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Abstract: Simultaneous imaging of a three-dimensional distribution of point sources is pre-
sented. In a two-lens microscope, the point-spreads on the quasi-image plane, which is located
between the Fourier and image planes, are spatially distinct, so a set of Fresnel lenslets can
perform individual wave-front shaping for axial and lateral rearrangements of the images. In
experiments performed with single atoms and holographically programmed lenslets, various
three-dimensional arrangements of point sources, including axially aligned atoms, are successfully
refocused on the screen, demonstrating the simultaneous and time-efficient detection of the
three-dimensional holographic imaging. We expect that non-sequential real-time measurements
of three-dimensional point sources shall be in particular useful for quantum correlation measure-
ments and in situ tracking of dynamic particles.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, optical engineering of quantum systems has witnessed very rapid technological
progress. One good example is optical trapping of single atoms in synthetic structures of a few
micrometers in size [1–3]. In conjunction with Rydberg-atom interactions, these optically-driven
quantum systems are referred to as Rydberg-atom quantum simulators and demonstrated 20-qubit
GHZ state generation [4], 50-qubit quantum annealing [5], and quantum simulations of Ising-type
[6,7] or XY spin models across phase transitions [8]. Currently, being fueled by the desire to reach
the quantum advantage regime [9], improvements of these systems are being actively investigated
in their performance and scale. As far as optical technologies are concerned, improvements
can be made in areas of trapping, manipulating, and probing. For the first two, making optical
traps as many as N = 1000 [10] and optical quantum gates of extreme precision [11] are being
investigated. For the last, we consider in this paper an efficient, three-dimensional (3D) optical
probing of quantum systems. Simultaneous detection of 3D atoms, which is 3D point-source
imaging in optics, is expected to be of particular importance in 3D qubit applications [12–14]
and also in other applications requiring non-sequential measurements [15].

Obtaining the volumetric information of a 3D distribution of point sources all at once is an
interesting and challenging optical problem [16]. Conventional 3D imaging modalities like
computational tomography [17], magnetic resonance imaging [18], or ultrasonography [19],
require tomographic two-dimensional (2D) images, in order to reconstruct a 3D image, so such a
multi-shot sequential method costs computational resources as well as processing time. Pin-hole
camera imaging [20] or extended depth-of-field imaging [21] can map 3D objects on to a 2D
screen all at once, but their axial information is lost. Fresnel incoherent correlation holography
[22] allows acquiring interference-based 3D information, while it requires at least three camera
shots and reconstruction process. If the axial positions are given as a priori information, direct
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3D imaging that preserves complete 3D volumetric information may be possible. One example
along this approach is the use of multi-focal grating [23], which implements N different focal
lengths in one grating device so that as-many tomographic images are simultaneously projected
on to N different sections of a large screen; nonetheless, this method produces unwanted N-1
ghost images [24] and thus demands extra exposure time. The extended imaging time is often
less favorable in applications that can benefit from one-shot 3D imaging.

In this study, we demonstrate a method to use space-variant holographic functions [25] for
one-shot 3D imaging. The central concept of our method originates from the optical conformal
mapping, best known as “imaging on curved surfaces" [26], which uses a computer-generated
hologram (CGH) to map an object plane on to a curved screen. In our method (3D holographic
imaging, hereafter), the optical direction is reversed so that “3D scattered point sources" are
mapped on to one image plane. One example is shown in Fig. 1, where twelve single atoms
are used as individual point fluorescence sources and the 3D holographic imaging method, to
be described in Sec. 2, can properly image the otherwise unimaged atoms. In the rest of the
paper, we first describe the working principle of the proposed method in Sec. 2 and, after briefly
explaining the experimental procedure in Sec. 3, we present a few exemplary demos along with
their performance summary in Sec. 4. The conclusion follows in Sec. 5.

Fig. 1. (a) The icosahedron configuration of twelve (N = 12) single atoms on four different
axial planes, respectively at z = −a, 0, 2a, and 3a (a = 8 µm). (b) Conventional imaging with
an insufficient depth of field (DOF, zDOF = λ/NA2 = 3.1 µm for NA = 0.5 and λ = 780
nm). (c,d) 3D holographic imaging (c) with axial displacements only and (d) with both axial
and lateral displacements.

2. Holographic 3D imaging

The key idea of 3D holographic imaging is wave-front shaping on a quasi-image plane (QIP). The
images of point sources are blurred on QIP and their spatial frequency components are strongly
coupled with QIP coordinates. So, wave-front shaping on QIP can individually redirect and thus
focus the point spreads of the point sources. A schematic setup is shown in Fig. 2, which consists
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of a two-lens microscope, a relay lens to the screen, and a spatial light modulator (SLM) placed
on the QIP.

Fig. 2. Optical layout of the 3D holographic imaging microscope, which consists of an
objective lens (of focal length f1), a tube lens (f2), an SLM at the quasi-image plane (QIP),
and a relay lens (f3) to the final image screen (S). The red line indicates the chief ray of a point
source Ai = (xi, yi, zi) to the original, unshaped image A′

i = (−Mxi,−Myi, 2L +M2zi) on the
intermediate image plane (IP), which results in an out-of-focus screen image. With a Fresnel
lenslet programmed on the QIP, which is separated by d from the IP, the redirected ray (blue
line) is focused on to IP. The left-hand side figure shows the CGH pattern ΦSLM(X, Y) of the
Fresnel lenslet and the right-hand side figure compares the original and as-focused images
on the screen.

In this setup, point source Ai(xi, yi, zi) is otherwise (without wave-front shaping) imaged at
A′

i (−Mxi,−Myi, 2L +M2zi), where M = f2/f1 is the magnification and L = f1 + f2. The axial and
lateral shifts are given by (x′i , y

′
i ) = (−Mxi,−Myi) and z′i = M2zi, respectively, from the image O′

of the origin. So, the space-variant phase function of the point spread on the QIP is given by

ϕi(X, Y) =
k

2(d + z′i )

(︂
(X − x′i )

2 + (Y − y′i )
2
)︂

, (1)

where X, Y denote the QIP lateral coordinates, k = 2π/λ is the wave number, and d is the
separation between the QIP and the image plane (IP). The wave-front shaping in our 3D
holographic imaging intends to direct the focus at A′

i to A′′
I = (x′i , y

′
i , 2L) on the image plane. For

that, the phase ϕi(X, Y) is eliminated and a quadratic phase function (Fresnel lens) is programmed
to focus the remaining planar beam. So, the resulting phase function is given by

Φi(X, Y) =
k

2f F
i

(︂
(X − x′i )

2 + (Y − y′i )
2
)︂

(2)

with f F
i = d(d + z′i )/z

′
i the focal length of the Fresnel lenslet to be programmed.

For N point sources, the phase functions Φi (for i = 1, . . . , N) are to be superposed, which
is permitted as long as the intensity profiles of the beams on the QIP are non-overlapping with
each other. (If the profiles are in part overlapping, the phase functions are to be sectioned
appropriately.) According to ABCD matrix calculation, the ray center, (Xc

i , Yc
i ), and the light-cone

diameter, Di, of the ith QIP beam are respectively given by

(Xc
i , Yc

i ) =

(︃
1 +

d + z′i
M2f1 − z′i

)︃
(x′i , y

′
i ) (3)

Di =
2NA
M

|d + z′i |, (4)
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where NA is the numerical aperture of the entrance pupil. The total phase function of the required
N Fresnel lenslets is then given by

Φ(X, Y) =
N∑︂

i=1
Φi(X, Y) H

(︃
(X − Xc

i )
2 + (Y − Yc

i )
2 −

Di
2

4

)︃
, (5)

where H(x) is the Heaviside step function defined by H(x) = 1 (0) for x>0 (x<0).

3. Experimental procedure

As an experimental demonstration of the 3D holographic imaging, we use isolated single
atoms as point sources. The atoms are positioned in three-dimensional free space with optical
tweezers (far-off resonant optical dipole traps). The details of the atom arrangements are reported
elsewhere [3,14,27]. In brief, the atoms (rubidium, 87Rb) are first cooled below 100 µK in a
10−10 Torr vacuum chamber by Doppler and polarization-gradient cooling, and optically pumped
to the ground hyper-fine state |5S1/2, F = 2⟩. Then, optical tweezers are produced through
Fourier-domain phase modulation by an SLM (the trapping SLM, Meadowlark 512×512). The
optical tweezers are frequency-centered at 808 nm and the beam radius is w0 = 1 µm, reduced
by 1/25 in a two-lens relay system. For defect-free arrangements of atoms [14], the trapping
SLM is programmed to rearrange the optical tweezers and the atoms are monitored with an
electron-multiplying charge-coupled device (EMCCD) camera which detects the fluorescence of
the optical cycling transition (of λ = 780 nm) to |5P3/2, F′ = 3⟩.

For our 3D holographic imaging, an auxiliary apparatus is incorporated in the above cold-atom
system. The apparatus consists of an additional two-lens ×50 magnifier (of f1 = 4 mm, NA=0.5
and f2 = 200 mm), another SLM (the imaging SLM, Meadowlark 1920×1152), and a single-lens
relay (of f3 = 100 mm) to the EMCCD. The phase-modulated light by the imaging SLM is
filtered out with a 780-nm half-wave plate and a polarizer (parallel to the SLM’s slow axis). The
imaging SLM is placed on the QIP at d = 60 mm apart from the two-lens magnifier’s image
plane (IP) and computer-programmed the Fresnel lenslets with Eq. (5). The images on the IP
are relayed to the screen, where the EMCCD records the focused atom fluorescence. Resulting
images are verified with a tomographic imaging using an electrically tunable lens (ETL) [12].

4. Results and discussions

With the setup described above, we first test the working principle of the 3D holographic imaging.
As shown in Fig. 3(a), we locate three atoms, A1-A3, on two different object planes, P1 and
P2, separated by about five times the DOF (zDOF = 3.1 µm) so that conventional imaging does
not properly image the three atoms all at once. For the 3D holographic imaging, we program
a Fresnel lenslet (of focal length fF = 150 mm) only for A3 and no phases for A1 and A2. In
addition, for a null test, we program the same Fresnel lenslet in the no-atom region (A0). The
phase function Φ(X, Y) is programmed with Eq. (5), as shown in Fig. 3(b). In this case, the depth
of field of the optical system is about five times smaller than the separation, ∆z = 16 µm, between
the image planes; therefore, as observed in Fig. 3(c), A1 and A3 are properly imaged but A2 is
not. The peak intensities are plotted in Fig. 3(d) indicating that the holographic image of A3 is
over 80% of the A1 image, mostly due to the diffraction efficienty of 84%. In comparison, the
intensities of the no-image of A3 and the null test of A0 are less than 12%.

It is noted that there are certain axial regions which do not allow Fresnel-lens programming
and that the atoms in the above experiment are chosen in allowed regions. There are two available
object regions given by

Region 1:zmin<z<zblind − zDOF (6)

Region 2:zblind + zDOF<z<zmax (7)
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Fig. 3. (a) Three atoms (A1, A2, and A3) on two different object planes (z = 0 and
z = 5.2 zDOF). (b) The phase pattern ΦSLM(X, Y) programmed to refocus A3 and a null
point source (A0). (c) Resulting images of the 3D holographic imaging. (d) Light intensity
profiles of the images, compared with the null image.

where zmin and zmax are the upper and lower bounds given by Nyquist theorem. As the phase
difference between adjacent SLM pixels cannot exceed π, the programmable Fresnel focal length is
lower bounded by the Nyquist focal length [28], i.e., fF(z) = |d(d +M2z)/M2z|>fNyquist = ∆D/λ,
where D = 2NA|d + z′i |/M is the diameter of the phase patch (or the QIP beam size) and ∆ is the
pixel size of the SLM. So, the resulting zmin and zmax are given by zmax = −zmin = dλ/2M∆NA.
Also, zblind = −d/M2 is the blind spot, in which an object is sharply focused on to the QIP. In this
case, the phase patch size is given too small to program a Fresnel lens. As the axial width of
the focal volume is the Abbe DOF, the blind region is given by zblind − zDOF<z<zblind + zDOF. In
our experimental setup of NA = 0.5, ∆ = 9.2 µm, d = 60 mm, M = 50, and λ = 780 nm, the
available axial regions are given by −100 µm<z< − 27 µm and −21 µm<z<100 µm.

Now we image atoms on a curved surface using the 3D holographic imaging method. Nine
atoms are arranged on a hyperbolic paraboloid defined by z/z0 = 1 + (x/x0)

2 − (y/y0)
2 with

x0 = 1.1 × 10−9 µm, y0 = 7.7 × 10−10 µm, and z0 = 8.0 µm. As in Fig. 4(a), we use five different
axial planes of respective axial positions z = (−46, 0, 8, 16, 32) µm, where the first plane belongs
to Region 1 and the rest in Region 2. The CGH of Fresnel lenslets for the atoms on the z ≠ 0
planes is programmed with Eq. (5) and is shown in Fig. 4(b). Note that the phase and intensity
centers, given in Eqs. (3) and (4), do not coincide as their axial positions differ. The resulting
images, without and with the CGH, are shown in Figs. 4(c) and 4(d), respectively. While the
former exhibits only the two atoms on the z = 0 plane, the latter shows all atoms distinctively.
In Fig. 4(e), the distribution of the peak intensities (I/I0) vs the widths (w/w0) of the unshaped
images (blue) and the 3D holographic images (red), respectively from Fig. 4(c) and 4(d), where
I0 and w0 are z = 0-plane values. The statistics shows that the 3D holographic imaging improves
the intensities from ⟨I/I0⟩ = 0.27±0.43 to 1.10±0.34 (410% improvement) and the beam widths
from ⟨w/w0⟩ = 3.64 ± 2.10 to 1.27 ± 0.34 (290% improvement).

The 3D holographic imaging can not only axially but also laterally relocate images. We use
axially aligned atoms, as in Fig. 5(a), and use the 3D holographic imaging method to separate
their otherwise overlapping images. We trap three atoms respectively at z = −a, 0, a with
a = 13 zDOF = 40 µm in such a way that atom A1 is located in Region 1 of Eq. (6) and atoms
A2 and A3 in Region 2. First, the CGH, Φa

SLM(X, Y), is programmed with Eq. (1) for axial
shifts only, which is shown in Fig. 5(b): two Fresnel lensets for A1 (green) and A3 (blue) are
programmed, along with the null phase for A3 (yellow), in such a way that A2 and A3 lenslets
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Fig. 4. (a) Nine atoms are placed on the surface of a hyperbolic paraboloid (a saddle-shape),
on five different axial layers, respectively, at z/zDOF = −15.3, 0.0, 2.6, 5.3, and 10.2. (b)
Conventional images of the atoms without the Fresnel lenslet programming. (c) The CGH
ΦSLM(X, Y) of Fresnel lenslets for the seven atoms on the z ≠ 0 planes. (d) The resulting
3D holographic image. (e) The peak intensities and widths of conventional (blue) and 3D
holographic (red) images (normalized with the z = 0 plane values).

are superposed while A1 is sectioned. Note that the Fresnel lensets (circled intensity functions)
in Fig. 5(b) are not concentric (Yc

1 ≠ Yc
2 ≠ Yc

3) as yi ≠ 0 (y0 = 880 µm), while the phase functions
are concentric as the atoms are axially aligned (x1 = x2 = x3 = 0 and y1 = y2 = y3 = y0). As
expected the resulting images, shown in Fig. 5(c), overlap with each other at the QIP image center
(X, Y) = (0, 0). Now in order to separate the overlapping images, we use additional linear-phase
functions, i.e.,

Φ
a,l
SLM(X, Y) = Φa

SLM(X, Y) + kLiY . (8)

As an example, the phase and intensity centers of the QIP beams can be matched as in Fig. 5(d)
with kLi = 9kM2w0/a = 6.4 × 104 m−1 so that the separation of the final images is about nine
times the spot size of the final images (M2w0 = 50 µm). The resulting images are well separated
as shown in Fig. 5(e) with 100%, 46%, and 85% peak intensities compared to non-overlapping
ones, respectively.

We now discuss the maximal volume and the maximal atom number allowed for the 3D
imaging scheme. First, the max volume Vmax = LxLyLz can be estimated using ABCD matrix
calculation, where the lateral extents Lx and Ly are given by

Lx,y =
LSLM

x,y

M
f2 + Dd/LSLM

x,y

f2 + d/M
(9)

and the axial extent Lz = 2zmax − 2zDOF is the sum of two regions defined in Eqs. (6) and (7). In
the current setup, LSLM

x = 17.6 mm and LSLM
y = 10.7 mm, so we get Vmax = 326×189×194 µm3.

Second, the max number Nmax of point sources allowed for the 3D holographic imaging is
strongly dependent on their distribution nature. When we use, as the criteria of successful
imaging, the peak intensity condition, I>0.6I0, where I is the 3D holographic imaging intensity
and I0 is the convnetional imaging intensity at the z = 0 plane, we get Nmax>200, e.g., in an
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AB-stacked 10 × 10 × 2 square array with a lattice constant of a = 40 µm. As for a random
distribution of atoms, our Monte Carlo simulation estimates that about 65 (84) atoms can be
successfully imaged out of 100 (200) atoms randomly sampled from Vmax. These numbers of
Nmax can be greatly increased at the price of single-shot imaging, for example, by using ETL [12].
In addition, ETL shall be in particular useful to remove the blind zone defined in Eqs. (6) and
(7). Hardware improvements can be considered to increase Nmax: as Vmax ≈ LSLM/M∆, three
times larger LSLM and two times smaller ∆ could achieve N = 103 on the scale of next-generation
quantum computers [10].

Fig. 5. (a) Axially aligned three atoms (of respective positions z = −a, 0, and a with
a = 13 zDOF). (b) The CGH Φa

SLM(X, Y) for axial shifts only, in which green, yellow, and
blue circles are for A1, A2, and A3, respectively. (c) The resulting image with Φa

SLM. (d)
The CGH Φa,l

SLM for both axial and lateral rearrangements. (e) The resulting image of the 3D
holographic imaging, in which the upper-left spot is the 0th order diffraction of the trapping
SLM.

5. Conclusions

In summary, we have demonstrated 3D holographic imaging for volumetric fluorescence detection.
The wave-front of 3D point sources is programmed with local-conformal mapping to achieve
simultaneous and time-efficient planar imaging. For that, Fresnel lenslets are programmed with
an SLM to render 3D holographic imaging of an atom array all at once. It is estimated that
over Nmax = 200 atoms in a volume of Vmax = 1.2 × 107 µm3 can be simultaneously imaged
with our method. With currently available fabrication technologies [29], the possible number
of imaging points could be scaled to N = 103 [10]. It is hoped that the method shall be useful
for non-sequential real-time measurements of 3D point sources in applications of quantum
correlation measurements [30] or in situ tracking of dynamic particles [31,32].
Funding. Samsung Science and Technology Foundation (SSTF-BA1301-12); National Research Foundation of Korea
(2017R1E1A1A01074307); Air Force Office of Scientific Research (FA2386-20-1-4068).

Acknowledgements. The authors thank Guido Burkard for fruitful discussion.

Disclosures. The authors declare no conflicts of interest.



Research Article Vol. 29, No. 3 / 1 February 2021 / Optics Express 4089

References
1. M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Krajebrink, C. Senko, V. Vuletić, M. Greiner,

and M. D. Lukin, “Atom-by-atom assembly of defect-free one-dimensional cold atom arrays,” Science 354(6315),
1024–1027 (2016).

2. D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free
arbitrary two-dimensional atomic arrays,” Science 354(6315), 1021–1023 (2016).

3. H. Kim, W. Lee, H. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic
optical tweezers,” Nat. Commun. 7(1), 13317 (2016).

4. A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S.
Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M.
D. Lukin, “Generation and manipulation of Schrödinger cat states in Rydberg atom arrays,” Science 365(6453),
570–574 (2019).

5. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner,
V. Vuletić, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682),
579–584 (2017).

6. H. Kim, Y. J. Park, K. Kim, H.-S. Sim, and J. Ahn, “Detailed balance of thermalization dynamics in Rydberg-atom
quantum simulators,” Phys. Rev. Lett. 120(18), 180502 (2018).

7. A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev,
P. Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, “Quantum Kibble-Zurek mechanism and critical
dynamics on a programmable Rydberg simulator,” Nature 568(7751), 207–211 (2019).

8. V. Lienhard, S. de Léséleuc, D. Barredo, T. Lahaye, A. Browaeys, M. Schuler, L. P. Henry, and A. M. Läuchli,
“Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising models with
antiferromagnetic interactions,” Phys. Rev. X 8(2), 021070 (2018).

9. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A.
Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler,
C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T.
Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A.
Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrá, J. R. McClean, M. McEwen, A.
Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A.
Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy,
K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J.
M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature 574(7779), 505–510
(2019).

10. A. Morello, “What would you do with 1000 qubits?” Quantum Sci. Technol. 3(3), 030201 (2018).
11. I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and

M. Endres, “High-fidelity entanglement and detection of alkaline-earth Rydberg atoms,” Nat. Phys. 16(8), 857–861
(2020).

12. D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A. Browaeys, “Synthetic three-dimensional atomic structures
assembled atom by atom,” Nature 561(7721), 79–82 (2018).

13. Y. Song, M. Kim, H. Hwang, W. Lee, and J. Ahn, “Quantum annealing of Cayley-tree Ising spins,” arxiv:2011.01653.
14. M. Kim, Y. Song, J. Kim, and J. Ahn, “Quantum-Ising Hamiltonian programming in trio, quartet, and sextet qubit

systems,” PRX Quantum 1(2), 020323 (2020).
15. H. F. Hofmann, “Sequential measurements of non-commuting observables with quantum controlled interactions,”

New J. Phy. 16(6), 063056 (2014).
16. J. Mertz, “Strategies for volumetric imaging with a fluorescence microscope,” Optica 6(10), 1261–1268 (2019).
17. D. T. Ginat and R. Gupta, “Advances in computed tomography imaging technology,” Annu. Rev. Biomed. Eng. 16(1),

431–453 (2014).
18. P. Irrazabal and D. G Nishmura, “Fast three dimensional magnetic resonance imaging,” Magn. Reson. Med. 33(5),

656–662 (1995).
19. M. J. Gooding, S. Kennedy, and J. A. Noble, “Volume reconstruction from sparse 3D ultrasonography,” In: R. E. Ellis

and T. M. Peters, eds., Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer
Science 2879 (Springer, Berlin, 2003).

20. R. E. Swing and D. P. Rooney, “General transfer function for the pinhole camera,” J. Opt. Soc. Am. 58(5), 629–635
(1968).

21. S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Extreme-depth-of-focus imaging with a
flat lens,” Optica 7(3), 214–217 (2020).

22. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat.
Photonics 2(3), 190–195 (2008).

23. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D.
Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D
imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).

24. C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt.
Express 18(3), 3023–3034 (2010).

https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/ncomms13317
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevLett.120.180502
https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1103/PhysRevX.8.021070
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1088/2058-9565/aac869
https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1103/PRXQuantum.1.020323
https://doi.org/10.1088/1367-2630/16/6/063056
https://doi.org/10.1364/OPTICA.6.001261
https://doi.org/10.1146/annurev-bioeng-121813-113601
https://doi.org/10.1002/mrm.1910330510
https://doi.org/10.1364/JOSA.58.000629
https://doi.org/10.1364/OPTICA.384164
https://doi.org/10.1038/nphoton.2007.300
https://doi.org/10.1038/nphoton.2007.300
https://doi.org/10.1038/nmeth.2277
https://doi.org/10.1364/OE.18.003023
https://doi.org/10.1364/OE.18.003023


Research Article Vol. 29, No. 3 / 1 February 2021 / Optics Express 4090

25. T. F. Krile, R. J. Marks, J. F. Walkup, and M. O. Hagler, “Holographic representations of space-variant systems using
phase-coded reference beams,” Appl. Opt. 16(12), 3131–3135 (1977).

26. W. H. Lee and O. Bryngdahl, “Imaging on curved surfaces,” Opt. Commun. 12(4), 382–385 (1974).
27. W. Lee, H. Kim, and J. Ahn, “Three-dimensional rearrangement of single atoms using actively controlled optical

microtraps,” Opt. Express 24(9), 9816–9825 (2016).
28. D. M. Cotrell and R. A. Lily, “Multiple imaging phase-encoded optical elements written as programmable spatial

light modulators,” Appl. Opt. 29(17), 2505–2509 (1990).
29. Y.-H. Kim, S. M. Cho, K. Choi, C. Y. Hwang, G. H. Kim, S. Cheon, and C.-S. Hwang, “Crafting a 1.5 µm pixel pitch

spatial light modulator using Ge2Sb2Te5 phase change material,” J. Opt. Soc. Am. A 36(12), D23–D30 (2019).
30. M. E. Shea, P. M. Baker, J. A. Joseph, J. Kim, and D. J. Gauthier, “Sub-ms, nondestructive, time-resolved

quantum-state readout of a single, trapped neutral atom,” Phys. Rev. A 102(5), 053101 (2020).
31. H. Qian, “Single-particle tracking: Brownian dynamics of viscoelastic materials,” Biophys. J. 79(1), 137–143 (2000).
32. M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors

revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).

https://doi.org/10.1364/AO.16.003131
https://doi.org/10.1016/0030-4018(74)90125-4
https://doi.org/10.1364/OE.24.009816
https://doi.org/10.1364/AO.29.002505
https://doi.org/10.1364/JOSAA.36.000D23
https://doi.org/10.1103/PhysRevA.102.053101
https://doi.org/10.1016/S0006-3495(00)76278-3
https://doi.org/10.1126/science.1088525

