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Movable single atoms have drawn significant attention for their potential as flying quantum memory in non-local,
dynamic quantum computing architectures. However, when dynamic optical tweezers are employed to control
atoms opto-mechanically, conventional methods such as adiabatic controls and constant jerk controls are either
inherently slow or induce mechanical heating, leading to atom loss over long distances or at high speeds. To address
these challenges, we explore the method known as shortcuts to adiabaticity (STA) as an efficient alternative for fast
and reliable atom transport. We present a series of proof-of-concept experiments demonstrating that STA-based
optical tweezer trajectories can achieve both rapid and reliable single-atom transport. These experiments include
moving atoms between two locations, adjusting speeds en route, and navigating curved trajectories. Our results
indicate that atoms can be transported with a constant acceleration on average over distances that is only limited by
trap lifetime, while effectively suppressing vibrational heating. This makes STA methods particularly well-suited
for long-distance atom transport, potentially spanning distances over centimeter scales, such as between quantum
information devices.
© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION
There is a growing interest in neutral-atom quantum comput-
ing research [1–8], largely due to the scaling potential of these
systems, as demonstrated by their ability to trap thousands of
atoms as individual qubits [9,10]. At the same time, a significant
challenge is emerging around effectively controlling and, in par-
ticular, moving these atoms spatially. As neutral-atom quantum
devices are expected to partition space into distinct zones for
operations such as entanglement, storage, and readout, atoms
are to be transferred between these zones [5–7]. As the system
size increases, meaning the number of atoms and the area they
occupy expand, the distance and time required for these trans-
fers will also grow, raising the risk of disrupting their internal
states.

The traditional approach is the “adiabatic" process [11–13],
which preserves the quantum state by slowly evolving the sys-
tem along the instantaneous eigenstates of a time-dependent
Hamiltonian. Efficient atom transport within quantum informa-
tion devices, traditionally requiring substantial time to prevent
heating and preserve quantum states, has become increas-
ingly important [14–17]. However, accelerating this process
introduces side effects, referred to as the “diabatic" process
[13,18–20]. Despite its effectiveness in maintaining the system’s
internal state, the inherent slowness of adiabatic operations
can pose challenges when faced with practical time constraints
in quantum computing operations. In this context, while the
constant jerk trajectory [5,14] is considered as an alternative

approach to minimize the average kinetic energy of atoms during
transport, this method does not fully prevent the heating of the
atoms during the transport process [5].

The method of the shortcuts to adiabaticity (STA) in quan-
tum mechanics offers a faster alternative to the adiabatic process,
achieving the same outcomes of adiabatic processes without typ-
ical time constraints, making them suitable for time-sensitive
scenarios [13,21–24]. We focus on fast and reliable single-
atom transport by controlling optical tweezers along STA-based
trajectories. Optical tweezers [25–28] have been useful for
manipulation of single atoms, which is essential for reconfig-
uring atom arrays [29–33] and facilitating qubit entanglements
[34,35] in neutral atom quantum computing. In this paper, we
will first verify the effectiveness of the STA method in an optical
tweezer system and define its experimental limits. We will then
conduct experiments to evaluate its applicability for generalized
curved trajectories, in contrast to simple straight paths. Finally,
we will discuss the potential advantages of this approach for
long-distance transport, comparing it with other transportation
methods.

2. SHORTCUTS-TO-ADIABATICITY TRAJECTORY
We design an optical tweezer path xo(t) to implement STA-
based atom transport along x(t) using the invariant-based inverse
engineering technique [13,14]. The optical tweezer’s potential
is approximated as a truncated harmonic potential [20,27], given
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by

U(x, t) =
U0

d2 [x − xo(t) − d][x − xo(t) + d], (1)

where U0 is the optical potential depth, d is the width of the
optical tweezer, ω0 =

√︁
2U0/md2 is the trap frequency, and m

the atom mass. The atom’s dynamics is then governed by

ẍ + ω2
0[x − xo(t)] = 0 for |x − xo(t)|<d. (2)

Using this harmonic approximation, the appropriate atom path
that ensures its final state matches its initial state is described by
(in scaled position and time, x̃ = x/l and t̃ = t/tf )

x(t) = vit + (10l − 6vitf − 4vf tf )t̃3 − (15l − 8vitf − 7vf tf )t̃4

+ (6l − 3vitf − 3vf tf )t̃5,
(3)

using a polynomial ansatz to satisfy the boundary conditions,

x(0) = 0, ẋ(0) = vi, ẍ(0) = 0, (4a)

x(tf ) = l, ẋ(tf ) = vf , ẍ(tf ) = 0, (4b)

to transport the atom from x = 0 to x = l over the time interval
from t = 0 to t = tf . The optical tweezer trajectory, xo(t), facili-
tating the atom transport path in Eq. (3), is then obtained from
the equation of motion in Eq. (2). For the specific case where the
atom’s initial and final velocities are both zero, vi = vf = 0, the
atom and optical tweezer trajectories are simplified as follows:

x̃(t) = 10t̃3 − 15t̃4 + 6t̃5, (5)

x̃o(t) = x̃(t) +
60
ω2

0t2
f
t̃ −

180
ω2

0t2
f
t̃2 +

120
ω2

0t2
f
t̃3. (6)

Furthermore, two-dimensional (2D) scenarios, such as rota-
tional paths with a fixed radius R, can be addressed using the
inverse engineering method [36]. Solutions for curved paths
in two dimensions can serve as a basis for designing more
complex, multi-shaped paths. Unlike the computationally chal-
lenging general solution [36], STA-based solutions for rotating
atomic transport can be classically simplified in polar coordi-
nates (θ̃ = θ/θf and t̃ = t/tf ), by leveraging the radial symmetry
of the optical tweezers, as follows:

θ(t) =
(︃
vitf
R

)︃
t̃ −

(︃
6vitf + 4vf tf

R
− 10θf

)︃
t̃3 +

(︃
8vitf + 7vf tf

R
− 15θf

)︃
t̃4

−

(︃
3vitf + 3vf tf

R
− 6θf

)︃
t̃5.

(7)
These simplified solutions need to satisfy the boundary condi-
tions

θ(0) = θo(0) = 0, θ̇(0) = vi/R, (8a)

θ(tf ) = θo(tf ) = θf , θ̇(tf ) = vf /R. (8b)

3. STA-BASED SINGLE-ATOM TRANSPORT
Our experiments utilize a 2D atom array system described pre-
viously [8,20,30–32]. Laser-cooled rubidium atoms (87Rb) were
trapped in static optical tweezers generated by a 2D spatial light
modulator (ODPDM-512 by Meadowlark Optics) and manip-
ulated with dynamic optical tweezers controlled by a pair of
acousto-optic deflectors (AOD) (DTSXY-400-820 by AA Opto
Electronics) and arbitrary waveform generators (AWG, M4i-
6622-x8 by Spectrum Instrumentation and OPX+ by Quantum

Machines). Both the static and dynamic optical tweezers were
operated with a wavelength of 820 nm and a trap frequency of
ω0 =

√︁
2U0/md2 = 2π × 90(10) kHz, where U0 = 0.8(2) mK is

the optical potential depth, m is the atom mass, and d = 0.73(7)
µm is the harmonic-trap width [20]. Atom detection was per-
formed using fluorescence imaging of the 5S1/2–5P3/2 transition,
with an objective lens that had a numerical aperture of 0.5.

Figure 1 illustrates the reliable performance of STA-based
atom transport following Eq. (5) compared with the non-STA,
CV method (“adiabatic solution” in the adiabatic region). To
calculate the change of the atomic energy distribution, we mod-
eled the initial distribution of atoms in an optical tweezer using
the Maxwell–Boltzmann distribution and the quantum harmonic
oscillator model, and numerically calculates the evolution of
their motion and distribution over time using the fourth-order
Runge-Kutta method. Based on this simulation, we can calcu-
late the vibrational state n distribution and the changes in atomic
wave packets during the STA and non-STA transport, which are
shown in Figs. 1(a) and 1(b), respectively, with transport condi-
tions set as a distance of l = 12.6(3) µm, duration of tf = 58.5(8)
µs, and initial atomic temperature of 27(3) µK for both simula-
tions. The STA transport in Fig. 1(a) is based on Eqs. (5) and
(6), successfully maintaining the initial atom conditions. The
non-STA trajectory in Fig. 1(b) is a constant velocity trajec-
tory with the same average speed employed in a diabatic region,
where the transport condition induces diabatic processes, i.e.,
∆n ≪̸ 1, with |n⟩ representing vibrational energy state. While,
at sufficiently slow transport speeds within an adiabatic region
(∆n ≪ 1), atoms following this uniform linear trajectory could
maintain their initial conditions, such as vibrational energy states
and temperature, moving the atom along the non-STA trajectory
given in the diabatic region results in failure or deformation of
the atom’s initial state population, as shown in Fig. 1(b).

In order to measure the energy distribution of the atoms in
the optical tweezer, we use the adiabatic trap lowering method
[28]. It involves three steps: (i) slowly decreasing the trap depth
to a minimum value, Umin; (ii) holding the trap depth at Umin

for a sufficient duration; and (iii) slowly increasing the trap
depth back to its initial value, Ui. During the first and last
steps, the gradual adjustment of the trap depth ensures an adi-
abatic process, preserving the vibrational mode of the atoms.
At the minimum trap depth, atoms with energy higher than
the cutoff energy Ec (corresponding to Umin) escape, leaving
behind atoms with energy lower than Ec. This process allows for
the determination of the cumulative probability distribution of
atomic energy by measuring the survival probability of atoms.
If the atoms follow the Maxwell–Boltzmann distribution, the
cumulative probability distribution function is given by

P(Ec) =

∫ Ec

0
fMB(E′) dE′ = 1 −

[︃
1 + η +

η2

2

]︃
e−η , (9)

where fMB is the normalized Maxwell–Boltzmann energy dis-
tribution function for atoms and η = Ec/kBT . These measure-
ments are critical for validating the STA trajectory, which shows
superior performance compared with the non-STA approach in
preserving the initial energy distribution.

Experimental results are shown in Fig. 1(c), where the atomic
state distributions are measured after transportation, by adjust-
ing the trap depth according to the adiabatic trap lowering
sequence adapted from Refs. [15,28]. The experimental data
are shown for before (black crosses) and after transportation
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Fig. 1. STA-based atom transport trajectory compared with non-STA trajectories. (a),(b) Schematic of transport trajectories of the optical
tweezer with transportation duration tf = 58.5 µs and distance l = 12.6 µs: (a) the STA-based solution in Eqs. (5) and (6); (b) a corresponding
constant velocity (CV), non-STA trajectory. The black lines represent the optical potential of harmonically approximated optical tweezers. The
shape of the atomic wave packet is well maintained through the STA path (blue), but it is deformed along the non-STA path (orange). (c) The
survival probabilities of atoms after the transportation, measured as a function of the cutoff atomic energy Ec by varying the minimum trap
depth Umin in adiabatic trap lowering [15,28]. The black cross markers (blue circle markers, orange diamond markers) represent the survival
probability after staying at the initial position (STA transportation, non-STA CV transportation) varying the cutoff atomic energy Ec in unit of
initial trap depth (Ui = 0.8 mK). In addition, the green dashed line is the numerically calculated atomic distribution after transportation along
the constant jerk trajectory (x̃ = 3t̃2 − 2t̃3). The probability density distributions of atoms are correspondingly shown in the inset figures, with
respect to the initial trap potential Ui.

(STA with blue circles and non-STA CV with orange dia-
monds). The black and blue solid line represent the result of
fitting the experimental data for before and after the STA trans-
portation to the cumulative probability distribution function of
the Maxwell–Boltzmann distribution, as Eq. (9). In the left-hand
inset, the probability density distribution of atomic energy after
STA transportation is shown by the blue solid line, compared
to the black dashed line for no transportation. For an initial
atom temperature of 27(3) µK (black dashed line in the inset),
the final atom temperature (blue solid line) of 36(4) µK after
STA transportation is measured, demonstrating that STA trans-
portation effectively preserves the atomic energy distribution
according to the Maxwell–Boltzmann distribution. In contrast,
when the atom undergoes constant velocity movement along the
non-STA CV path, it deviates from the Maxwell–Boltzmann
distribution. Instead, the cumulative probability distribution
(orange diamonds) closely follows a piecewise linear function,
P(x = Ec/Ui) = 0 (0<x<0.165), 1.03x − 0.17 (0.165<x<0.931),
0.79 (0.931<x<1), in agreement with expectations that the
energy is distributed nearly uniformly among |n⟩ states, where

the average energy of the atom is 6.0(2) × 10−27 J, which is
equivalent to the mean energy of an atom at 0.29(1) mK that
follows a Maxwell–Boltzmann distribution (Ē = 3kBT/2). The
probability density distribution of atomic energy after non-
STA CV transportation, shown by the orange solid line in
the right-hand inset figure, reveals a significantly distorted,
non-thermal energy distribution, suggesting substantial vibra-
tional heating. Transport success probabilities are measured
at P = 0.98(1) for the STA trajectory and 0.80(2) for the
non-STA CV trajectory. The observed differences in atomic
energy distributions and success probabilities indicate that the
STA-based trajectory successfully transports the atom while pre-
serving its initial states, whereas the non-STA CV approach
falls into the diabatic transport condition. In comparison, we
also present numerical simulation of a corresponding con-
stant jerk (CJ) trajectory [green dashed line in Fig. 1(c)]. This
adiabatic protocol produces the final energy distribution that
deviates from the Maxwell–Boltzmann distribution, with an
average atomic energy of 8.4 × 10−28 J and success probability
of 0.93.
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4. OPTICAL TWEEZER MODELS FOR EFFECTIVE
SPEED LIMITS
In the second experiment, we investigate the conditions for suc-
cessful STA-based transport to obtain an effective speed limit
of STA-based atom transport. Transport failure occurs when the
atom escapes the tweezer, a scenario not accounted for in STA
theory [14] that assumes an infinite harmonic trap. However,
the optical tweezer has a finite trap potential and its distribu-
tion follows a Gaussian function rather than a harmonic one.
To evaluate the effects of these discrepancies, we employ three
different models of the optical tweezer, as depicted in Fig. 2(a),
and correlate these findings with experimental results shown in
Fig. 2(b).

We first consider an idealized truncated harmonic trap,
denoted by Model I in Fig. 2(a), where a transportation failure
occurs when the maximum displacement ξ(t) = xo(t) − x(t)

exceeds the trap width d within the time interval 0<t<tf , where
the atomic trajectory and optical tweezer position are governed
by Eqs. (5) and (6), respectively. Consequently, allowed STA
trajectories are confined by

lI<

√
3

5
U0

md
t2
f , (10)

of which the boundary is illustrated with the white dashed line in
Fig. 2(a). In the context of atomic state, this can be defined as the
condition that the maximal energy state of the atom during STA
transport will not exceed the trap energy level (∆n × ℏω0<U0;
see the Appendix for details). So, the effective transportation
speed, obtained from the boundary condition in Fig. 2(a), is
constrained by vI<0.34 × amaxt, where amax = U0/md [19,20]
is the maximal inertial acceleration. However, in real optical
tweezer systems, Gaussian-distributed potential traps are wider

Fig. 2. Success probability P(tf , l) of STA-based transportation as a function of transportation distance l and duration tf . (a) Success
probability within three different trap models: I (a truncated harmonic trap); II (a Gaussian distributed trap); and III (a Gaussian distributed
trap with atomic and trap fluctuations). The background color contours represent the success probability of Model III and the white dashed
line (dash–dotted line, and solid line) denotes the boundary condition where atoms escape the optical tweezer for Model I (II, and III). (b)
Experimental results of STA-based transportation. The experiments are categorized into three different groups, labeled A, B, and C, whose
transportation distances are, respectively, 77.5(3), 51.7(3), and 25.2(3) µm. The experimental results are plotted with orange circles for
each of the three groups. The black dashed, dash–dotted, and solid vertical lines represent the boundary conditions of Models I, II, and III,
respectively. Each boundary was determined by adjusting the effective trap width and verifying its consistency with numerical calculations for
each model, in which the effective trap width is calculated from the extremum of the difference between the Gaussian trap and the harmonic
trap in Model II and from the experimental noise effects, the atomic temperature and trap power fluctuations, in Model III. The blue solid line
is the success probability of Model III, which is consistent with experimental results.
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than harmonic traps, as denoted by Model II in Fig. 2(a). The
gentler potential gradient in Gaussian traps produces a weaker
net force on atoms, leading to larger displacements ξ and a
higher likelihood of transport failure along the same STA path.
Taking this anharmonicity issue into account, we numerically
calculated the atomic trajectory and displacement as ξG. A
Gaussian trap has a local extreme point at the trap radius dG,
where the potential falls to 1/e2 of its maximum, especially in
our system dG = 1.0(1)µm. As the atom moves beyond dG, the
restoring force diminishes rather than increases, preventing the
atom from receiving enough force to return to the trap center
and allowing it to escape. Thus, in Model II, where we assume
the atom escapes the trap if ξG exceeds dG, the boundary condi-
tion is represented by the dash–dotted line in Fig. 2(a) and the
resulting effective transportation speed limit is approximated as
vmax

II ≈ 0.429 × vmax
I .

Model III provides a more realistic trap representation by
incorporating Monte Carlo simulations to account for exper-
imental fluctuations, such as variations in atomic velocity,
position distributions, and trap depth changes during opti-
cal tweezer controls. The Maxwell–Boltzmann distribution
describes the spread of atomic positions and velocities as a
function of the atom’s temperature, with position fluctuation
given by ∆x =

√︁
kBT/mω2

0 and velocity fluctuation given by
∆v =

√︁
kBT/m. To simulate these conditions, we randomized

the initial positions and velocities of the atoms and repeated this
process 200 times. The force exerted on the atom by the optical
tweezer was computed in real time based on the atom’s initial
conditions and the tweezer trajectory. This force was further
adjusted to reflect fluctuations in trap depth (∆U ∼ 0.15 mK),
caused by laser power fluctuations and AOD efficiency vari-
ations during transport. If, in any of the 200 simulations,
the atom’s displacement from the trap center exceeded the
trap radius (max(ξG)>dG), the event was classified as an atom
escape. The success probability P(tf , l) was then calculated
as the ratio of successful transport cases to the total number
of trials. The calculated probability of successful transport is
shown as the background color in Fig. 2(a), with the bound-
ary for successful transport is approximated by the solid white
line, with the effective speed limit for transportation given by
vmax

III ≈ 0.336 × vmax
I .

Experimental results are presented in Fig. 2(b) compared with
the success probabilities predicted by the three atomic transport
models. The experiments were carried out with three trans-
portation distances of lA = 77.5(3) µm, lB = 51.7(3) µm, and
lC = 25.2(3) µm, all under the same trap potential condition of
U = 0.8(2) mK, illustrating how they vary with different trans-
portation times. The black dashed, dash–dotted, and solid lines
represent the boundary conditions for the three models. The blue
solid curves show the success probabilities for Model III across
different transport times, closely matching the experimental
data.

5. GENERAL STA TRAJECTORIES
We now explore the feasibility of generating general STA trajec-
tories, including curved ones. Computing a path with a general
shape involves defining specific boundary conditions for the tra-
jectory and solving the relevant equations for each new shape.
However, rather than recalculating solutions for each new path,
we break down a general trajectory into segments consisting
of straight and rotational paths, with finite initial and final

Fig. 3. A concatenation of three STA segments: an atom is guided
along three STA segments with the same duration tf = 31.5(8)µs
and distance l = 12.6(3)µm but with different initial and final
velocities, (i) vi = 0 m/s and vf = 0.3 m/s, (ii) vi = 0.3 m/s and
vf = 0.1 m/s, and (iii) vi = 0.1 m/s, and vf = 0 m/s, respectively. The
transportation success probability is measured to P = 0.99(1) and
the final temperature Tf = 15(3)µK, when the initial temperature is
Tf = 12(2)µK.

velocities, and then concatenate these segments. This approach
requires two key validations: first, ensuring that concatenated
STA paths preserve the initial atomic state after transport; and
second, confirming that the generalized rotational path also
maintains the initial state. Our next experiments will therefore
test whether combined paths remain valid as STA trajectories
for atomic transport.

Figure 3 presents an atom transport experiment along three
concatenated STA paths with different boundary conditions.
The atom’s velocities are non-zero at the connection points
between segments. Following the previous Eq. (3), we calcu-
late three STA linear paths so that each of the segments is of
the same travel distance 12.6(3) µm and the same transporta-
tion time 31.5(8) µs, while each features different initial and
final velocities. This STA transportation is performed outside of
the adiabatic transport region, with a transport speed of v̄ = 0.4
m/s. The experimental result in Fig. 3 shows that a high suc-
cess probability of P = 0.99(1) is achieved. The temperature is
maintained at 15(3) µK, close to the initial temperature of 12(2)
µK, confirming that concatenating STA paths can indeed result
in a valid STA path. The release-and-recapture method [15]
is used to measure the temperatures in general STA trajectory
experiments.

Curved STA trajectories are based on Eq. (7), being tested
and summarized in Fig. 4. A 90◦ rotation is illustrated in
Fig. 4(a), where R = 25.2(3) µm, vi = vf = 0 m/s, tf = 93.7(8)
µs, and θf = π/2. For this case of vi = vf = 0, the solution is
given by θ̃(t) = 10t̃3 − 15t̃4 + 6t̃5. When we compare the suc-
cess probability of this STA rotational transport with that of a
constant angular velocity optical tweezer, defined by r(t) = R
and θ̇ = θf /tf , to see if the atoms maintain their initial state in
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Fig. 4. Curved STA trajectories for atom transport. (a) A 90◦ cir-
cular STA trajectory. (i) An illustrative image of atoms before and
after the rotational transportation. As a non-STA transportation,
the constant angular velocity trajectory [r(t) = R, θ(t) = θf t/tf ] is
utilized, satisfying the same transportation distance and duration.
(ii),(iii) The blue and orange lines represent the atom trajectories
during the STA transportation and non-STA transportation, respec-
tively, and the black dotted line represents the trajectory of the
trap center for each transportation. (b) An S-shaped STA trajectory.
The S-shaped atom trajectory is designed by combining two STA-
based semicircular paths, each rotating 180◦ with the same radius
R = 12.6(3)µm within the same duration tf = 128.8(8)µs but in
opposite directions. The final speed of the first semicircle and the
initial speed of the second semicircle are vinter = 0.3 m/s. As a non-
STA transportation, two of the constant angular velocity trajectories
with r(t) = R, θ(t) = θf t/tf are combined.

the diabatic region, an experimental as-designed STA transport
results in a high success transport probability of P = 0.98(1)
compared with P = 0.03(1) of the non-STA, constant angular
velocity trajectory. The temperature is well maintained at 16(3)
µK close to the initial temperature of 10(3) µK. An ‘S’-shaped
transportation path is also implemented by combining two semi-
circular segments based on the STA-based rotation solution, as
illustrated in Fig. 4(b). The semicircular paths rotate 180◦ in
opposite directions with the same radius of R = 12.6(3) µm
within duration of tf = 128.8(8) µs. To maintain continuous
motion without reducing speed to zero at the intersection, the
final speed of the first semicircle is matched to the initial speed
of the second semicircle, i.e., Rθ̇1(tf ) = Rθ̇2(0) = 0.3 m/s. For
comparison, non-STA transport is tested with a constant average
angular velocity θ̇ = π/tf . Model III simulations show that the
STA atom trajectory [Fig. 4(b ii)], is more convergent to the trap
center than the non-STA trajectory in Fig. 4(b iii). This is con-
sistent with experimental success probabilities of P = 0.99(1)
for STA and P = 0.25(2) for non-STA transport, where the low
probability of the non-STA transport can be attributed to atom
leakage along the normal direction, caused by the centrifugal
force acting on curved paths. The atom’s temperature is well
maintained in the STA transportation, with the final temperature
of 15(3) µK matching the initial temperature of 10(3) µK.

Furthermore, in the context of long-distance atom transport,
we have conducted an experiment of repeatedly shuttling an

Fig. 5. Atomic shuttle run experiment. An atom is shuttled back
and forth between two locations using an STA path with a duration
of tf = 129.0(8)µs over a distance of l = 51.8(3)µm. Success prob-
abilities are measured as a function of one-way run number n for up
to n = 25 and fitted to Ps(n) = 0.984(4)n.

atom between two locations, which we may term “atomic shuttle
running". This test estimates the maximum transport distance
achievable within the field of view, which is approximately
100 µm squares, limited by our EMCCD (electron multiply-
ing charge-coupled device) imaging device. As illustrated in
the inset of Fig. 5, each one-way travel covers a distance of
l = 51.7(3) µm, with a runtime of tf = 129.0(8) µs. Success
probabilities Ps(n) are measured for various repetitions up to
n = 25 and numerically fitted to

Ps(n) = 0.984(4)n, (11)

assuming the effect of the gradual temperature increase during
the shuttle run is negligible. This result indicates that the STA-
based atom trajectory could span over one centimeter with a
success probability exceeding Ps(n = 200) = 3.9%. In contrast,
when using a constant-velocity trajectory under the same trans-
port conditions, the success probability is significantly lower at
Ps(n = 1) = 0.42(6), implying a transport distance of approxi-
mately 200 µm with 3.1% success rate—50 times shorter than
the STA approach.

6. DISCUSSION AND CONCLUSION
The STA approach offers notable advantages over the CV
(x̃CV(t) = t̃ ) and CJ (x̃CJ(t) = 3t̃2 − 2t̃3, for example) trajectories
[5,37]. This can be deduced based on the energy state changes
that the atoms undergo along each transportation path. If the
optical tweezer is treated as a quantum harmonic oscillator, the
state of the atom is determined by the force acting on it, which
corresponds to the magnitude of its acceleration [38]. If we
assume that the atom travels a considerable distance in relation
to the trap size and focus on the scenario where the trans-
port is successful, we can disregard the discrepancy between
the atom’s trajectory and the trap’s (ξmax<d ≪ l). Under these
assumptions, the atom’s real-time acceleration is approximated
to match that of the trap and we can calculate the maximum
distance the atom can successfully travel in a finite depth of
the trap, by considering a situation where the maximum energy
of the atom is equal to the trap’s energy (max |∆n(t)| · ℏω0 =

U0). Therefore, the maximum transportable distances scale
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as

lmax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√︃
2U0

m
× tf for CV path,

1
3
√

3
U0

md
× t2

f for CJ path,
√

3
5

U0

md
× t2

f for STA path.

(12)

While both CJ and STA can achieve a constant average accel-
eration motion, i.e., lmax ∝ t2

f , they differ in the degree of atom
heating, which is dependent upon the final state of the atom,
∆n, following movement, as approximated for each trajectory as
follows:

∆n ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ml2

2ℏω0
× t−2

f for CV,

36ml2

ℏω3
0

× t−4
f for CJ,

3600ml2

ℏω5
0

× t−6
f for STA.

(13)

When the atom travels a maximal distance lmax, as defined by
Eq. (12) within 100 µs along three different trajectories, the
resulting increases in the final state of the atoms are 188, 125,
and 13, respectively. It should be noted that, unlike CJ and CV,
the maximum state changes or the final state changes in STA
differ significantly in magnitude over time. As a result, for the
same success probability in STA, the farther and longer the
atom travels, the smaller the final temperature change. As an
illustration, if atoms traverse for 1 ms, the potential maximum
distance for CV, CJ, and STA are 391 µm, 21 mm, and 38 mm,
respectively. Notably, the vibrational state changes of the atom
diminishes from 13 to 0.1 for STA trajectory alone, in contrast
to the other two paths, which have same increases for 100 µs.

Aside from technical limitations, the success of atom trans-
portation is fundamentally constrained by the trap lifetime, τtrap,
which defines the maximum duration an optical tweezer can sta-
bly hold atoms. In addition, when considering only the intrinsic
limitation of the optical tweezer’s Gaussian beam profile, as
described in Model II, the success limit of STA is given by
l2<0.0743dω2

0t2
f . The state-of-the-art trap lifetime is currently

6000 s [17], allowing for 60 s of stable atom guidance with a
probability over 0.99. Within this time-frame, an atom could
theoretically travel a distance of approximately 3.6 × 107 m at a
maximum atom velocity of 6.0 × 105 m/s. However, the limita-
tion of the AOD specification [39], especially access time and
trap width restrict the possible trap velocity. The access time is
inversely proportional to the size of the incident beam on the
AOD (in our setup, 0.75 µs with a beam size of 0.5 mm), and the
trap width determines the trap resolution, which is 3µm for a
1µm Gaussian width. Therefore, the maximum trap velocity is
determined as vmax = 3µm/0.75µs = 4 m/s. Therefore, the atom
can expectedly travel a distance 293 µm through 138 µs, where
the average velocity of transportation is approximately 2.1 m/s.
In addition, an additional technical constraint is the size of the
camera windows, given the constraints of our current experi-
mental setup, particularly the EMCCD size (approximately 100
µm), the maximum transport speed in our experiments is esti-
mated to be 0.88 m/s over a distance of l = 77.5(3) µm and a
duration of tf = 87.9(8) µs.

In conclusion, this study has demonstrated that the STA
method significantly improves the efficiency and range of atomic

transport in optical tweezers, making STA particularly suitable
for operating dynamic quantum information devices and other
applications requiring precise atomic control. Both experimental
and simulation results have shown that STA-based trajectories
preserve the Maxwell–Boltzmann energy distribution and avoid
vibrational wave packet deformations. The versatility of STA is
further illustrated by successful applications to complex curved
trajectories, such as S-shaped paths, through the concatenation
of multiple STA segments and implementation of STA-based
rotations, achieving both high success rate and minimal tem-
perature change. Overall, the STA method offers significant
advantages in optimizing experimental efficiency by enabling
faster and reliable atom transport, extending the feasible trans-
portation distance within practical trap operation times, thereby
proving especially valuable for quantum information devices.

APPENDIX A. ATOMIC STATE CHANGE
BY TRAJECTORIES
Atomic transport is evaluated from two perspectives: the success
of the transport and the suppression of unwanted heating of
atoms. Both perspectives can be judged by atomic state changes
during the transport process. First, the success of the transport
is determined by the maximum vibrational mode of the atom,
max |∆n(t)|, because if the maximum state reached by the atom
during the transport is equal to or higher than the energy depth
of the trap, the atom is likely to escape the trap and the transport
will fail. In addition, induced atomic heating by transportation
means an increase at the final atomic state.

In a quantum oscillator system, the change of atomic state is
dependent on the force F, exactly meaning acceleration a [5,38],

∆n(t) =
m |a(ω0)|

2

2ℏω0
, (A1)

where a(ω0) is the Fourier component of a at the trap frequency
ω0 for the time parameter τ (0<τ<t). So, based on this equation,
we can estimate the state change of the atom and compare the
results of moving the atom for three different paths: (i) the CV
trajectory (x̃(t) = t̃); (ii) the CJ trajectory (x̃(t) = 3t̃2 − 2t̃3); and
(iii) the STA trajectory (x̃(t) = 10t̃3 − 15t̃4 + 6t̃5).

For the CV trajectory, there will be acceleration and deceler-
ation periods during which the atom is forced by the difference
between the initial and final velocity of the atom and the trap.
Since the atom should be accelerated before the atom can leave
the trap (vt<d; v = l/tf ), the time for acceleration and decelera-
tion of the atom is assumed to be τacc ∼ d/v, and the acceleration
of the atom is practically given by

a(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
v2

d
, (0 ≤ t ≤ τacc),

0, (τacc<t<tf − τacc),

−
v2

d
(tf − τacc ≤ t ≤ tf ).

(A2)

When ω0τacc ≪ 1, the maximal |a(ω0)|
2 and the average final

|a(ω0)|
2 are both approximately v2. Therefore, the maximal

atomic state change and final atomic state change is same as
max |∆n(t)| = ∆n = ml2/2ℏω0t2

f . For the CJ path, the accelera-
tion of atom is a(t) = 6l(1 − 2t̃)/t3

f . When ω0tf>1, the maximal
|a(ω0)|

2 is approximately 108l/ω2
0t4

f , and the average final
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|a(ω0)|
2 is approximately 72l/ω2

0t4
f . As a result, the max-

imal atomic state change is max |∆n(t)| = 54ml2/ℏω3
0t4

f and
final atomic state change is same as ∆n = 36ml2/ℏω3

0t4
f . For

the STA path, the acceleration of atom is a(t) = 60l(t̃ − 3t̃2 +

2t̃3)/t2
f . When ω0tf>1, the maximal |a(ω0)|

2 is approximately
100l/3ω2

0t4
f , and the average final |a(ω0)|

2 is approximately
7200l2/ω4

0t6
f . As a result, the maximal atomic state change is

max |∆n(t)| ≃ 50ml2/3ℏω3
0t4

f and final atomic state change is
same as ∆n = 3600ml2/ℏω5

0t6
f .
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