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Nonparaxial aberrations in the optical Talbot effect probed
by quantum-dot fluorescence tomography
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The Talbot effect is a near-field phenomenon of a coherent wave transmitted through a grating to form
self-images at distances of integer multiples of the so-called Talbot length. However, at long distances, the
higher-order diffraction waves fail to converge and spatial walk-off aberration occurs. Here, we describe a
scheme for measuring the optical Talbot effect including the spatial walk-off aberration. Our approach utilizes
a quantum dot fluorescent film as a tomographic means to probe the Talbot intensity patterns. Since the Talbot
effect itself is based on diffraction and interference, measuring it with conventional microscopy systems with a
limited acceptance angle might not allow for covering aberrations introduced by walk-off effects. The experiment
demonstrates that, by utilizing the fluorescent film as an intermediate step and imaging the fluorescence instead,
rather than imaging the intensity patterns directly, higher resolution can be achieved and effects not covered by
the numerical aperture of the microscope objectiveused for imaging can be observed.
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I. INTRODUCTION

First discovered more than a century ago by Talbot [1,2],
the near-field diffraction phenomenon of self-image formation,
the Talbot effect, has been studied in a variety of spectral
ranges of electromagnetic waves, extending from infrared,
visible, and ultraviolet lights to terahertz frequency waves
and x rays [3–5]. Recent studies have further shown the
importance of the Talbot effect in novel phenomena involved
with matter-waves, plasmons, and even in extreme light
conditions such as nonlinear and quantum optical regimes
[5–9]. Significant applications of technical importance have
been derived from the Talbot effect, including lithography,
subwavelength imaging, surface profiling, and atom cooling,
to name a few [10–15].

In the Talbot effect, when a coherent beam of radiation
transmits through a one-dimensional (1D) or two-dimensional
(2D) grating, self-images are formed at distances of multiple
integers of the Talbot length ZTalbot, and periodically structured
subpatterns of images, so-called fractional Talbot carpet
patterns, also appear at distances of the fractional multiples
of ZTalbot. When we consider an incident wave of a wave
vector k = 2π/λ propagating along the z direction, through a
2D amplitude grating of period d in the x-y plane at z = 0, the
field amplitude is given by the Fourier propagation method,

U (r,z) =
∑

G

t̃(G)eiG·rei(k2−G2)1/2z, (1)

where r is the vector in the x-y plane, t̃(G) is the transmission
amplitude function of the grating defined in the reciprocal
space and G is the reciprocal lattice vector for the grating.
Under the paraxial approximation, which is satisfied by γ ≡
d/λ ≈ 100, the propagation field is obtained from the first-
order binomial expansion of the propagation phase, i.e.,

ei(k2−G2)1/2z ≈ eikze−i kz
2 sin2 θG , (2)
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where θG ≡ sin−1 |G|/k is the angle of each diffraction field
propagating along G. When the constructive interference
condition, exp(−ikz sin2 θG/2) = 1, holds for all θG, the
well-known Talbot length formula is obtained as

ZTalbot = 2d2/λ, (3)

for square-lattice gratings [1]. Talbot interference patterns in
this regime can be imaged by conventional microscopy with
axial scanning [3], and the image resolution is Abbe diffraction
limited [16]. At a regime satisfying γ ∼ 1, a new form of the
Talbot length formula

ZTalbot = λ/(1 −
√

1 − λ2/d2) (4)

is available for special cases in 1 < γ <
√

2 [17]. Instead of
such a scalar theory prediction, one can also use numerical
vector calculations such as the Fourier modal method (FMM)
[18] or the finite-difference time domain (FDTD) calculation
[19,20] to obtain the wavelength-scale interference patterns in
this regime. High-resolution far-field imaging techniques, such
as high numerical aperture microscopy [21–23] and confocal
microscopy [17,24], or local-field detection techniques, such
as near-field scanning optical microscopy (NSOM), can be
used to probe the patterns [12,25]. However, in the postparax-
ial approximation regime, γ ∼ 10, between the above two
cases, the Talbot distance formula becomes rather complicated.
When the second-order binomial expansion term of exp[i(k2 −
G2)1/2z] is taken into account [7,26], the formula can be
formally described in terms of modified Pearcey functions
[26,27]. The self-image formation also becomes incomplete,
because some of the high-order diffraction waves are either
evanescent |G| > k, or limited by the finite lateral size of the
grating, 2 tan θG > D/ZTalbot, where D denotes the overall size
of the grating. Therefore, special microscopic techniques are
needed to probe the near-field phenomena in this regime, for
example, the leakage radiation microscopy probing plasmonic
Talbot effects on metal-dielectric interfaces [28,29].

In this paper, we use a quantum dot (QD) fluorescent
film as a tomographic means to study the Talbot effect
in the postparaxial approximation regime. The fluorescent
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film is simply inserted and translated in the interference
patterns created as a consequence of the Talbot effect, and
the QD emission at a different wavelength is captured by a
conventional microscope. Since the QD emission does not
depend (at least not significantly) on the k spectrum of waves,
the intensity maxima of the Talbot carpet in certain near-field
regions, not accessible to conventional microscopy systems
with a limited numerical aperture, can be measured. In com-
parison, high-order diffraction waves escape the observation
optics, when being measured without the film, causing the
spatial walk-off aberration. In the rest of the paper, we first
theoretically consider the spatial walk-off aberration and the
working principle of the QD-film fluorescence tomography
in Sec. II and describe the experimental details in Sec. III.
We then present the experimental results including the spatial
walk-off effect and the advantage of the QD-film tomography
in Sec. IV, before concluding in Sec. V.

II. THEORETICAL CONSIDERATION

The degradation of the Talbot carpet self-image formation
of a finite-size grating can be understood as follows. When the
propagation distance z is comparable to the total lateral size D

of the square-lattice grating, power dissipation through spatial
walk-off of diffracted waves occurs. As illustrated by simple
ray-tracing in Fig. 1(a), each diffraction wave of a distinct
diffraction order starts to spatially walk-off from the wave
propagation center at the distance Zwalk−off defined by

Zwalk−off(G) = D

2 tan θG
. (5)

The self-image formation in the Talbot effect thus starts
to degrade when the propagation distance z exceeds
Zwalk−off(Gmax), where Gmax(≡2πnmax/d) is the largest avail-
able lattice vector, satisfying nmax < γ in the case of a
square-lattice grating. It is gradually degraded more as z

exceeds Zwalk−off(G) of smaller G’s. The walk-off distance
is represented in terms of m and n by

Zm,n = D

2
√

n2 + m2

√
γ 2 − n2 − m2, (6)

where (m,n) are integers denoting the indices of each diffrac-
tion order, i.e., G = 2π

d
(n,m).

)b()a(
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FIG. 1. (a) Schematic drawing of propagating diffraction fields
from a grating, with walk-off distances Zn,m illustrated. (b) Diffrac-
tion orders are restricted in the reciprocal plane by either the size of
the grating γNEmission(z) or the numerical aperture of the objective
lens γNMicroscope.

The field intensity averaged over one unit cell in the real
domain is given at z by

I (z) ≡ 1

d2

∫∫
d2

|U (r,z)|2dxdy =
∑
C

|t̃n,m|2, (7)

where t̃n,m is the transmission amplitude and the summation
restriction C is determined by the effective numerical aperture
NEmission(z) ≡ D/

√
D2 + 4z2 of the grating, or

C :
√

n2 + m2 <
γD√

D2 + 4z2
= γNEmission(z). (8)

Averaging over a period cancels out cross terms, effectively
decoupling each diffraction order. When nmax is smaller
than γNEmission(z), a condition that occurs at the position
z < d(γ 2 − n2

max)1/2, the restriction C is lifted off and all
diffraction orders contribute to the interference. However, the
numerical aperture of the microscope objective also restricts
the collection of the diffraction orders. For a microscope
objective located at z + f , where f is the working distance
of the lens, those diffracted waves of larger diffraction angles
than the collection angle of the lens are excluded; thus only
those diffraction waves satisfying θG < sin−1 NMicroscope are
collected, where NMicroscope denotes the numerical aperture of
the microscope objective. Therefore, the summation restriction
C is more generally given by

C ′ :
√

n2 + m2 < γ min(NEmission(z),NMicroscope). (9)

If we define ZM, which we call the microscope distance, in
such a way that satisfies NEmission(ZM) = NMicroscope, the wave
collection by the objective lens is limited for z < ZM by the
numerical aperture of the microscope objective, and for z >

ZM by the spatial walk-off effect [see Fig. 1(b)].
However, if we place a fluorescent film at z, the fluorophores

absorb all of the diffraction orders allowed by C and emit light
in every direction. As it is not limited by C ′, the numerical
aperture of the objective lens is not restrictive. Thus the
intensity even at z < ZM is governed again by the walk-off
effect. Therefore, the use of fluorophores as a tomographic
method allows probing of the walk-off effect in z < ZM, which
is not available for a conventional microscope.

III. EXPERIMENT

The experimental setup is schematically shown in Fig. 2.
To image the 2D sections of the Talbot carpet, a QD film was
placed at a distance fixed from the microscope objective. The
grating, instead of the QD film or the lens, was longitudinally
translated for the propagation distance z. We performed three
experiments: (1) the Talbot carpet imaging using the proposed
method, (2) the spatial walk-off aberration effect, and (3)
the advantage of the QD-film tomography over conventional
microscopy. For these, we used two types of light sources,
a 406-nm light from a frequency-doubled Ti:sapphire-pulsed
laser for the QD (the first and third) experiments and a 532-nm
light from a diode-pumped solid state (Nd:YAG) cw laser for
the second. For the 406-nm laser pulses, we initially generated
30-fs-short infrared (IR) laser pulses wavelength-centered
at 812 nm from a Ti:sapphire mode-locked laser oscillator
operating at a repetition rate of 80 MHz, and then frequency
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FIG. 2. (Color online) Schematic experimental setup for QD-
film fluorescence tomography. The light source was either narrow-
band 532-nm light or broadband light from a mode-locked laser,
depending on the experiment. CF and LPF are acronyms for color
filter and long-pass interference filter, respectively.

doubled the IR pulses by a 2-mm-thick BiB3O6 (BIBO) crystal
to produce 406-nm pulses with a 2-nm bandwidth. The output
laser power of 406-nm light was adjusted up to 60 mW and
the 2-mm beam diameter ensured homogeneous illumination
onto the grating over the area of 250 × 250 μm2.

The 2D amplitude grating mask was fabricated with a
periodic array of circular holes with a nominal diameter of
1 μm perforated on a 100-nm-thick chrome film deposited
on top of a 5-in fused silica substrate of 2.3-mm thickness.
The hole period, or the lattice constant, was d = 5 μm and
the number of holes was 50 × 50. The QD film was made
with a CdSe/ZnS core/shell QD solution (Evident Tech.
ED-C11-TOL-0520) spin coated on a glass cover-slip of size
24 × 50 × 0.17 mm3, to absorb shorter wavelength photons
than 513 nm and to emit 526-nm photons. The surface
morphology of the fabricated QD film was optically flat when
examined with an atomic force microscope. We used three
different objective lenses, one for each of the experiments:
NA = 1.3 was used in the first experiment to confirm the
quality of the QD film, NA = 0.7 in the second experiment
for the spatial walk-off aberration, and NA = 0.25 in the
third experiment to acquire clear evidence of the advantage
of QD-film tomography.

For the detection of the fluorescence from the QD film, we
used a color filter and a long-pass interference filter located
at the collimated region, as shown in Fig. 2. The relative
transmittance in the 400–500-nm spectral region was reduced
below 10−7. The interference filter was highly reflective and
the 400-nm light was refocused back onto the QD film, causing
extra artifact images. To avoid this, we simultaneously used
a slightly absorptive color filter. A 200-mm focal length tube
lens was used to capture images onto an 8-bit 1240 × 1064
pixel charged-coupled device (CCD).

IV. RESULTS AND DISCUSSION

Figure 3 shows the three-dimensional (3D) structure of the
Talbot carpet interference pattern, imaged by the proposed
QD-film fluorescence tomography. The xz-plane image of
the measured 3D Talbot carpet is shown in Fig. 3(a) and the
xy-plane sectioned images at various distances are shown in

ZTalbot 1.5 ZTalbot 0.5 ZTalbot 

(a) (b) (i)(g)(f)(e)(d)(c) (h)

(i) (15/16) ZTalbot(e) (11/16) ZTalbot

(h) (14/16) ZTalbot

(f) (12/16) ZTalbot

(d) (10/16) ZTalbot

(c) (9/16) ZTalbot

(b) (8/16) ZTalbot

(g) (13/16) ZTalbot

10
 μ

m

FIG. 3. (Color online) (a) The 3D Talbot carpet imaged by QD-
film fluorescence tomography. (b)–(i) Cross-sectional images of the
Talbot carpet at various distances ranging from (8/16) ZTalbot to
(15/16) ZTalbot. In each figure, the right panel is the result of the FDTD
calculation and the left is the tomogram of the QD-film fluorescence
tomography.

Figs. 3(b)–3(i). In each figure, the right panel is the computer
simulation based on the FDTD calculation, and the left panel
is the tomogram of the QD-film fluorescence tomography.
The Talbot length measured from the peak-to-peak distance is
119 μm, which is 3% off from 2d2/λ =123 μm calculated
with the paraxial approximation formula. The measurement
agrees well with the result of the postparaxial approximation
[26] for γ = 12.3. The QD-film cross-section images in the
left panels show background noise, which is due to the long
exposure time of the CCD.

In an ultrafast laser implementation of Talbot interference
imaging, the effects of coherence length and chromatic
aberration need to be taken into account [30]. The optical
path length difference between two different diffraction orders
G and G′ is given by z/(cos−1 θG − cos−1 θ ′

G), which is, for
example, 8.5 μm at z = 600 μm for the zeroth and second
orders. However, the coherence length of our laser pulse
was estimated as 54 μm, long enough for the tested range
of the axial distance, z < 1 mm. Meanwhile, the Talbot
length dispersion �ZTalbot/ZTalbot = �λ/λ caused by the 2-nm
spectral bandwidth of the laser was less than 0.01, much
smaller than the postparaxial shift (0.03) of the Talbot length.
Therefore the chromatic aberration was sufficiently suppressed
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FIG. 4. (Color online) Spatial walk-off effect in Talbot diffrac-
tion patterns. Black (dark) and red (light) lines represent the experi-
mental data, averaged intensities over one-by-one and seven-by-seven
cells in the real domain (inset), respectively. Green dots denote Eq. (7)
and blue dots (with a line through them) the Rayleigh-Sommerfeld
diffraction integral, vertically shifted for clarity. Each vertical line
corresponds to the walk-off distance Zm,0, and the gray area denotes
z < ZM. The inset shows the averaging area for each data.

and the optical path length difference was overcome by the
long coherence length.

In the second experiment, we examined the spatial walk-off
effect. Figure 4 shows the measured average intensity in Eq. (7)
of the Talbot carpet along the axial direction. The intensity
curves show clear plateaus in the distance intervals between
the walk-off distances, Z1,0 − Z2,0, Z2,0 − Z3,0, Z3,0 − Z4,0,
etc. The gray area denotes z < ZM for NMicroscope = 0.7. The
experimental result agrees well with the theoretical calcula-
tions. The green dots are from Eq. (7) with the summation
restriction in Eq. (9), where the lowest dot is from the (1,0)
diffraction order, the second lowest is from the (1,0) and (1,1)
orders, and so on. The blue dots (with a line through them)
are based on the scalar Rayleigh-Sommerfeld (RS) diffraction
integral over one primitive cell [31]. The black (dark) line, the
averaged experimental result over one primitive cell, shows
steplike degradation, which fits well with the RS diffraction
integral. Both the experiment and calculation show that the
diffraction order (m,0) makes a greater contribution than the
order (m,n) for n �= 0. This behavior can be easily understood
because the effective walk-off distances of n �= 0 diffractions
are in fact bigger than those defined in Eq. (6). For example, the
lateral size of the square-lattice grating is smallest along the
x and y directions and greatest along their diagonal direction,
along which the effective grating size is D′ = √

2D. However,
the red (light) line, averaged over seven-by-seven cells, and
the green dots from Eq. (7) show smooth intensity change,
which is attributable to the finite-size of the grating causing
apodization. Note that the result in Eq. (7) not only neglects the
variation in D but is also derived under the assumption of the
discontinuities at the wave front boundaries. Nevertheless, the
result in Eq. (7) shows a decent agreement with experiments.

Lastly, we performed a proof-of-principle demonstration
of the advantage of QD-film fluorescence tomography over
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FIG. 5. (Color online) Talbot carpet intensities measured along
the axial direction using an NA = 0.25 objective lens and averaged
over one lattice period for wide-field microscopy shown in blue and
for QD-film tomography in green. Theoretical guide in black dots is
shown for comparison. The wide-field microscope data are vertically
shifted for clarity.

conventional wide-field microscopy. For this, we used an
objective lens of a low numerical aperture, NA = 0.25. The
light source was the λ = 406 nm pulse, and the QD emitted
at λ′ = 526 nm. Experimental data of the averaged intensities
along the axial z direction with and without the QD film are,
respectively, shown in Fig. 5. The result of the conventional
wide-field microscopy, represented in blue, shows distinctly
different behavior from that of the QD-film fluorescence
tomography in green (vertically shifted for clarity). In the gray
area (for z < Zmicroscope) in Fig. 5, the blue line (wide-field
microscopy) is roughly flat, because the collected light is
limited by NMicroscope. However, the green line (QD-film
tomography) exhibits the spatial walk-off effect, an increase
in the average intensity as z approaches zero. The result of
the QD-film tomography (green line) shows a good agreement
with the theoretical result (black dots) from Eq. (7). The result
indicates that the QD-film tomography collects diffraction
information of the Talbot carpet, information that is otherwise
missing in conventional wide-field microscopy. The proposed
method, therefore, suggests a practical approach to acquiring
a large field-of-view without losing information in the far-field
regime by paying-off lateral resolution.

V. CONCLUSION

In summary, we have considered the spatial walk-off
aberration of the postparaxial Talbot effect. The experiment
carried out by the QD-film fluorescence tomography has
demonstrated that the high-order diffraction waves that exceed
the acceptance angle of conventional microscopes can be
successfully captured to reconstruct the 3D intensity profile of
the optical Talbot carpet. The simple reason for this behavior
is the fact that the QD emission does not depend (at least not
significantly) on the k spectrum of waves creating intensity
maxima (exciting the QDs) in the Talbot images. Therefore,
the “real” intensity maps can be measured (given the fact that
the QDs in the film have equal efficiencies) without being
limited by the observation optics. In contrast, the observed
intensities without the film would depend on the angular
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spread of the waves creating the intensity features, because
the observation optics have a limited acceptance angle. The
Rayleigh-Sommerfeld diffraction calculation performed in the
postparaxial approximation regime shows good agreement
with the experimental result. It is hoped that this method,
in conjunction with multiphoton excitation, will be useful for
subwavelength axial and lateral resolution microscopy.
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