag = 2371.7 rad. THz, which corresponds to wavelength of λag =

794.76 nm, the dipole moment µag = 2.537∗10−29 Cm, and the decay rate (Natural Line Width(FWHM))

Γag = 5.7468 MHz. D2 transition has ωbg = 2416.5 rad. THz (λbg = 780.02 nm), the dipole moment

µbg = 3.584∗10−29 Cm, and the decay rate Γbg = 6.0659 MHz. The boiling temperature of Rb is 688◦ C.

At room temperature, Rb is in solid phase and the vapor pressure is Pv = 2.25−7 Torr from the vapor-

pressure model given by [88]. The corresponding density was calculated by ρ = P
kBT = 7.42× 109/cm3.

The mean free path can be calculated by l = kBT√
2πd2P

where d is diameter of the gas particles. The

Van der Waals radius of Rubidium is 303 pm, and the mean free path is 82.6 m. The most probable

speed is 236.73 m/s. The corresponding collision coherence time is 349 ms. 87Rb is not a stable isotope

of rubidium, decaying to β− +87 Sr with a total disintegration energy of 0.283 MeV [89], but has an

extremely slow decay rate: the nuclear life time of rubidium is 4.88× 1010yr. Thus, 87Rb is effectively

stable. Therefore, we can assume 87Rb as in coherent state for sub-ps time scale under considered.

The experimental setup is shown in Fig. 4.1(c). We used a homemade Ti:Sapphire laser amplifier

system producing 35 fs pulses in Fourier transform-limited (FTL) condition, with a pulse energy of

600 µJ at a repetition rate of 1 kHz delivered in a beam with 3 mm diameter. A prism-dispersion-

compensated Ti:Sapphire oscillator delivered sub 10 fs pulses of about 3 nJ at a 100 MHz repetition

rate. Then, it was stretched by a grating pair and frequency down-converted to 1 kHz by a Pockels

cell. Down-converted pulses were directed to a eight-path amplifier pumped with 15 mJ of energy

from a diode-pumped frequency-doubled Nd:YLF laser. The amplified pulses were pulse-shaped with

an actively controlled acousto-optic programmable dispersive filter (AOPDF) and compressed with a

grating pair. The AOPDF generated independently-shaped three pulse sequence from each pulse of 1

kHz pulse train. Inter-pulse delays τ1 and τ2, the time interval between the first and the second pulses,

and between the second and third pulses, respectively, were varied from zero to 1638 fs with 26 fs steps

to perform 2D-FTOS. The wavelength of each pulses was centered at 800 nm with bandwidth of 26 nm

(FWHM) which covered both D1 and D2 transitions of Rb. After the three-pulse generation, each pulse

had energy of 4 µJ. Therefore, the maximum intensity, Io, of one pulse is Io = 2.28 × 108W/cm2, and

Eo = 1.75 × 107 V/m. After the three pulses were applied, the spectrally filtered (3 nm bandwidth at

780nm) fluorescence S(τ1, τ2) was recorded using a photomultiplier tube. The fluorescence were collected

in two-lens imaging geometry to acquire the signal from the stabilized intensity region of the electric

field and to eliminate the undesired scattered photons from the input pulses.

The three pulses were shaped as follows. The first pulse was hole-shaped at 780 nm corresponds

to the D2 transition of Rb to excite only the 5P3/2 state without the 5P1/2 state. The pulse-shaping

parameters for the second pulse, the control pulse of the inter-excited state transition, are chosen depend-

ing on specific coherent control experiments. There are three kinds of experiments: coherent transient

mimicking, control of transition order, and quantum interference engineering. For the first experiment,

the second pulse was phase-shaped in terms of linear chirp, a2, and quadratic chirp, a3. a2 and a3 of the

second pulse are varied from −3000 fs2 to 3000 fs2 with a 500 fs2 step and from -50000 fs3 to 70000 fs3

with a 20000 fs3 step. In this experiment, the number of total waveforms including the inter-pulse delays

was 372,736. The coherent transient mimicking experiment is illustrated in Sec. 5.3 in detail. The second

experiment demonstrates the ability of switching the coupling between the excited states. For this, the

second pulse was linearly chirped in spectral domain as E = A(ω) exp[ia2

2 (ω−ω0)
2] and the linear chirp

coefficient a2 was varied in the range of [-3, 3]× 103 fs2 with a 500 fs2 step. By changing the sign of the
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Figure 4.1: (a) Schematic representation of the experimental setup. (b) Pulse shaping scheme. The first

pulse had a spectral hole around D2 transition and the second pulse was pulse-shaped in various methods

correspond to experimental purposes. The shaped pulse sequence wwas applied to gaseous Rb and the

spectrally filtered fluorescence signal was detected with a PMT. [49]
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linear chirp, the time order of D1 and D2 transitions was controlled because the photon energy of the

pulse was linearly sorted in time depending on the value of the linear chirp. Detailed descriptions are

given in Sec. 5.2. The final experiment aims to demonstrate the quantum interference engineering in

a V -type system. The second pulse was either amplitude-shaped with a low-pass filter to eliminate the

destructive interference, or phase-shaped by altering the phase of the spectral region [ωag, ωbg] to make

constructive interference. This experiment is described in Sec. 5.3. The third pulse is maintained as a

FTL pulse.

4.2 Controlled preparation of quantum systems

Foremost, we consider the first pulse in 2D-FTOS, which prepares the coherence of the quantum

system. In the experiment, the first pulse, α, was shaped to have a spectral hole around the D2 transition

at 780.0 nm. By doing so, |g〉 → |b〉 transition is not initiated, which reduces the number of unused

spectral peaks of S(ω1, ω2). The other pulses were unchanged. After the three pulses were applied to Rb,

the fluorescence spectrally filtered at 780 nm (3 nm bandwidth) was recorded using a photomultiplier

tube.

Figures 4.2 (a) and (b) show a typical 2D-FTOS measurement, without a hole in the first pulse, of

Pa(τ1, τ2)+Pb(τ1, τ2) and its Fourier spectrum S(ω1, ω2) respectively. The first and second pulses excited

the ground state atom to first |a〉 and then to |b〉, i.e. |g〉 → |a〉 → |b〉. This transition was coherently

mixed with the third pulse excitation |g〉 → |b〉. The quantum interference of these two transition paths

was measured in the FT spectra as

S(ωag − ω0, ωbg − ω0) = c(1)∗ag (α)c
(2)∗
ba (β)c

(1)
bg (γ), (4.1)

as described in Sec. 3.3. The off-diagonal peak, marked by the white arrow in Fig. 4.2(b), represents

the controlled transition c
(2)
ba , aside from the constant one-photon transitions. Therefore, the controlled

transition from |a〉 to |b〉 is well separated from the others in the 2D FT spectra.

Figures. 4.2 (c) and (d) show correspondingly the measured Pb(τ1, τ2) (without Pa(τ1, τ2)) and its

Fourier spectrum for comparison with Figs. 4.2 (a) and (b). Since the primary slow oscillation component

decayed from |a〉 was eliminated by the interference filter, Fig. 4.2 (c) (Pb(τ1, τ2)) should be filled with

a speckled pattern. However, due to the spectral hole around the D2 transition of the first pulse, the

coherence between |g〉 and |b〉 was annihilated during the delay τ1 and the slow oscillation dominates the

signal along τ1 axis. Consequently, the higher frequency components of S(ω1, ω2) in Fig. 4.2 (d) were

almost wiped out and the (ωag − ω0, ωbg − ω0) peak was emphasized. In this way, the unwanted higher-

order transitions affecting (ωag −ω0, ωbg −ω0) peak and the background noises were greatly suppressed.

4.3 Coherent control of inter-excited state transition

In this section, we describe the experimental demonstration of coherent control of transitions between

the two excited states in a V -type system. By shaping the second pulse of the three laser pulses used in

2D-FTOS, we selectively turn on and off the 5P1/2-5P3/2 transition of Rb. Furthermore considering the

quantum interference of possible transition paths analytically, the target transition is engineered tripled

relative to the FTL pulse case.
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Figure 4.2: (a) Experimental fluorescence data of 2D-FTOS measurement given as a function of two time

delays, τ1 and τ2. (b) 2D Fourier-transformed spectrum S(ω1, ω2) obtained from the time domain data

(a). (c) Fluorescence signal decayed from |b〉 for the three pulses described in the text. (d) 2D Fourier

spectrum of (c).
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The switching experiment of the coupling strength between the excited states is given in Sec. 4.3.1,

which uses a spectral phase function of linear chirp. The quantum interference engineering experiments

of both the amplitude and phase shaping are described in Sec. 4.3.2.

4.3.1 Control of transition order

As the first experiment of coherent control of transition probability amplitude in a V -type system,

we demonstrate selective turn-on and turn-off of the target transition from |a〉 to |b〉. For this, we applied
a linear spectral phase to the control pulse (the second pulse). The sequence of temporally and spectrally

designed ultrafast pulses was produced from an acoustooptic programmable dispersive filter as shown in

Fig. 4.3(a). Each pulse was independently pulse-shaped from a single laser pulse as described in Sec.

5.1. Then, as Fig. 4.3(b) shows, a positively-chirped control pulse brought the |a〉-state atoms, which

was initially excited by the first pulse, down to the |g〉 state, and then back up to the |b〉 state. It was

because the low-energy part of the spectrum arrived ahead of time compared to the high-energy part of

the spectrum. On the other hand, with a negatively-chirped pulse, the spectro-temporal correlation was

reversed as shown in Fig. 4.3(c). Then, with this case, the |a〉 and |b〉 states were left uncoupled. So, the
chirp of the control pulse determined the strength of the 5P1/2 → 5P3/2 transition.

The two-photon transition probability amplitude c
(2)
ba induced by the chirped laser pulse, from the

second order perturbation theory, is given by

c
(2)
ba (t) = −µagµbg

~2

τ0
2τ

∆ω2

∫ t

−∞
dt′eiωbt

′

e−t′2/τ2

e−i(ω0t
′+2a2t

′2/τ2τ2
0 )

×
∫ t′

−∞
dt′′e−iωat

′′

e−t′′2/τ2

ei(ω0t
′′+2a2t

′′2/τ2τ2
0 ). (4.2)

For this, the rotating wave approximation is used. With variable changes of t’+t”=t+ and t’-t”=t− and

regarding t as infinity, the full integration results to

c
(2)
ba = −µagµbg

~2
2πE2

0 exp(−
∆ωb

2 +∆ωa
2

∆ω2
) exp[i

a2
2
(∆ωb

2 −∆ωa
2)]

× 1

2
(Erf[

a2
2

∆ω√
2
(∆ωb −∆ωa) + i

1√
2
(
∆ωb +∆ωa

∆ω
)] + 1)

=
c
(1)
bg c

(1)
ga

2
(Erf[

a2
2

∆ω√
2
(∆ωb −∆ωa) + i

1√
2
(
∆ωb +∆ωa

∆ω
)] + 1), (4.3)

where Erf denotes the Gauss error function, and c
(1)
bg and c

(1)
ga are transition probability amplitudes of the

one-photon transitions |g〉 → |b〉 and |a〉 → |g〉, respectively. The error function in Eq. (4.3) approximates

a sign function of a2 for |a2| > 8/∆ω(ωbg − ωag) and, therefore, the linear chirp is able to switch the

|a〉 → |b〉 coupling. Note that, for a large positive chirp, the transition probability becomes

c
(2)
ba = c

(1)
bg c

(1)
ga , (4.4)

which means the two-photon transition is de-coupled into the combination of the two one-photon transi-

tions. We note that |c(1)bg c
(1)
ga | becomes the absolute asymptotic value of the coherent transient mimicking

experiment to be described in Sec. 5.3.

Figure 4.4 shows the Schrödinger equation calculation for the linear chirp experiment. The 2D

Fourier-transformed (FT) spectra, S(ω1, ω2), are shown for the linearly chirped second pulses: (a) for

a2= -1×103 fs2, and (b) for 1×103 fs2. The populations of |b〉 from |a〉 and directly from |g〉 are well

separated in the different peak positions on the 2D spectra.
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Figure 4.3: (a) Schematic diagram of the pulse shaping scenario. The first pulse has a spectral hole

around D2 transition and the second pulse is pulse-shaped to control the inter-excited state transition.

The third pulse is unshaped. The three pulses are applied to gaseous Rb atom and the fluorescence

signal is detected with a PMT. Depending on the chirp sign, the sequence of D1 and D2 transitions is

time-reversed. The positive chirp case is illustrated in (b) and the negative chirp case in (c). The circled

numbers indicate the transition sequence. [49]
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Figure 4.4: Numerical calculation results of 2D Fourier transform spectra, S(ω1, ω2), for the linearly

chirped second pulses of the two different chirp coefficients: (a) -1×103 fs2, and (b) 1 × 103 fs2. The

peak at (ωag − ω0, ωbg − ω0) denotes the the controlled transition |a〉 → |b〉.
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Figure 4.5 shows the experimental results. The 2D Fourier transform spectra, S(ω1, ω2) in Figs. 4.5(a)-

(e), are shown for the various linear chirps of the second pulses. The 5P1/2 → 5P3/2 transition is measured

in the FT spectra given by

S(ωag − ω0, ωbg − ω0) = c(1)∗ag (α)c
(2)∗
ba (β)c

(1)
bg (γ), (4.5)

where c
(1)
ag and c

(1)
bg are the one-photon transitions due to the first and the third pulses, respectively,

and ∗ denotes complex conjugate. The off-diagonal peaks marked by the white arrows represent the

target |a〉 → |b〉 transition. The measured transition probability amplitudes are shown in Fig. 4.5 (f) in

comparison to the numerical simulation based on Eq. (4.3) for linear chirps [−3, 3]× 103fs2 with 500 fs2

steps. The suppression of 5P1/2 → 5P3/2 coupling is clearly shown for the negatively chirped pulses and

the enhancement for the positively chirped pulses. So, the chirp control of the 5P1/2 → 5P3/2 transition

is successfully demonstrated. We note that the spectral hole around D2 transition was used in the first

pulse to selectively allow those couplings initiated from 5P1/2, as a result, in this experiment, the peaks

at (ωbg − ω0, ωbg − ω0) and (ωbg − ω0, ωag − ω0) appeared almost wiped-out. Alternatively, when the

second pulse was prepared with a spectral hole around D1 line, then the coupling (ωbg−ω0, ωag−ω0) was

enhanced by a negatively chirped pulse, meaning that the temporal sequence for the same 5P1/2-5P3/2

coupling was reversed.

The intuitive ordering of frequencies in the pulse for the effective transfer is that firstly the atoms

are driven from the 5P1/2 to the 5S1/2 state (resonant at 794.7 nm) with the red frequency components

and then from the 5S1/2 to the 5P3/2 state (resonant at 780 nm) with the blue components. And the

experimental and numerical results together with analytic derivations are proved the scenario. On the

other hand, in contrast to measurements of population transfer with two separated pulses making single-

photon excitation each, the counterintuitive ordering of frequencies (as in STIRAP) is not effective in

our situation. This contrast motivates us to examine the underlying dynamics in more detail.

Figures 4.6 (d)-(f) show the calculated populations of the 5S1/2 (blue line), 5P1/2 (dashed line),

and 5S3/2 (red line) states and the field envelope (solid black line) as a function of time for the linear

chirp values of (d) -1000 fs2, (e) zero, and (f) -1000 fs2 respectively. For this calculation, we used a

pulse energy of about five times more than that of the second pulse used in the experiment to make the

transition clearly visible. Note that, the behavior was unchanged with smaller energy calculation. To

consider the transition from 5P1/2 state to 5P3/2 state, the initial population is fixed as (5S1/2, 5P1/2,

5P3/2)=(0,1,0).

For a positive chirp, the pulse starts red detuned in time and 5S1/2-5P1/2 transition frequency comes

earlier than 5S1/2-5P3/2 transition frequency. As one can see in Fig. 4.6(f), the positive chirp pulse drives

population from 5P1/2 to 5S1/2 at the time interval when the laser frequency meets the 5S1/2-5P1/2

transition frequency. Then as the frequency of the pulse sweeps to the blue which is resonant for the

5S1/2-5P3/2 transition, population is transferred to the 5P3/2 state resulting in efficient coupling between

the 5P1/2 and 5P3/2 states.

However, the opposite chirp, shown in Fig. 4.6 (d), yields a different behavior. The pulse frequency

starts at resonance frequency of 5S1/2-5P3/2 transition and can efficiently drive population of 5S1/2 state

to 5P3/2 state, at about -72.7 fs in our condition, but there is no population in 5S1/2 state so no significant

population transfer occurs at this time. And then, 5S1/2-5P1/2 transition frequency component comes to

Rb atom, at about -18.9 fs in our condition, the pulse transfers population to the 5P1/2 state rapidly, but

is far detuned from the 5S1/2-5P3/2 transition frequency. Therefore, there is ineffective transfer to the

5P3/2 state. 2D Fourier transformed spectra are shown in Figs. 4.6(a)-(c) in contour map representation.
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Figure 4.5: Experimental results of 2D FT spectra S(ω1, ω2) for shaped pulses with the five different

chirp coefficients: (a) -1×103 fs2, (b) -5×102 fs2, (c) zero, (d) 5×102 fs2, and (e) 1×103 fs2. The peaks at

(ωag−ω0, ωbg−ω0) are marked by white arrows which represent the target two-photon process, 5P1/2 →
5P3/2. (f) Extracted peak amplitudes at (ωag −ω0, ωbg −ω0) plotted as a function of chirp of the second

pulses (circles) are compared with the numerical calculation of c
(2)
ba (line).
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4.3.2 Quantum interference engineering

In the previous section, the enhancement of the transition is clearly observed, resulting from the

interference between the resonant and nonresonant pathways. Next, we aim for further enhancement by

applying a general phase function to the control pulse. We start by considering the two-photon transition

probability amplitude written in spectral domain given as

c
(2)
ba =

µgaµgb

~2
[−πE∗(ωag)E(ωbg)− i℘

∫ ∞

−∞
dω
E∗(ω)E(ωba + ω)

ωag − ω
], (4.6)

where µnm is a dipole moment matrix element, E(ω) the inverse Fourier transform of the electric field, and

℘ the Cauchy principal value. For a laser pulse having the spectral components all in phase, the resonant

contribution is real (the first term in Eq. (4.6)), and the two nonresonant contributions (the second term)

below and above the resonance frequency ωag are both imaginary but out of phase with respect to each

other. Hence, the three components, the resonant part, and the upper and lower nonresonant parts, add

up to the total transition, c
(2)
ba , and c

(2)
ba can be enhanced by engineering the interference among them.

By encoding a constant phase φb over a block spectral region [ωag, ωag + ωba], the interference of the

three transition components of the dominant spectral region can be altered. The transition probability

amplitude cba in Eq. (4.6) can be disassembled as

c
(2)
ba = i

µgaµgb

~2
[iπE∗(ωag)E(ωbg)

− eiφb

∫ ωag

ωag−ωba

E∗(ω)E(ωba + ω)

|ωag − ω| dω

+ e−iφb

∫ ωag+ωba

ωag

E∗(ω)E(ωba + ω)

|ωag − ω| dω], (4.7)

where the first, second, and third terms correspond to A, B, and C in phase diagram in the upper-

left inset of Fig. 4.7(a). In our experiment, the ratio of the transition amplitude absolutes is given by

|A| : |B| : |C| = 1 : 2.8 : 1.6. Fig. 4.7 (a) shows the measured net transition probability amplitudes as a

function of φb. The dots are experimental results and the black dashed line is the theoretical calculation

based on Eq. (4.6). The spectral phase function was smeared by 0.2 nm in the experiment and such

consideration (shown with the solid line) more accurately fits the experimental results. Two local maxima

are expected from Eq. (4.7), one at φb=π/2 and the other at φb=3π/2. As shown in Figs. 4.7 (b-d), the

three transition components A, B, and C, interfere either constructively or destructively with each other

while B and C rotate relative to A in opposite directions as depicted in the upper-left inset. For example

in Fig. 4.7 (d), the three components become all in phase allowing the maximum quantum interference

tripling the transition probability amplitude.

Alternatively, spectral amplitude shaping of the control pulse can be employed to enhance the given

two-photon transition. For example, among the components in Eq. (4.7), the smaller nonresonant tran-

sition component C can be removed. For this, the nonresonant component of the transition probability

amplitude (the second term of Eq. (4.6)) can be rephrased as

c
(2)nr
ba =

µgaµgb

i~2
[ ∫ ωbg

∞

E∗(ω − ωba)E(ω)

|ωbg − ω| dω −
∫ ωcut

ωbg

E∗(ω − ωba)E(ω)

|ωbg − ω| dω
]
, (4.8)

where the spectrum below ωcut is eliminated (the second term in Eq. (4.6)) as depicted in the inset of

Fig. 4.8. In the final experiment, we utilized the spectral amplitude block above the cutoff frequency
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Figure 4.6: (a)-(c) Experimental results of 2D Fourier transformed spectra S(ω1,ω2) in contour map

representation for linear chirp values of (a) -1000 fs2, (b) zero, and (c) 1000 fs2. The peaks (ωag − ω0,

ωbg − ω0) are marked by black arrows. (d)-(f) The 5S1/2 (blue line), 5P1/2 (dashed line), and 5S3/2

(red line) populations, as well as the field envelope (solid black line), corresponding to (a), (b), and (c)

respectively.
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Figure 4.7: (a) Experimental and theoretical results for the quantum interference engineering. Dots:

measured transition amplitude absolutes, dashed line: numerical calculation based on Eq. (4.6), solid

line: numerical calculation considering the spectrally smeared phase (see the text). Insets: (upper-left)

the phase diagram for the three transition components in Eq. (4.7), (lower-right) the laser spectrum

with block spectral phase, where the block spectral phase φb represents the relative phase of the spectral

region in [ωag, ωbg] with respect to the other. (b-d) The phase diagrams for the maximal (b,d) and the

minimal (c) quantum interference conditions. [49]
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plitude shaping. The measured transition probability amplitudes, normalized to the full spectrum limit

(dots), are plotted along with the calculated data (dark line) as a function of the cutoff wavelength. The

laser spectrum is shown in gray line. The inset illustrates the spectral shape used in the experiment.

The dashed lines are the D1 and D2 resonant wavelengths. [49]

(ωcut) into the second pulse (the spectral phase is unchanged.) The tested transition probability ampli-

tudes c
(2)
ba were retrieved from the 2D spectra, S(ω1, ω2), as a function of ωcut. The experimental result is

shown in dots in Fig. 4.8, and the theoretical results in black solid line is calculated usin Eq. (4.6). The

normalized laser spectrum is shown in gray solid line and the resonance wavelengths are denoted by black

dashed lines in Fig. 4.8. As the cutoff wavelength λcut approaches the resonance wavelength λbg from the

short-wavelength end, the second term of c
(2)nr
ba , or C in Eq. (4.7), becomes smaller and, therefore, the

target inter-excited state transition is enhanced. The two-photon transition c
(2)
ba is maximally enhanced,

for λcut = λbg , by 60% compared to the full spectrum limit.
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Chapter 5. Coherent transients in a V -type

three-level system

In this chapter, we show theoretically and experimentally that the two-photon inter-excited state

transition in a V -type three-level system projects one-photon coherent transients (CTs) in a two-level

system. For this, we use two kinds of pulse shape parameters: linear chirp and quadratic chirp. In a

V -type system we show that the transition between inter-excited state can be reduced to the transition

in a two-level system. As a result of interaction with the linearly and quadratically phase-shaped pulses,

the final probability amplitude of the target excited state in a V -type system can be interpreted in terms

of conventional CTs in a two-level system. Here, CTs in a two-level system refer to the time evolution

of the probability amplitude, of the excited state interacted with a linearly chirped pulse, which shows

an oscillatory behavior as a function of time.

As a brief review of CTs, we consider one-photon transition in a two-level system of ground state

|1〉 and excited state |2〉. For an optical short pulse of gaussian pulse shape with linear chirp, the electric

field E(t) is given by

E(t) = Eo exp
[
− t2

τ2c
− i
(
ω0t+ αt2

)]
, (5.1)

where τc = τo
√
1 + a22/τ

4
o , α = 2a2/(τ

4
o + 4a22), and τo is the unchirped pulse duration. Then the

excitation probability amplitude c21 at a finite time t is given in the weak-field regime as [45]

c21(t) =
iµ21Eo

~

∫ t

t0

exp(− t2

τ2c
) exp

[
−i
(
(ω0 − ω21)t

′ + αt′2
)]
dt′, (5.2)

where the time t and the linear chirp rate a2 are the two control parameters for the quadratic and cubic

phase terms, respectively, and the finite time integration with a quadratic temporal phase αt′2 leads to

the transient excited-state population being of a Cornu spiral shape, well known from Fresnel diffraction

pattern from a sharp edge [94]. For a short pulse which has broad spectral components, putting chirp

on the pulse delays some of those components with respect to others in the time domain, and the

instantaneous laser frequency shifts as a function of time. So, from the time when the resonant condition

is met, further off-resonant excitation interferes, with the resonant transition, either constructively or

destructively. In the frequency domain representation, Eq. (5.2) is given by

c21(t) =
µ21

~

[
iπE(ω21) + ℘

∫ ∞

−∞

E(ω) exp[i(ω21 − ω)t]

ω21 − ω
dω
]
, (5.3)

where E(ω) = Eo exp[−(ω − ω0)
2τ2o /4 + iφ(ω)] and ℘ is the Cauchy principal value [47]. So, the quan-

tum interference between the resonant and non-resonant excitation contributions shows an oscillatory

transient behavior for a given chirped pulse. CTs have demonstrated many novel phenomena, including

the time-domain Fresnel lens [46], Coherent transient enhancements [47], quantum state holographic

measurements [48], and coherent controls of multi-state ladders [95].

This chapter is organized as following. Derivation of the transition probability amplitudes in a

ladder-type system is reviewed in Sec. 5.1, in comparison to the transitions in a V -type system. There

exist a number of studies performed with ladder-type systems interacting with linearly chirped pulses

– 45 –



(chirp parameter a2), the oscillatory motions of the transition found as a function of a2 have not been

clearly explained. In Sec. 5.2, the one-photon transition probability amplitude in a two-level system

is given in comparison with the inter-excited state transition in a V -type system. The experimental

demonstration of CTs in a V -type system is given in Sec. 5.3.

5.1 Transitions in a ladder system

In this section, we derive the transition probability amplitude in a ladder type system which com-

prises one ground state |g〉, one resonant intermediate state |i〉, and one excited state |e〉. Both the

energy differences between |i〉 and |g〉, and |e〉 and |i〉 are resonant with the laser pulse spectrum. The

target state |e〉 is excited via two-photon absorption process from |g〉. In the weak field regime, the

major contribution to the transition is two-photon absorption process. Therefore, by assuming the pulse

duration considerably shorter than all lifetimes involved, the transition probability amplitude can be

derived from the second order perturbation theory as

c
(2)
ni (t) = (

−i
~
)2Σm

∫ t

t0

dt′
∫ t′

t0

dt′′eiωnmt′Vnm(t′)eiωmit
′′

Vmi(t
′′)

= −µfiµig

~2

∫ t

t0

dt′
∫ t′

t0

dt′′eiωfit
′

E(t′)eiωigt
′′

E(t′′)

= −µfiµig

2π~2

∫ t

t0

dt′
∫ t′

t0

dt′′eiωfit
′

[∫ ∞

−∞
dω1e

−iω1t
′

E(ω1)

]
eiωigt

′′

[∫ ∞

−∞
dω2e

−iω2t
′′

E(ω2)

]

= −µfiµig

2π~2

∫ ∞

−∞
dω1E(ω1)

∫ ∞

−∞
dω2E(ω2)

∫ t

t0

dt′ei(ωfi−ω1)t
′

∫ t′

t0

dt′′ei(ωig−ω2)t
′′

= −µfiµig

2π~2

∫ ∞

−∞
dω1E(ω1)

∫ ∞

−∞
dω2E(ω2)

∫ t

t0

dt′ei(ωfi−ω1)t
′ ei(ωig−ω2)t

′ − ei(ωig−ω2)to

i (ωig − ω2)

= −µfiµig

2π~2

∫ ∞

−∞
dω1E(ω1)

∫ ∞

−∞
dω2E(ω2)

×
[
ei(ωfi−ω1+ωig−ω2)t − ei(ωfi−ω1+ωig−ω2)to

i (ωig − ω2) i (ωfi − ω1 + ωig − ω2)
− ei(ωfi−ω1)t − ei(ωfi−ω1)to

i (ωig − ω2) i (ωfi − ω1)
ei(ωig−ω2)to

]
.

(5.4)

Here, t and to satisfy the condition, |t| > T and t > 0, |to| > T and to < 0 for large enough T . With

these conditions and also using the Residue Theorem, Eq. (5.4) becomes

c
(2)
ni = i

µfiµig

~2

[
iπE(ωig)E(ωfi) + ℘

∫
dω
E(ω)E(ωfg − ω)

ωig − ω

]
, (5.5)

where ℘ is the principal value of Cauchy, and ωig, ωfg − ωig = ωfi are the resonance frequencies. The

first term depends only on the spectral components of the pulse at the resonance frequencies, whereas

the second term integrates over the contributions of all other spectral components of the pulse. The first

term (the on-resonance contribution) is shifted by π/2 compared with the second term (the off-resonance

contributions). Also, the spectral components below and above the resonance excite the system π out of

phase.

The critical difference between Eq. (3.27) in a V -type system and Eq. (5.5) in a ladder-type system,

is the existence of the complex conjugate term. Due to the downward transition or de-excitation process,

|a〉 → |g〉, in the V -type system, the negative frequency component of the electric field is involved,

which therefore appears in Eq. (3.27) as a complex conjugate term. Let us consider the spectral phase
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function of the pulse, for example, a general phase function of Taylor expansion series, φ(ω) = a2/2(ω−
ω0)

2 + a3/6(ω − ω0)
3 + · · · . Then, in the V -type system, the overall phase of the term E∗(ωag)E(ωbg),

for example, results from the difference between the two spectral phases of the resonance frequencies.

Therefore, the total phase of the transition is converted as the spectral phase function of the electric field

is differentiated. On the other hand, in a ladder system, the overall phase results from the summation

of them and can not be of a simpler form. The differentiated phase in the V -type system is an essential

feature useful to mimick the CTs of a two-level system, and the following section describes about the

relation in detail.

5.2 Coherent transients in a two-level system

In this section, we derive transition probability amplitude formula of one-photon transition in a

two-level system comprises a ground state |1〉, and an excited state |2〉. And then, we show the striking

similarities between the derived formula and the case of the two-photon inter-excited state transition in

a V -type system.

In a two-level system, one-photon transition probability amplitude can be calculated using the first

order perturbation theory. For the excitation case, the transition from the ground state |1〉 to the excited

state |2〉, the amplitude is given as

c
(1)
21 (t) =

−i
~

∫ t

t0

dt′〈n|VI(t′)|i〉

=
iµ21

~

∫ t

t0

dt′eiω21t
′

E(t′). (5.6)

If we consider the electric field as a gaussian pulse with a linear chirp, i.e.,

E(ω) = Eo exp

(
− (ω − ω0)

2

∆ω2
+ i

a2
2
(ω − ω0)

2

)
(5.7)

then, electric field, E(t), derived in previous Sec. 3.1, is given by

E(t) =
Eo√
2

√
τo
τc
∆ω exp

[
i

2
tan−1(

2a2
τ2o

)

]
exp

(
− t2

τ2c
− i

[
ω0t+

2a2
τ4o + 4a22

t2
])

.

Substituting E(t) in Eq. (5.6), the transition probability amplitude is written as a function of time and

linear chirp by

c
(1)
21 (t, a2) =

iµ21

~

Eo√
2

√
τo
τc
∆ω0 exp

[
i

2
tan−1(

2a2
τ2o

)

]

×
∫ t

t0

dt′ exp

(
− t

′2

τ2c
+ i

[
(ω21 − ω0)t

′ − 2a2
τ4o + 4a22

t′2
])

, (5.8)

where τ0 = 2
∆ω and τc = τ0

√
1 +

(
a2

τ2
0

)2
. Alternatively, we can derive the transition probability amplitude

in frequency domain by the same method used in the two-photon cases (sections 3.2 and 5.1) as

c
(1)
21 (t) =

µ21

~

[
iπE(ω21) + ℘

∫ ∞

−∞

E(ω) exp (i(ω21 − ω)t)

ω21 − ω

]
(5.9)

=
µ21

~
exp (i(ω21 − ω0)t)

×
[
iπE(ω21) exp (−i(ω21 − ω0)t) + ℘

∫ ∞

−∞

E(ω) exp (−i(ω − ω0)t)

ω21 − ω

]
(5.10)
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Note that, Eq. (5.9) has the same structure with that of inter-excited state transition in a V -type system

except the positive sign between resonant and nonresonant parts.

If we consider the de-excitation case, the transition probability amplitude, from |2〉 to |1〉, is derived
as

c
(1)
12 (t) =

µ21

~

[
iπE∗(ω21)− ℘

∫ ∞

−∞

E∗(ω) exp (i(ω21 − ω)t)

ω21 − ω

]
(5.11)

=
µ21

~
exp (−i(ω21 − ω0)t)

×
[
iπE∗(ω21) exp (i(ω21 − ω0)t)− ℘

∫ ∞

−∞

E∗(ω) exp (i(ω − ω0)t)

ω21 − ω

]
, (5.12)

which has minus sign between resonant and nonresonant parts. For a linearly chirped pulse, Eq. (5.12)

is written by

c
(1)
12 (t, a2) =

µ21

~
exp (−i(ω21 − ω0)t)

[
iπA(ω21) exp

(
i[(ω21 − ω0)t−

a2
2
(ω21 − ω0)

2]
)

− ℘

∫ ∞

−∞

A(ω) exp
(
i[(ω − ω0)t− a2

2 (ω − ω0)
2]
)

ω21 − ω

]
. (5.13)

Now, we further develop the formula of the inter-excited state transition in a V -type system. We

can obtain a simpler form of Eq. (3.27) for a gaussian pulse spectrally centered at ω0, i.e., A(ω) =

E0 exp[−(ω − ω0)
2/∆ω2], with the general Taylor expansion spectral phase, φ(ω), given by

φ(ω) = a1(ω − ω0) +
a2
2
(ω − ω0)

2 +
a3
6
(ω − ω0)

3 + · · · . (5.14)

With conventional analytic calculation, Eq. (3.27) becomes

c
(2)
ba =i

µ̃ba

~2

[
iπẼ(ω)− ℘

∫ ∞

−∞

Ẽ(ω)

ω − ω
dω
]
, (5.15)

where µ̃ba = µgaµbg exp[−ω2
ba/2∆ω

2 + ia3ω
3
ba/24], ω = (ωag + ωbg)/2, and

Ẽ(ω) = E2
o exp[−2

(ω − ω0)
2

∆ω2
+ iωba

dφ

dω
]. (5.16)

It is noted that Eq. (5.15) is of a functional form strikingly similar to Eq. (5.11), the one-photon transition

in a two-level system. Also, for a pulse having spectral phase function of linear and quadratic chirps,

Eq. (5.15) can be written as

c
(2)
ba (a2, a3) =i

µbgµga

~2
exp

(
− ω2

ba

2∆ω2
0

+ i
a3
24
ω3
ba

)

× [iπexp

(
−2

(
ωbg+ωag

2 − ω0)
2

∆ω2
0

+ i

[
a2ωba(

ωbg + ωag

2
− ω0) +

a3
2
ωba(

ωbg + ωag

2
− ω0)

2

])

− ℘

∫
dω
exp

(
−2 (ω−ω0)

2

∆ω2
0

+ i
[
a2ωba(ω − ω0) +

a3

2 ωba(ω − ω0)
2
])

ωbg+ωag

2 − ω
] (5.17)

=i
µ̃ba

~2

[
iπA(ω) exp

(
i
[
a2ωba(ω − ω0) +

a3ωba

2
(ω − ω0)

2
])

− ℘

∫ ∞

−∞

A(ω) exp
(
i
[
a2ωba(ω − ω0) +

a3ωba

2 (ω − ω0)
2
])

ω − ω
dω
]
. (5.18)

As evident from the same structure, the two-photon inter-excited states transition in a V -type

system projects one-photon transition (de-excitation) in a simple two-level system. Tantalizing part is

that, since Ẽ(ω) has differentiated phase, linear chirp in V -type system corresponds to time in two-level
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system, and minus quadratic chirp to linear chirp. So, the obtained solution in Eq. (5.15), which is

the transition probability amplitude c
(2)
ba for the two-photon inter-excited state transition in a V -type

system, has become formally a one-photon transition probability amplitude, more specifically a de-

excitation process, in a two-level system of energies 0 and ω, induced by the newly defined electric field

Ẽ(ω).

Therefore, if we consider the interaction of the V -type system with a shaped pulse of linear and

quadratic chirps, then we can achieve duplicated results of Coherent transients in a two-level system

interacting with a linearly chirped pulse. With this information, we can derive the ”transient” excitation

probability amplitude, a similar form to Eq. (5.2), for the V -type system. For this, the electric field E(t)

is the inverse Fourier transformation of the complex conjugate of electric field in frequency domain Ẽ(ω)

given by

E(t) =
E2

o√
2π

∫ ∞

−∞
dω exp

(
− (ω − ω0)

2

∆ω′2
− i[−(ω − ω0)ωbaa2 − (ω − ω0)

2ωbaa3
2

]

)
exp(iωt)

=
E2

o√
2π

exp(iω0t)

∫ ∞

−∞
dω exp

(
−ω

2(1− iωbaa3

2 ∆ω′2)− i∆ω2(t+ ωbaa2)ω

∆ω′2

)

=
E2

o√
2π

exp(iω0t) exp

(
− (t+ ωbaa2)

2∆ω′2

4(1− iωbaa3

2 ∆ω′2)

)∫ ∞

−∞
dω exp



−
(1− ia2

2 ∆ω′2)(ω − i∆ω′2(t+ωbaa2)

2(1−i
ωbaa3

2 ∆ω′2)
)2

∆ω′2





=
E2

o√
2π

exp

(
− t2

τ2c
+ i

[
ω0t−

2ωbaa3
τ4o + 4ω2

baa
2
3

(t+ ωbaa2)
2

])√
π

1−i
ωbaa3

2 ∆ω′2

∆ω′2

=
E2

o√
2

√
τo
τc
∆ω′ exp

[
i

2
tan−1(

2ωbaa3
τ2o

)

]
exp

(
− (t+ ωbaa2)

2

τ2c
+ i

[
ω0t−

2ωbaa3
τ4o + 4ω2

baa
2
3

(t+ ωbaa2)
2

])
,

(5.19)

where ∆ω′ is the reduced spectral bandwidth, ∆ω/
√
2. Substituting linear and quadratic chirps to

reduced time and linear chirp, t̃ = ωbaa2 and ã2 = −ωbaa3, and fix the time to t = 0, reduced electric

field is written as

E(t) =
E2

o√
2

√
τo
τc
∆ω′ exp

[
− i

2
tan−1(

2ã2
τ2o

)

]
exp

(
− t̃2

τ2c
+ i

[
ω0t+

2ã2
τ4o + 4ã22

t̃2
])

. (5.20)

Then, the “CT-like” transition probability amplitude in a V -type system is obtained as

c
(2)
ba (a2, a3) = − µ̃baE

2
oe

iθ

~2

∆ω√
τ̃c/τ̃0

∫ t̃

−∞
exp(− t

′2

τ̃2c
) exp

[
−i
(
(ωba − ω0)t

′ − α̃t′2
)]
dt′, (5.21)

where θ = − 1
2 tan

−1 2ã2/τ̃
2
o + (ω − ω0)t̃, τ̃o = 2

√
2/∆ω, τ̃c = τ̃o

√
1 + ã22/τ̃

4
o , and α̃ = 2ã2/(τ̃

4
o + 4ã22).

5.3 Coherent transients mimicked in atomic rubidium

We verify experimentally that coherent transient phenomena are mimicked in a V -type system.

For the experiment, briefly to summarize, we used the lowest three energy levels of Rb. To generate

broadband femtosecond pulses, we used a homemade Ti:Sapphire laser amplifier system. Each pulse

was separated into three pulses to perform 2D-FTOS. In the meantime, three pulses were independently

pulse-shaped to apply advanced coherent controlled 2D-FTOS technique.

Now, let us go back to the transition probability amplitude of the two-photon transition in the

V -type system, c
(2)
ba . Considering a general phase function φ(ω) for the pulse with linear and quadratic
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chirps together, i.e.,

φ(ω) =
a2
2
(ω − ω0)

2 +
a3
6
(ω − ω0)

3. (5.22)

c
(2)
ba was represented in Sec. 3.2 as

c
(2)
ba = i

µbgµga

~2

[
iπE∗(ωag)E(ωbg)− ℘

∫
dω
E∗(ω)E(ωba + ω)

ωag − ω

]
. (5.23)

The first term of Eq. (5.23) only depends on the spectral components of the pulse at the resonance fre-

quencies, whereas the second term integrates over the contributions of all the other spectral components

of the pulse. Therefore, the absolute value of the resonant part is not affected by the change of the phase

φ(ω) of the pulse, as depicted in Fig. 5.1(a). However, the non-resonant part is changed drastically with

φ(ω) as shown in Fig. 5.1(b). And as a result of the interference between the resonant and nonresonant

parts, total transition probability amplitude becomes as shown in Fig. 5.2 (a).

Also, we have shown in Sec. 5.2 that the two-photon process in a V -type system can be reduced

to a one-photon de-excitation in a two-level system. The result in Eq. (5.15) is a reminiscence of

femtosecond coherent transient (CT) experiments by Girard and co-workers [45, 46, 48]. Therefore, the

linear and quadratic chirp coefficients a2 and a3 in Eq. (5.22) play the same roles of time and linear

chirp, respectively, in a perturbative chirped pulse excitation. (See, for example, Eq. (1) in Ref. [46].)

Therefore, the transition amplitude is given as

c
(2)
21 ∝

∫ t̂

−∞
dt1 exp(−

t21
τ2c

) exp[−i (t1 + T0)
2 − T 2

0

2â2
], (5.24)

where t̂ = ωbaa2, â2 = −ωbaa3, and T0 = (ω − ω0)â2 [48]. The approximation holds when τ0 ≪ |2â2|.
To verify the “CT-like behavior” of the two-photon inter-excited states transition in a V -type system,

experiments were performed with the second pulses with linear and quadratic chirps, as shown in Fig. 5.2.

The surface plot in Fig. 5.2(a) shows the absolutes of the numerical calculation of 5P1/2-5P3/2 transition

probability in Eq. (5.15). Transition probability amplitudes were calculated from a2=[-9, 9]×103 fs2

and a3 = [-15, 15]×104 fs3 with step size of 1×102 fs2 for a2 and 5×103 fs3 for a3. The boxed region

in Fig. 5.2(a) was tested with the spectral phase function φ(ω) in Eq. (5.22). The second pulse was

programmed with various chirp coefficients that were sampled from a2=[-3, 3]×103 fs2 and a3 = [-5,

7]×104 fs3 with step size of 5×102 fs2 for a2 and 2×104 fs3 for a3. The result is shown in Fig. 5.2(b).

The results are linearly interpolated twice from 13 × 7 measurements in use of the MATLAB’s built-in

function ”interp2”. The extracted absolutes of c
(2)
ba from the (ωag −ω0, ωbg−ω0) peaks in 2D FT spectra

are plotted in Figs. 5.2(c)-(e) for a3 = -5×104, -1×104, and 3×104 fs3, respectively, together with the

theoretical curves calculated by Eq. (5.15). For a given quadratic chirp, the transition probability shows

an oscillatory behavior as a function of the linear chirp, a typical feature of CT [45]. Note that, the

experiments are carried on relatively small ranges of a2 and a3. It is because the energy of the diffracted

pulses from AOPDF are differed when the pulse shapes are significantly changed, and constant energy of

the second pulse is required to measure the inter-excited state transition consistently. Note also that, 13

× 7 measurements utilized 372736 number of waveforms including the inter-pulse delays, and performed

in more than four days.

Figure 5.3 illustrates the retrieval of 5P1/2 → 5P3/2 transition probability amplitude from the

coherently controlled 2D spectral peak. The left panel of Fig. 5.3 (sub-labeled with -I) shows |S(ωag −
ω0, ωbg −ω0)|, the absolute of the extracted 2D-FTOS peaks. The experimental results (circles) and the

calculations (lines) are shown as a function of linear chirp, for various quadratic chirps of (a) -5×104 fs3,
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(a)

(b)

Figure 5.1: Calculated transition probability amplitude from |a〉 to |b〉 via an intermediate state |g〉 using
the Eq. (5.23): (a) is the resonant part (the first term), and (b) the nonresonant part (the second term).
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Figure 5.2: (a) Numerical calculation of |c(2)ba | plotted as a function of linear and quadratic chirps. (b)

Extracted amplitudes of (ωag −ω0, ωbg −ω0) peaks of 2D Fourier transformed spectra (experimented for

the white rectangular area in (a); interpolated twice from 13 × 7 measurements.) (c)-(e) Two-photon

transition amplitudes (c
(2)
ba ) drawn in the complex plane as a function of linear chirp, (c) for quadratic

chirp -5×104 fs3, (d) for -1×104 fs3, and (e) for 3×104 fs3, respectively. [60]
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(b) -3×104 fs3, (c) -1×104 fs3, (d) 1×104 fs3, (e) 3×104 fs3, (f) 5×104 fs3, and (g) 7×104 fs3. The

numerical calculations are carried on wider range of linear chirp, a2=[-6, 6]×103 fs2, with finer step

size of 50 fs2, to show the overall behavior of CTs. The calculations are normalized with the transition

probability amplitude at a2 = 6 × 103 fs2, a3 = 0, and the experiments accordingly. The experimental

results are in a good agreement with the numerical calculation, although the population of 5P3/2 state

was primarily covered by the one-photon transition from the 5S1/2 state.

Finally, the phase information of 5P1/2 → 5P3/2 transition probability amplitude is retrieved. As

described in Sec. 3.3, the peaks represent the value of the product of three-pulse transitions given by

S(ωag − ω0, ωbg − ω0) = c(1)∗ag (α)c
(2)∗
ba (β)c

(1)
bg (γ), (5.25)

and since the first and third pulses were in a FTL pulse condition, 5P1/2 → 5P3/2 transition probability

amplitude obtained directly from the phase of (ωag − ω0, ωbg − ω0) peaks in 2D Fourier spectrum as

well as the absolutes. The central panel of Fig. 5.3 (sub-labeled with -II) represents the phase and

amplitude of extracted c
(2)
ba shown in complex plane representation. The values start from the origin

at negative linear chirp, and spread out with rotating counter-clock wise as the linear chirp goes to

positive, which can be easily predicted from Eq. (3.27). The well-known Cornu spirals of CTs [48] are

reconstructed by compensating the phase difference φc = exp (−i(ω − ω0)ωbaa2), between Eq. (5.13)

and Eq. (5.18). We note that the another phase − 1
2 tan

−1 2ã2/τ̃
2
o in Eq. (5.18) is already included in

Eo of Eq. (5.13). The results are summarized in the right panel of Fig. 5.3 (sub-labeled with -III).

The phase-compensated transition probability amplitudes, eiφcc
(2)
ba , perfectly reconstruct a Cornu spiral

which starts from the origin and approaches to an asymptotic point. It is noted that the asymptotic

points have the same radius from the origin for all quadratic chirps, which is equivalent to the fact that

the transition probability amplitude of the two-level problem is dependent only on the resonant spectral

amplitude A(ω21). The absolute of asymptotic points is given by

|c(2)ba | = |c(1)ag c
(1)
bg |, (5.26)

which is the product of de-coupled one-photon transitions, c
(1)
ag and c

(1)
bg , from the two-photon inter-excited

states transition.
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Figure 5.3: (a) Extracted transition probabilities from the experimental 2D-spectra at (ωag−ω0, ωbg−ω0)

peaks (circles) together with the numerical calculations of 5P1/2-5P3/2 transition (lines) as a function of

linear chirp for quadratic chirp of the second pulse, (a) -5×104 fs3, (b) -3×104 fs3, (c) -1×104 fs3, (d)

1×104 fs3, (e) 3×104 fs3, (f) 5×104 fs3, and (g) 7×104 fs3. The left panel, sub-labeled with -I, shows

the absolute value of c
(2)
ba , and the central panel (II) is the complex plane representation of c

(2)
ba . The

reconstructed Cornu spirals are shown in the right panel (III) following the process explained in the

context.
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Chapter 6. Shaped pulse 2D-FTOS in Quantum

wells

In this chapter, we propose an extended 2D-FTCCS experiment applied to semiconductor quantum

well system. For this, we study the effect of density of states on exciton states in a semiconductor

superlattice system [61]. Also, we consider the asymmetric double quantum well systems as a possible

V -type system candidate.

This chapter contains the study of the effect on the quantum states from non-uniform density of

states in Sec 6.1, and the study of the proposed asymmetric double quantum well systems in Sec 6.2.

6.1 Non-uniform continuum density of states on Fano resonance

The Fano resonance (FR) is due to quantum mechanical coupling between a discrete energy state

and a degenerate energy continuum and appears in many optically measured absorption and reflection

spectra as an asymmetric line-shape known as Fano shape,

I(ǫ) = Io(ǫ)
(q + ǫ)2

1 + ǫ2
, (6.1)

where Io is a fictitious “background” spectrum from only the continuum state, q is the Fano shape

parameter, and the reduced energy ǫ = 2(E − Er)/Γ measures the energy difference from a resonance

energy in terms of the half-width of coupling strength [62]. It is understood that the shape parameter q is

a ratio between two excitation amplitudes: one for the direct transition to the modified discrete state due

to the continuum, and the other for the two-step transition to the discrete state via the continuum [63].

These two quantum pathways for an optical transition, red or blue detuned from the resonant energy,

results in either destructive or constructive interference.

While FR has been reported ubiquitously in a variety of quantum mechanical systems including

atoms, molecules, semiconductors and even in optical resonators [64, 65, 66, 67, 68, 69, 71], a direct control

of Fano coupling, thus a controllable FR, has been first performed with a semiconductor system [72].

This control experiment has a certain similarity to the optical coherent control experiments for an atomic

system where the interference between resonant and non-resonant transitions of atomic energy levels are

controlled by spectrally encoded broadband laser pulses [73, 74, 75]. In semiconductors, if the densities of

the continuum energy states are tunable, a similar but new kind of coherent control of optical transitions,

in conjunction with the interference in FR, may be possible. We report a possible effect of such tunable

densities of states in this Letter.

In semiconductor quantum wells, resonant exciton transitions generate a FR via the interference be-

tween the two channels, a discrete state of one subband of an electron-hole pair and energetically degener-

ate exciton continua pertaining to other subbands [76, 77]. Among the quantum wells, a GaAs/AlxGa1−xAs

superlattice (SL) is interesting, as its continuum states for FR are supported by exciton mini-bands of

the lower-lying Wannier-Stark ladder (WSL) [78, 79]. The continuum states are activated and controlled

by an external Stark electric field, therefore the Fano coupling parameter Γ and the Fano shape param-

eter q may strongly depend on the field. Indeed, in a recent experiment [72], a monotonic decrease of
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Figure 6.1: Schematic exciton energy diagram of a localized state and a Wannier-Stark mini-band in

a quantum-well superlattice under an external electric Stark field. As the field varies, the mini-band

becomes lifted in energy, then, the localized state couples to lower-energy states of the band. For a

sufficiently wide window of field strength, the whole parabolic shape of the density of the mini-band

states can play a role.

Γ was observed as the Stark field increases. This behavior is attributed to the fact that for a stronger

Stark field, the WSL spacing and thus the momentum mismatch between the discrete exciton and the

continuum at higher momentum increases, leading to a decrease of the coupling strength. Also, axial

localization of the wave function develops as the field increases, contributing to the reduction of the Fano

coupling [72].

The homogeneous broadening of the exciton transition described by Γ depends not only on the

coupling matrix element but also on the density of states (DOS) of the continuum mini-band or the

spectral shape and width of the continuum states. Therefore, the Fano profile is expected to depend on

DOS of the continuum state, as depicted in Fig. 6.1, especially when the DOS is narrow or nonuniform

near the resonance. However, the possible effects of the DOS on FR have been ignored or unnoticed,

maybe because the Fano profile is a transition to the system of discrete and continuum states, normalized

with the bare transition to the continuum state. Note that the original Fano formula does not include

such effects but assumes a flat and wide DOS [62].

In this chapter, we report an experimental observation of the modified FR due to a non-uniform

DOS in a GaAs/Al0.3Ga0.7As superlattice biased by a Stark field. We have observed an anomalous

behavior of the Fano coupling parameter Γ, which does not follow the expected decreasing behavior [72]

with increasing field strength. We attribute the anomalous behavior to the effect of the nonuniform DOS

of continuum mini-bands sharply modified by the Stark field. By extending the original Fano formula

to include the contribution of the energy-dependent DOS, we obtain the “bare” coupling parameter Γo
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with which the decreasing behavior of Fano coupling without the DOS contribution is then recovered.

The effect of the non-uniform DOS of continuum energy states is reflected on the Fano coupling and

shape parameters. Following the approach of Ref. [80] based on a simple matrix algebra, we generally

derive the DOS dependence of the Fano coupling and shape parameters. We start with a model system

consisting of one discrete bound exciton state, |φ〉, and a continuum of lower-lying Wannier-Stark (WS)

states, |ψE〉, which are optically excited from an initial state |i〉. We assume that each of these states

is nondegenerate, and the continuum has a non-uniform DOS, ρ(E). We, then, have the Hamiltonian of

which matrix elements are given as: 〈φ|H |φ〉 = Eφ, 〈ψE |H |φ〉 = VE , 〈ψE′ |H |ψE〉 = E δ(E′ − E). The

optical absorption coefficient is determined as

A(ω) = Im〈i|T̂ 1

H − (ω + iη)
T̂ |i〉 (6.2)

where T̂ is the transition operator. After straightforward calculations, we find the Fano formula of the

absorption spectra
A(ω)

A(∞)
=

(ǫ+ q)2

ǫ2 + 1
(6.3)

where the reduced energy is defined by ǫ = (2/Γ)(ω − Er). The Fano coupling parameter is given by

Γ = 2πρ(E)|VE |2, (6.4)

which explicitly represents the DOS dependence on the level broadening of the discrete state |φ〉 due to

coupling to the continuum state |ψE〉. The DOS effect on the Fano shape parameter q is also obtained

as

q =
1

πρ(E)V ∗
E

〈Φ|T̂ |i〉
〈ψE |T̂ |i〉

, (6.5)

which determines the asymmetry of the absorption spectra. Here |Φ〉 is the discrete state modified by

the coupling with the continuum state |ψE〉

|Φ〉 = |φ〉 + P
∫
dE ρ(E)

VE
ω − E

|ψE〉 (6.6)

where P represents a principal value.

For FR experiments on GaAs/AlxGa1−xAs semiconductor superlattice quantum wells, as the “re-

versed” bias field increases, the energy states in Wannier-Stark ladder fan-out and the exciton states

meet sequentially the lower lying WSL states in the neighboring quantum well. Also, the WSL states

form effectively a continuum energy band for which the DOS has sharp peaks [81].

For our study, we have used an MBE-grown GaAs/Al0.3Ga0.7As superlattice with 35 GaAs quantum

wells of 97-Å thickness (34 mono-layers) separated by 17-Å thick (6 mono-layers) Al0.3Ga0.7As barriers,

clad on both side by 2500-Å Al0.3Ga0.7As buffer layers. This superlattice structure is similar to a

structure previously studied for Bloch oscillations in [82]. It has a width of 19 meV for the lowest

electron mini-band and 2 meV for the heavy-hole mini-band. For semi-transparent electric contact, a

500-Å thick Be-doped GaAs contact layer with a 100-Å nickel oxide and a 50-Å gold layers are prepared

on the top of the structure. The entire structure was grown on a Si-doped GaAs substrate. Photo-

reflectance measurements are carried out at a temperature of 4 K using a Fourier Transform Infrared

Spectrometer (FTIR) [83].

In the absence of the Coulomb interaction, we know how the WSL state evolves from a continuum

into resonant states as the bias Stark field increases. Assuming that the coupling does not occur among

– 57 –



hh-1 hh0

hh+1
25.2

B
ia

s
 F

ie
ld

 (
k
V

/c
m

)

23.0

20.8

18.6

16.4

14.2

12.0

9.8

6.5

4.3

2.1

0

1
 -

 R
e
fe

c
ta

n
c
e
 (

a
rb

. 
u
n
it
s
)

Transition Energy (eV)

1.51 1.561.551.541.531.52 1.57

Figure 6.2: Excitonic spectra of a 97/17 Å superlattice for different bias Stark fields, measured in

reflection.
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the WSL states with different band indices, the field dependence of the single-particle WSL energy is

given by Ref. [84]

En = E0 + neFd (n = 0,±1,±2, · · · ). (6.7)

This formula is applicable to our case, because the first band gap energy (≈ 60 meV) is larger than the

maximum energy shift due to the bias field (≈ 23.8 meV). Hereafter we assume that every parameter

implies the first band index.

Now, turning on the Coulomb interaction, the bound exciton state is formed below the lower mini-

band edge at zero bias field. Increasing the bias field, the bound exciton state and the continuum WSL

state evolve so as to be coupled each other if their energies are matched. Such a coupling mechanism

leads to the asymmetric FR in the absorption spectra [77]. In Fig. 6.2, the FR peak is the most promi-

nent at the n = −1, 0 transitions. This is because the electronic portion of the n = −1, 0 exciton states is

maximally overlapped with the heavy-hole state localized at the n = 0 quantum well so that the exciton

state obtains the strongest absorption strength [78, 85].

The experimental reflection spectra as a function of the applied field is shown in Fig. 6.2. As the

reverse bias field increases, the miniband-related excitons develop into WSL states. Below the onset of

where the WSL starts to develop, three delocalized exciton lines in the SL miniband regime are identified,

which we associate with the fundamental heavy-hole exciton (hh) and the light-hole exciton (lh) followed

by the excited heavy-hole excitons and continuum, as previously observed [86, 82]. The continuum mini-

band has the width of 19 meV, from the Kronig-Penny model [87], and is located 4.9 meV above the

exciton state. The spacings of WS states become 10 meV as the bias field of 13 kV/cm is applied. As the

bias field increases, the energy levels of continuum states in neighboring quantum wells are dragged down

or up, proportional to their spatial displacements from a particular quantum well where the exciton is

formed. The edge of the continuum starts to meet the fanned-out WS state in the neighboring quantum

well.

Figure 6.3 depicts the Fano coupling parameter Γ [Part (a)] and the shape parameter q [Part (b)],

extracted using Eq. (6.1), for the hh−1 transition as the bias electric field was changed from 4.3 to

25.2 kV/cm. We observe a conventional behavior of an initial decrease of Γ followed by an anomalous

behavior of an increase with increasing field. However, the DOS contribution to FR can be eliminated

using the newly defined Fano “bare” coupling parameter Γo and “bare” shape parameter qo

Γo =
ρ(E)

ρ(E)
Γ, qo =

ρ(E)

ρ(E)
q, (6.8)

where ρ(E) is the DOS measured at the center of the energy band. Then, the monotonous behavior

of decreasing Fano resonance is retrieved. The extracted values for Fano shape parameter q displayed

in Fig. 6.3(b) also show anomalous behavior, but it can be also corrected by the “bare” parameter qo.

If the effective DOS of the continuum has the shape of a suspension bridge, with local minimum in

the middle and sharp edges on both sides as shown in Fig. 6.1, we expect that the Fano coupling Γ to

be turned on fast, then it slowly becomes weaker near the central DOS minimum, and then becomes

strong again as the other edge of the DOS approaches. While, Γo and qo are defined to re-scale the

DOS effect of FR resonance and therefore the monotonic behavior of these parameters are recovered.

Eliminating the DOS contribution, the reasons of lowering Γ such as the momentum mismatch and the

wave-function localization prevail. On the other hand, 67/17 Å superlattice used in [72] has a larger

bandwidth (43 meV) of continuum band than in this experiment, which is almost twice of the resonance

energy shift. The exciton level did not seem to bypass the DOS minimum and, therefore, the effect of

DOS contribution to the FR has not arisen.
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Figure 6.3: (a) The conventional Fano coupling parameter Γ (asterisks) and the “bare” coupling

parameter Γo (circles) which compensates the effects of the density of continuum states, depicted as

a function of the Stark field for the hh−1 transition. (b) The Fano shape parameter q (asterisks) and the

Fano “bare” shape parameter qo (circles).
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The field dependence of the WSL states mostly changes the DOS which we speculate to cause the

DOS dependence of Fano Γ and q parameters. When the bias electric field starts to exceed a threshold

value, the WSL states, or the excitonic continuum states in [72], start to split off from the mini-band

energy state. At the same time, the delocalized nature of the WS state gradually weakens as the field

increases. In our experiment, the operating range of bias field is F = 4.3 ∼ 25.2 (kV/cm), within

which bias field the spacial extension of WSL states changes from 3 neighboring quantum wells down

to 2 quantum wells. Thus, the hh−1 bound exciton, which we studied for FR, is first coupled to the

next nearest neighboring lower WSL state (n = −3) and later coupled to the nearest neighboring state

(n = −2), as in Fig. 6.4(I) and (III). In between, the bound exciton state passes through the valley, as in

Fig. 6.4(II), between the two WSL states (n = −3,−2). As a result, the effective DOS felt by the hh−1

exciton transition is a parabolic shape as shown in the inset of Fig. 6.4.

The behavior of the Fano coupling and shape parameters in Fig. 6.3 is, therefore, related to the

shape of DOS of WSL states. If the DOS effect is neglected, the Fano coupling decreases monotonically

as the bias field increases, because of the two reasons: the axial localization of the wave function of the

WSL state and the increasing momentum mismatch of energy transitions, which explains the (I) and

(II) regimes of our experiments, as in Fig. 6.3 and 6.4. However, in the high-field regime (15.3 kV/cm ∼
25.2 kV/cm) , the increase of the DOS of the WS state can be more dominant than the decrease of the

coupling matrix element so that the Fano coupling increases as in Fig. 6.3(III).

In summary, we report an experimental observation of an anomalous behavior of FR coupling in a

biased semiconductor superlattice. We attribute this observation to the effect of the non-uniform shape of

the density of continuum states which is caused by resonant sweeping of an exciton state in between two

neighboring extended WS states. The anomalous behavior of the Fano coupling and shape parameters

in FR of superlattice is explained by a newly derived “bare” Fano parameters, Γo and qo, with which

the FR without DOS contribution is retrieved.

6.2 Semiconductor quantum well V -type systems

In this section, we consider semiconductor heterostructures, or quantum wells, made of III-V com-

pounds as a possible experimental candidate for the 2D-FTCCS of V -type three-level systems. A quan-

tum well is a semiconductor heterostructure that forms a well-known energy-level structure with a poten-

tial well. This structure can be grown by molecular beam epitaxy or chemical vapor deposition with high

precision control technology of the layer thickness down to monolayers. The quantum well comprises a

thin layer of a narrower-gap semiconductor sandwiched by layers of a wider-gap semiconductors. The

carrier motion is limited to the quasi two dimensional planar region in the potential well. The density

of states in bulk semiconductors, in which the carriers freely move in three dimensions, has a function of

continuous square root of energy above the bandgap energy region. However, in the quantum well, the

quasi two dimensional nature leads to the density of states being of distinct step values.

To build a quantum well heterostructure, more than two kinds of semiconductor materials are used.

The materials must be lattice matched with each other. Figure 6.5 shows the bandgap energies given as

a function of lattice constants of various III-V compounds. In fig. 6.5, GaAs, AlAs, and AlxGa1−xAs are

lattice-matched for all Al compositions, and their bandgaps differ as a function of composition ratio x.

Therefore, the binary compounds GaAs, and AlAs, and the ternary compounds AlxGa1−xAs are widely

used for semiconductor quantum well systems.

To form a V -type system, we consider a double quantum well structure. For this, we need to
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Figure 6.4: Fano resonance of an exciton state with neighboring extendedWannier-Stark states. Between

the resonant couplings with the next nearest neighboringWS state in (I) and with the nearest neighboring

WS state in (III), the exciton state resonantly sweeps through the energy interval, having the minimal

coupling somewhere in between as in (II). The effective density of states felt by the exciton states as a

function of bias electric field shows a parabolic behavior.
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Figure 6.5: Bandgap energy and lattice constant of various III-V compounds at room temperature

(adopted from Tien 1988).

compose the transition energies between the ground and excited states. One of the advantages of the

semiconductor quantum well is the freedom to design the transition energies. In the case of AlxGa1−xAs

compounds, the energies can be tuned by changing the mole-fraction x. However, this method changes

the ground state energy significantly due to the band offset, resulting the quantum system to become

a four-level system. Another way is that we can also change the transition energies by modifying the

well width L. Using the simplest method of the infinite well approximation, the quantum energies of the

carrier are given by

En =
~
2

2m∗

(
(n+ 1)π

L

)2

, (6.9)

where Ens are the bound state energies, m∗ the effective mass of the carrier, L the potential well width,

and n the index of the bound states (n = 0, 1, 2, . . . ). By selecting L, the quantized energy En can

be designed. Figure 6.6 (a) shows the band diagram of a GaAs/AlGaAs double quantum well system

composed of 17-Å thick Al0.3Ga0.7As (6 mono-layers) barrier, and two quantum wells of 79.2-Å thick

GaAs (28 mono-layers, labeled as 1), and 73.6-Å thick GaAs (26 mono-layers, labeled as 2) clad on

both side by Al0.3Ga0.7As buffer layers. In this case, at room temperature, the transition energies

E1 = 1.522eV (815 nm) and E2 = 1.536eV (807 nm), suited for our experimental condition. The excited

states energies are shown in Fig 6.6 (a) along with the ground state energy. As expected, the excited

states are split and the ground state energy is almost the same in both layers due to the heavier effective

hole mass. The wavefunctions of the excited states and the ground state are depicted in Fig. 6.6 (b).

However, the inter-well transition, or quantum tunneling, is much weaker than the inner-well transi-

tion. Also, the splitting of the ground state energy causes a peak broadening which is important factor in

2D-FTOS technique. To satisfy the ideal condition of one ground state and two excited states, and also

a comparable transition strength for the both excited states, we consider a more sophisticated structure.
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(a) (b)

Figure 6.6: (a) Band diagram of the double-quantum well structure and the energies of the bound states.

Band diagrams are shown in black (valence band) and gray (conduction band) lines, and the excited

states energies in pink (narrower well) and orange (wider well). Green line is the Fermi energy. (b) Band

diagram with wavefunctions of the bound states.

Figure 6.7 shows the band diagram of the devised double quantum well structure in which one ground

state is in 2-layer, and two excited states are in 1- and 3-layers. Again, the widths of 1- and 3-layers are

different.

To make this band diagram, we must satisfy three requirements: the valence band and conduction

band of the 2-layer are higher than those of 1- and 3-layers, the valence bands and conduction bands of

1- and 3-layers are lower than those of outside cladding layers, and all compounds in each layer must

be lattice matched. Figure 6.8 shows band edges of III-V compounds as a function of lattice constant.

In this diagram, the combination of AlxGa1−xAs and InGaP satisfies the conditions. Figure 6.7 is the

calculated band diagram of a InGaP/Al0.3Ga0.7As/InGaP quantum well system, composed of 79.2-Å

thick In0.5Ga0.5P (28 mono-layers) for 1-layer, 48.1-Å thick Al0.3Ga0.7As (17 mono-layers) for 2-layer,

and 73.6-Å thick In0.5Ga0.5P (26 mono-layers) for 2-layer clad on both side by Al0.9Ga0.1As layers. At

room temperature, the transition energies are calculated by solving 1-D Poisson equation as E1 = 1.525eV

(814 nm) and E2 = 1.535eV (808 nm). The aluminium mole-fraction of 2-layer and the widths of 1-

and 3-layers are tested for a number of sets, and the above mentioned structure fulfills the experimental

requirements.
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Figure 6.7: Band diagram of the newly designed double-quantum well structure forming a V -type quan-

tum system and the wavefunctions of one ground state and two excited states.

Figure 6.8: Band edges as a function of lattice constant of various III-V compounds at room temperature,

relative to Fermi level of gold Schottky contact (after Tiwari and Frank, 1992).
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Chapter 7. Conclusion

One of the fundamental goals in chemical physics and biophysics is to understand how molecular

structural dynamics, which are often manifested in inter-excited electronic state transitions, proceed

during chemical reactions or interactions with light and what the implications are for known chemical

and biological processes. The best known tool is two-dimensional nuclear magnetic resonance (2D-

NMR) spectroscopy, which is especially useful for the detailed analysis of molecular structures. However,

2D-NMR is primarily limited to probing relatively small molecular systems, and structural evolution

occurring in sub-picosecond time scale is too fast for 2D-NMR to resolve. Alternatively, 2D Fourier

transform optical spectroscopy (2D-FTOS), an optical extension of 2D-NMR, has been recently developed

to probe femtosecond electronic and vibrational dynamics. It can be applied to molecules as large as small

proteins and providing ultrafast time resolution which is crucial for understanding reaction dynamics and

energy transfer processes.

In this thesis, we pursued a new method that harnesses the ability of controlling the evolution of

quantum systems to 2D-FTOS, 2D-Fourier transform coherent control spectroscopy (2D-FTCCS). Quan-

tum mechanical control of matters, known as quantum control or coherent control, utilizes programmed

light forms, and has become one of the general scientific subjects of extreme interest because of its un-

precedented control capability over the dynamics of atoms and molecules. In particular, with the recent

development of the ultrafast optical technique of shaping laser pulses, termed ultrafast pulse shaping,

coherent control has been demonstrated in a variety of material substances extending from atoms and

molecules to solid-state and biological systems.

We described the first experimental demonstration of coherent control of transitions between two

excited states in a V -type system. To do this, we adopted 2D-FTCCS to lowest three energy levels of

atomic rubidium: the target transition probabilities were retrieved from distinct 2D Fourier-transform

spectral peaks that are inherent to their transition pathways, thereby the controlled transition probability

amplitudes were obtained. By shaping one of the three laser pulses used in 2D-FTOS, we selectively

turned on and off the 5P1/2-5P3/2 transition of atomic rubidium. Furthermore considering the quantum

interference of possible transition paths analytically, the target transition was engineered tripled relative

to the Fourier-transform limited pulse case. Also, we showed that the conventional coherent transients

(CTs) in a simple two-level system is mimicked by two-photon coherent control in a V -shape three-level

system. Here, higher order chirps of a shaped laser pulse play the roles of time and linear chirp in CTs.

In use of 2D-FTCCS, the phase and amplitude of controlled transition probability were successfully

retrieved from a 2D Fourier-transform spectral peak.

We expect that this novel coherent control technique or advanced 2D-FTOS scheme, demonstrated

on an atomic model system, to be applied to various fields of researches and practical systems. We

proposed to perform the advanced 2D-FTOS study on semiconductor V -type systems for realization of

quantum computing via multiple quantum operations within excited states.
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Summary

Quantum Control in Two-Dimensional Fourier Transform Optical
Spectroscopy

자연현상을 관찰하고 논리적으로 인식하는 것을 목적으로 하는 물리학에서, 양자상태함수를 준비

하고 프로그램된 방향으로 전개, 그리고 측정을 통해 자연법칙을 이해하는 활동은 물리학을 연구하는

사람들의 근본적인 연구방법이다. 따라서 원자, 분자, 또는 반도체 등 다양한 양자계에서 만들어지는

양자상태를 이루는 전자를 재단된 광자로 조정하는 양자제어기술은 제안됨과 동시에 집중적 관심속에

활발한 연구가 이루어져 왔다. 또한, 양자계의 결맞음을 이용하여 양자함수를 이루는 상태함수들 사이

의 연결법칙을 직접적으로 보여주는 이차원 푸리에 분광학은 양자계, 나아가 자연현상을 이해하고자

하는 물리학에서 전도유망한 혁신적인 도구로 관심을 모으고 있다.

이차원 푸리에 분광학의 기본 도구로 사용되는 펨토초 레이저는 시간상에서 매우 짧은 시간폭을

갖는 장점을 통해 피코초 시간 수준에서 이뤄지는 분자, 반도체, 그리고 생물질의 동역학을 관찰하는데

사용되고 있다. 하지만, 펨토초 레이저가 가지는 또다른 장점인 넓은 스펙트럼을 이용한 양자제어기술

은 사용되지 않았다. 이 논문에서는 이차원 푸리에 분광학과 양자제어기술의 접목을 통해 얻게 되는

강력한 장점에 대해 서술하였다. 발전된 이차원 푸리에 분광학의 관점에서 보자면, 양자계를 이루는

여러 상태함수 중 특정 상태함수를 여기시키는 준비과정을 통해 복잡한 과정을 단순화하여 볼 수 있

으며, 재단된 펨토초 레이저를 통해 상태함수간 연결세기를 조절할 수 있음을 알칼리 원자(루비듐)에

적용하여실험적으로보였다. 양자제어기술의발전관점에서보면,기존방식으로는측정의어려움으로

인하여 연구가 진행되지 못하던 V-형 양자계에서 양자함수의 변화를 주도하는 1차 천이속에서 여기상

태함수간의 2차천이를성공적으로양자제어함과동시에측정할수있음을보였다. 이과정에서천이의

절대값만이 아니라, 양자물리에서 매우 중요한 요소인 위상의 직접적인 측정도 가능함을 보였다. 더

나아가, V-형 양자계에서 여기상태함수간의 2차 천이는 재단된 펨토초 레이저의 위상이 미분된 형태로

정리되어 2레벨 양자계에서 보여지는 결맞는 과도 현상으로 해석됨을 보였다.

본 논문을 통해 단순화된 모델인 알칼리 원자에서 시연된 이차원 푸리에 변환 양자 제어 분광학을

이용하여, 반도체 V-형 양자계, 더 나아가 다단레벨구조 양자계에서의 양자제어를 통해 다중양자제어

등 양자전산으로의 응용을 기대하고 있다. 또한 복잡한 구조를 갖는 분자 또는 박테리아와 같은 생물

질, 광합성 물질 등에서 복잡한 연결 과정을 단순화하고 조절하는 기술을 통해, 더 깊은 이해에 필요한

정보를 얻음으로써 분자동역학, 생물질의 연결구조, 그리고 효과적인 광합성 방식을 이해하고 얻을 수

있으리라 기대한다.
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