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Coherent and dissipative dynamics of entangled few-body systems of Rydberg atoms
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Experimentally observed quantum few-body dynamics of neutral atoms excited to a Rydberg state are
numerically analyzed. For this, up to five rubidium atoms are trapped with optical tweezers, arranged in
various two-dimensional configurations, and excited to the Rydberg 67S state in the nearest-neighbor blockade
regime. Their coherent evolutions are measured with time-varying ground-state projections and the experimental
results are analyzed with a model Lindblad equation with the homogeneous and inhomogeneous dampings
determined by systematic and statistical error analysis. The coherent and dissipative dynamics of these entangled
systems are successfully reproduced using the given model and external parameters optimally calibrated with the
experimental results.
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I. INTRODUCTION

Neutral atoms have been a promising candidate platform
for quantum information science and quantum many-body
physics studies [1–5]. They have well-defined energy levels,
long coherence, and lifetimes, which are all essential for their
usage as qubits in quantum information science [3]. Further-
more, atoms can be controlled as individual quanta [6,7],
rather than as a collective ensemble, through the developments
in laser cooling and trapping techniques, and these atoms
can be easily entangled through Rydberg-state excitation
[8–12]. In recent demonstrations, as many as 100 single atoms
were arranged with a set of independently controlled optical
tweezers [13–19]. With these entangled single-atom systems,
Rydberg quantum simulators were constructed, having about
25 to 51 qubits, and used to probe the many-body dynamics
of Ising-type or XY quantum spin models across phase transi-
tions [20–22] and also towards thermalization [23].

Rydberg atoms strongly interact with each other due to
the high polarizability and large-scale dipoles, compared to
the ground-state atoms. The giant dipole-dipole interaction
among closely lying Rydberg atoms can shift the resonance
of the double excitations out of the range of excitation laser
bandwidth, inhibiting the excitations of all other atoms during
one is excited. This Rydberg dipole-blockade is of much inter-
est as an effective way to implement entanglements [9,10] and
controlled-NOT (C-NOT) gates [11,12] in quantum computation
and quantum simulation [20–24].

Precise measurements and control of the quantum evo-
lution of these atoms, particularly in their entanglements,
are highly important in quantum simulations [24], in which
measured system dynamics are used to reproduce and predict
the dynamics of other many-body quantum systems. However,
the system dynamics of an entangled many-body system,
which are given as a combination of coherent Hamiltonian and
dissipative open-system evolution, are vulnerable to environ-
mental errors. In this paper, we present a numerical analysis
of experimentally observed quantum few-body dynamics of
Rydberg atoms. We first measure the coherent evolutions of up
to five rubidium atoms arranged in various two-dimensional

configurations and entangled through Rydberg state excita-
tion, and the measured results are analyzed with a model Lind-
blad master equation with homogeneous and inhomogeneous
dephasings.

The rest of this article is organized as follows. In Sec. II, we
provide a brief theoretical model description of the quantum
dynamics of Rydberg atomic systems. Experimental setup
and procedure are described in Sec. III, before the result in
Sec. IV, and possible error sources are discussed in Sec. V. A
summary is given in Sec. VI.

II. THEORETICAL DESCRIPTION

We consider N atoms arranged in two-dimensional space
and interacted with light near-resonant to a Rydberg state. The
Hamiltonian, without dephasings taken into account, is given
by

Ĥ = h̄

2

N∑
j=1

{
�eiφ |0〉 j〈1| j + �e−iφ |1〉 j〈0| j − �σ̂ ( j)

z

}

+
∑
k<l

Vkl n̂k n̂l , (1)

where σ̂
( j)
z = |0〉 j〈0| j − |1〉 j〈1| j and n̂k = |1〉k〈1|k are de-

fined for pseudospinors |0〉 = |g〉 (the ground state) and |1〉 =
|R〉 (the Rydberg state), �eiφ is the Rabi frequency with phase,
� is the detuning, and Vkl = −C6/r6

kl is the van der Waals
interaction [25] between two Rydberg atoms separated by rkl .

As an exemplary set, we consider six two-dimensional
arrangements of N = 3–5 atoms as shown in Fig. 1: (a)
triangular three (N = 3) atoms arranged at the vertices of an
equilateral triangle, (b) a linear arrangement of three atoms,
(c) a zigzag arrangement of four atoms, (d) linear four atoms,
(e) zigzag five atoms, and (f) linear five atoms. In each
configuration, the nearest-neighbor distance is smaller and the
next-nearest is larger than the blockade radius [8] (i.e., rn.n. <

rB = (|C6|/h̄�)−1/6 < rn.n.n.). In this case, double excitations
of any and only neighboring pairs are prohibited almost,

2469-9926/2019/99(4)/043404(7) 043404-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.043404&domain=pdf&date_stamp=2019-04-05
https://doi.org/10.1103/PhysRevA.99.043404


LEE, KIM, JO, SONG, AND AHN PHYSICAL REVIEW A 99, 043404 (2019)

)b()a(

)d()c(

)f()e(

FIG. 1. Atom configurations: (a) triangular three atoms (r12 =
r23 = r13); (b) linear three atoms (r12 = r23 = r13/2); (c) zigzag four
atoms (r12 = r13 = r14 = r24 = r34 = r23/

√
3); (d) linear four atoms

(r12 = r23 = r34 = r13/2 = r24/2 = r14/3); (e) zigzag five atoms; (f)
linear five atoms. Each circle represents the radius of Rydberg block-
ade, which is larger than the nearest-neighbor distance and smaller
than the next-nearest-neighbor distance, i.e., r(nn) < rR < r(nnn).

and this prohibition becomes complete in an approximation
of ignoring all the longer-distance interactions. Under this
approximation, the quantum dynamics of the triangular three
atoms in Fig. 1(a) is a collective Rabi oscillation [26], of
which the time evolution is given by

|ψ (t )〉 = a0(t )|000〉 + a1(t )
|100〉 + |010〉 + |001〉√

3
, (2)

where |000〉 is the zero-excitation state and the second term
is the superposition of singly excited states. Likewise, the
dynamics of the linear three atoms in Fig. 1(b) is given in the
symmetry basis {|000〉, |010〉, (|100〉 + |001〉)/

√
2, |101〉},

the zigzag four atoms in Fig. 1(c) is in {|0000〉,
(|1000〉 + |0001〉)/

√
2, (|0100〉 + |0010〉)/

√
2, |1001〉}, and

so on.
Dephasing of a mixed state is in general described by a

Lindblad master equation [27–29], which reads

dρ

dt
= − i

h̄
[H, ρ] + Lind(ρ) + Lc(ρ), (3)

where ρ is a 2N -by-2N density matrix, Lind and Lc are the
Lindblad superoperators for individual and collective dephas-
ings, respectively, given by

Lind(ρ) =
N∑

j=1

(
LjρL†

j − 1

2
{L†

j L j, ρ}
)

, (4)

Lc(ρ) = L0ρL†
0 − 1

2
{L†

0L0, ρ}. (5)

In Eq. (4), Lj is the Lindblad operator for individual (atom j)
dephasing, given by

Lj = I (1) ⊗ I (2) · · · ⊗
√

γind

2
σ ( j)

z · · · ⊗ I (N ), (6)

where I is the 2-by-2 identity matrix and γind is the individual
dephasing rate. In Eq. (5), L0 is the Lindblad operator for
collective dephasing, given as a sum of Lj with collective
dephasing rate γc replacing the individual dephasing γind in
Eq. (6). As to be explained in Sec. IV, in our experiment,
the individual dephasing is mainly caused by the spontaneous
emission through intermediate state and the collective dephas-
ing is negligible.

Additionally, the phase φ of the Rabi frequency �eiφ

in Eq. (1) changes in time due to the phase noise of
Rydberg-state excitation lasers. This phase noise induces
apparently a dephasing behavior, as recently discussed in a
single-body dephasing model [30]. In the interaction pic-
ture, where the phase is eliminated from the Rabi fre-
quency and treated as a detuning, the Hamiltonian H ′ =
UHU † − ih̄UU̇ †, basis-transformed with phase-rotation U =
	N

j=1(|0〉 j〈0| j + eiφ(t )|1〉 j〈1| j ), is given by

Ĥ ′ = h̄

2

N∑
j=1

{
�σ̂ ( j)

x − [� + φ̇(t )]σ̂ ( j)
z

} +
∑
k<l

Vkl n̂k n̂l , (7)

where σ̂
( j)
x = |0〉 j〈1| j + |1〉 j〈0| j . The time-dependent detun-

ing is then given by �(t ) = � + φ̇(t ), which can be analyzed
as a Fourier series, i.e.,

�(t ) = 2
∫

|�̃( f )| cos[2π f t + ξ ( f )]df , (8)

with spectral amplitude |�̃( f )| and spectral phase ξ ( f ) of
�(t ). So, when the laser phase noise in repetitive measure-
ments randomizes ξ ( f ) and induces �(t ) fluctuations, an
apparent dephasing behavior can appear in the given quantum
dynamics.

III. EXPERIMENTAL SETUP AND PROCEDURE

The experimental setup is shown in Fig. 2, which is similar
to our earlier reports [14,15,23,31]. In brief, the setup consists
of a magnetooptical trap (MOT) for cold rubidium atoms
(87Rb), a control system of optical tweezers (far-off resonance
dipole traps), and an optical system for Rydberg excitation.
Rubidium atoms were first cooled to 30 μK through Doppler
and polarization-gradient coolings. During the cooling stage,
optical tweezers (of 820-nm wavelength, 1-mK trap-depth,
and 1.4-μm diameter) were trapping atoms at pre-determined
target sites and the MOT was turned off by shutting off the
anti-Helmholtz coils. Typical arrays before rearrangements
were about half-filled due to collisional blockade [6]. So, the
occupancy or vacancy in each optical tweezer was checked
with fluorescence imaging |5S1/2, F = 2〉 → |5P3/2, F ′ = 3〉
by an electron multiplying charge-coupled device (EMCCD).
After the occupancy was all checked, unity-filled arrays
were then created with reconfiguration of captured atoms
[16,31] through two times of the three-step processes of imag-
ing, vacancy-filling, and verification. The six different atom
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FIG. 2. A schematic diagram of the experimental setup and the energy level diagram for Rydberg-state excitation (AOM: acousto-optic
modulator, EOM: electro-optic modulator, PC: personal computer, SLM: spatial light modulator, PBS: polarization beam splitter).

configurations, introduced in Sec. II, were produced, which
were linear or zigzag N = 3, 4, or 5 atoms.

After a unity-filled atom arrangement was prepared,
Rydberg-state excitation was performed through the two-
photon transition from |g〉 = |5S1/2, F = 2, mF = 2〉 to |R〉 =
|67S1/2, mJ = 1/2〉 via off-resonant intermediate state |m〉 =
|5P3/2, F ′ = 3, m′

F = 3〉 [32]. We used 780-nm and 480-
nm lasers (diode lasers from Toptica), counterpropagat-
ing with σ+ and σ− polarizations, respectively. The
Rabi frequency of the two-photon transition is given
by � = �780�480/(2�i ) = (2π )1.0 MHz, where �780 =
(2π )94 MHz and �480 = (2π )12 MHz are the Rabi frequen-
cies of the one-photon transitions (|g〉 → |m〉 and |m〉 → |R〉),
and �i = −(2π )560 MHz is the one-photon detuning of the
780-nm laser from the intermediate transition (|g〉 → |m〉).
The diameters of the 780- and 480-nm lasers were 100 and
10 μm, respectively, so that the atoms in dynamics were under
homogeneous Rabi frequencies. The homogeneity was also
verified by a set of separate single-atom experiments. The
magnitude of �480 was limited by the maximum laser power.
Note that Doppler effect shifts the frequency of the exciation
laser, causing detuning of ∼100 kHz for the atom temperature
of 30 μK which is considered small in our experiment.

The phase of the Rabi frequency is φ = φ780 + φ480, the
sum of the phases of the lasers. The frequencies of the lasers
were stabilized to a narrow linewidth of < (2π )30 kHz with

an ultralow expansion (ULE) reference cavity (from Stable
Laser Systems). The ULE cavity had a finesse of 15 000
and antireflection coated at the dual wavelengths of 780 and
480 nm. The laser wavelengths were roughly monitored by a
wavemeter (HighFinesse WS7-60) within 60 MHz accuracy,
and Pound-Drever-Hall (PDH) locking technique (PDH mod-
ule from Stable Laser Systems and PDD110 from Toptica)
was adopted to lock the laser frequencies to the Fabry-Perot
signal reflected from the reference cavity, in conjunction with
fast lock servos (FALC110 from Toptica).

To suppress the stray E-fields, metallic instruments around
the chamber were electrically grounded. The amount of the
atom resonance shift was decreased from 16 MHz to 200 kHz,
which corresponded to the E-field of 50 to 0.6 mV/cm. Our
internal simulations showed a 200 kHz of resonance shift
made little effect to the dynamics.

The time sequence of the experimental procedure is sum-
marized in Fig. 3. Before the Rydberg-state excitation, optical
pumping to |g〉 was performed for 2 ms, when the quantization
axis was defined with a Helmholtz bias coil (B = 6.1 G). Then
we turned on the 480-nm laser, turned off the optical tweezers
for 3.4 μs to avoid push-out of atoms in the Rydberg states
(due to the light-induced potential), and finally turned on the
780-nm laser for Rydberg-state excitation. After the 780-nm
laser turn-on with various pulse durations, the optical tweezers
were turned back on to recapture the atoms in |g〉. Whether
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FIG. 3. Experimental procedure: the time sequences of fluores-
cence imaging, MOT cooling, and repumping, anti-Helmholtz cur-
rent, far-off resonant trapping (optical tweezers), bias B-field, optical
pumping, and Rydberg-state excitation with 480-nm and 780-nm
lasers, respectively.

each atom was recaptured or not (a projection measurement
to |g〉) was recorded with the fluorescence imaging through
|5P3/2, F ′ = 3〉.

IV. RESULTS

Experimentally measured quantum dynamics are summa-
rized in Fig. 4. The results for the total six configurations,
N = 3–5 atoms in linear or zigzag configuration, are shown
in Figs. 4(a) to 4(f), where the Rydberg blockade radius was
rR = 8.8(3) μm and the lattice constant was d = 6.1(3) μm.
For example, the case of the equilateral triangular three atoms
is shown in Fig. 4(a), where the schematic geometry and
the image of the atoms are shown in the leftmost column,
and the measured probabilities are in the right columns. The
time-evolving state probabilities are plotted for the symmetry
bases |000〉 and (|100〉 + |010〉 + |001〉)/

√
3, as in Eq. (2).

The scan range of the quantum evolution was 0−3 μs with
a time step of 0.1 μs (total 31 data points with 150 repetitive
measurements). Similarly, the case of three atoms in the linear
configuration is shown in Fig. 4(b), where the constituent
symmetry bases are |000〉, |010〉, (|100〉 + |001〉)/

√
2, and

|101〉. The remaining configurations are also represented, with
the probability measurements for the corresponding sets of
symmetry bases.

In comparison, numerical calculations were performed
with Eqs. (3) and (7), taking into account the contributions
of experimental and measurement errors. As to be discussed
in Sec. V, major error sources are: (a) the spontaneous decay
from |R〉 to |g〉, (b) optical-tweezer atom loss, (c) leakage to

intermediate state, and (d) laser noise. Table I summarizes the
experimental uncertainties related to these error sources. The
noises in laser intensity and phase were δI/I = 3% and |�| =
0.4�, respectively. The position uncertainty of the optical
tweezers was δr/r = 5%. The measurement uncertainty was
δP = 3%, mainly from the spontaneous emission from |R〉 to
|g〉 and also atom escapes from optical tweezers.

Each solid line in Fig. 4 represents the calculation. We used
a numerical fitting with two parameters, α ≡ �/�0 and β ≡
|�̃( f )|/|�̃( f )|0, where �0 and |�̃( f )|0 are the references
retrieved from single-atom experiments. After randomization
with ξ ( f ) in Eq. (8), we obtain (α, β ) = (0.94, 3.1 dB),
(1.04, 0.0 dB), (0.96, 0.0 dB), (1.02, 1.3 dB), (0.96, 0.6 dB),
and (0.96, 3.1 dB) for the six configurations, respectively.
The dashed and dot-dashed lines in each figure are the cal-
culations with δβ = ±3 dBm shifts, respectively, from the
above values. To estimate how well the experimental data are
replicated by the model fitting, R2 values are calculated, which
are the proportion of the measured behaviors explained by the
model. With the optimal fitting conditions of (α, β), we get
R2 = 0.90(1) (e.g., for N = 3 cases) and this value gradually
decreases below 0.6 when �α = 20% or �β = ±3 dB. Note
that calculations without the phase noise taken into account
give a similar R2 values below 0.6.

V. DISCUSSIONS

Deviations from ideal dynamics, for example, a simple
two-state oscillation for the triangular three atoms in Fig. 3(a),
are attributed to mainly four different physical reasons: (a)
sources of projection measurement error P(R|g), (b) sources
of projection measurement error P(R|g), (c) dephasing due
to leakage to intermediate state, and (d) laser noises. In the
following, these error sources are discussed.

(a) The measurement error P(g|R), the conditional prob-
ability of false measurement of |g〉 given that the state was
initially in |R〉, mainly comes from the spontaneous emission
from |R〉 to |g〉. A certain portion of Rydberg atoms, that
are supposed to be absent at measurements, can be found
trapped due to the spontaneous decay before escaping. Us-
ing the Rydberg atom lifetime τR = 140 μs, our numerical
simulation gives an estimated probability P(g|R) of around
3%. Therefore, for example, the theoretical probability (solid
lines) in Fig. 4 of three atoms in |RRR〉 is calculated as
P′

RRR = {1 − P(g|R)}3PRRR to compare with the actual (false)
measurement (data points) in Fig. 4. In addition, there are
minor sources of contribution to P(g|R): background atoms
can enter the trap and increase P(g|R), with negligibly small
probability of < 0.01%; coherent de-excitation from |R〉 can
evolve to other ground hyperfine states due to imperfect laser
polarization, which results in false |g〉 measurement of about
0.1%.

(b) The measurement error P(R|g), the conditional prob-
ability of false measurement of |R〉 given that the state was
initially in |g〉, is mainly caused by atoms escaping from
optical tweezers, which is typically <3% in our experiments.
In addition, the atom escape probability due to background
collision causes false |R〉 measurement in our experiment,
estimated <1%.
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FIG. 4. (a) Triangular three (N = 3) atoms: geometry and image in the leftmost column, respectively, and the experimental measured
probability (data points) compared to the numerical calculations for optimal fitting (solid line) and ±3.1 dB shifts in β (dot-dashed and dashed
lines), for each symmetric basis, where “0” and “1” in the states indicate |g〉 and |R〉 states, respectively. Same for the other configurations:
(b) linear N = 3 atoms, (c) zigzag N = 4 atoms, (d) linear N = 4 atoms, (e) zigzag N = 5 atoms, and (f) linear N = 5 atoms. The inset at the
top-right corner shows the single-atom case.
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TABLE I. Error sources and amounts.

Error sources

Projection measurement error δP(g|R) δP = 3%
· Spontaneous emission |R〉 → |g〉 ∼3%
· Background atom entering optical tweezers ∼0.01%
· De-excitation to other ground states ∼0.1%
Projection measurement error δP(R|g) δP = 3%
· Atom escaping from optical tweezers ∼3%
· Background atom collision ∼1%
Dephasing rate γ = 1 MHz
· Leakage to intermediate state 60 kHz
· Rydberg-excitation laser intensity noise γc 
 30 kHz
· Rydberg-excitation laser phase noise ∼1 MHz

(c) The transition probability to the intermediate state
(|5P3/2〉) is nonzero during laser excitation, and the fast spon-
taneous decay from |5P3/2〉 to |g〉 results in non-Hermitian
dynamics. The leakage estimated from the detuned Rabi
oscillation �2

780/(�2
i + �2

780) ∼ 0.2% is small; however, the
two-level approximation [30] of the given three-level system
dynamics gives the individual dephasing rate γind in Eq. (6),
which is estimated as ∼(2π )20 kHz.

(d) Rydberg excitation lasers (780 and 480 nm) have in-
tensity and phase noises. The intensity noise is from the laser
diode itself, AOM modulation error, and beam pointing error,
which results in fluctuations of � and � by AC Stark shift.
This fluctuation is measured as about 3% without feedback
(0.7% with feedback) in our experiment, making little change
in measured single-atom dynamics. The phase noise |�̃( f )| in
Eq. (8), however, is estimated up to with a scaling factor, using
the frequency error signals from PDH locking electronics of
the lasers. All the analyses in Sec. IV are consistent with the
single-atom results up to a 3-dB scaling. Note that the noise
spectrum we obtained from the servo electronics might not
the same as the actual laser noise spectrum (limited by the
characteristic of the photo-diode and electronics). However,
it turns out that the dynamics is significantly affected by the
level of noise, rather than the noise spectrum. So we focused
on the consistency of the relative values of the noise levels.
Also note that the phase noise we considered here is a global
phase noise which applies to the all atoms homogeneously.

Further improvements of the experiment in the future can
be considered as in the following. (a) The measurement
error P(g|R): To suppress the spontaneous decay from the
Rydberg state, we can choose a higher principal or azimuthal
quantum number for the Rydberg state for longer lifetime.
Also, fast push-out of atoms prior to measurement by using
a laser tuned for stonger repulsion of atoms can decrease the
error. (b) The measurement error P(R|g): This error can be
reduced by improving the trap lifetime, employing enhanced
atom cooling or trapping techniques [33–36]. (c) Spontaneous
decay from |5P3/2〉 to |g〉: This can be minimized by increasing
�480 to enlarge �i [30], or by using one-photon transitions
with ultraviolet lights [10]. (d) Phase noises of Rydberg exci-
tation lasers: Decreasing the phase noise requires improved
locking techniques, including the technique that filters the
servo bumps by using cavity-transmitting beams as excitation
lasers [37–41].

VI. CONCLUSION

We present a numerical model analysis of the experi-
mentally measured quantum few-body dynamics of Rydberg
atoms. Using up to five 87Rb atoms arranged in linear or
zigzag configurations and excited to the Rydberg 67S state,
we measure the time-evolving probabilities of the atomic
systems in all symmetry basis. As a theoretical model, we
use the Lindblad master equation for Rydberg atom chains
in consideration of experimental error sources, such as the
projection measurement errors, the leakage to an intermediate
state, and the phase noise of the excitation lasers. The result-
ing calculation agreed well with the experimentally observed
measurements, suggesting that the quantum dynamics of
Rydberg-atom systems are suitably described with the current
model extending the single-body dephasing model [30] to a
few-body problem.
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