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In contrast to classical chemical reaction kinetics, for diffusion limited chemical reactions the
anisotropy of the geometry has far reaching effects. We use tubular two and three-dimensional
spaces to illustrate and discuss the dimensional crossover inA1B→0 reactions due to dimensional
compactification. We find that the crossover timetc5Wa scales asa5b/(a2b), wherea, b, and
b are given by the earlier and the late time inverse density scaling ofr21;ta and r21;tbWb,
respectively. We also obtain a critical widthWc below ~above! which the chemical reaction
progresses without~with! traversing a two or three-dimensional Ovchinnikov–Zeldovich~OZ!
reaction regime. As a result we find that there exist different hierarchies of dimensionally forced
crossovers, depending on the initial conditions and geometric restrictions. Kinetic phase diagrams
are employed, and exponents are given for various Euclidean and fractal compactified geometries,
for theA1B andA1A elementary reactions. Monte Carlo simulations illustrate some of the kinetic
hierarchies. ©1999 American Institute of Physics.@S0021-9606~99!00504-8#
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I. INTRODUCTION

It is well known that in diffusion-limited reactions th
reaction rate is slower than in the case when the reactant
well mixed. This is valid for any spatial dimensionality, wit
the only assumption being that the geometry of the reac
container is isotropic. This anomaly is well understood
the prototype reactionsA1C→C, A1A→0, and A1B
→0, and the asymptotic behavior is known for the latter c
as the Ovchinnikov–Zeldovich~OZ! regime.1,2 The slow-
down in reaction rate originates from various kinds of de
sity fluctuations, such as the reactant segregation in the
molecular reaction ofA1B→0,3,4 and the depletion zone o
the reactant in the reactionsA1C→C, A1A→A or A1A
→0.

Recently anisotropic geometries, such as of tubu
shapes, were introduced in order to investigate the beha
of experimental systems with reactions in micropipettes, c
illaries, etc.5–9 The introduction of the anisotropy poses
challenge; to understand how the reaction mechan
changes in the early time period, including the crosso
between the classical and the nonclassical reactions with
without the anisotropy forced dimensional crossover, as w
as the anisotropy forced crossover from one nonclassica
action regime to another. In the classical chemical react
the change in the density of the reactants depends only on
global concentration, which is also the local concentrati
and the reaction process does not depend on the dimen
ality of the container. However, for theA1B→0 diffusion-
limited reaction, there appears a reactant segregation w
is due to the local concentration fluctuation stemming fr
the initial randomness of the reactant distribution. Due to t
density fluctuation, in the bimolecular reactionA1B→0,
2110021-9606/99/110(4)/2116/6/$15.00
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with equal initial densities,rA(0)5rB(0), thedensity scales
asymptotically asr(t);t2d/4, for isotropic spaces withd
<4, instead of the classical resultrA(t);t21. Thus the gov-
erning differential equation of this reaction is

drA~ t !

dt
;2rA~ t !x ~1!

with the reaction power~order! given byx5(4/d)11, where
the inverse density exponent ofr21;t f is given by

f 5
1

x21
. ~2!

As the reaction progresses, the segregated reactant z
keep growing until the front of the segregated react
reaches the boundary of the container, at which time
boundary effect makes the density decrease exponenti
On the other hand, for theanisotropic spaces, for example
tubular, when the front of the segregated reactant reaches
shorter boundary of the geometry, it already ‘‘feels’’ th
boundary and the reaction rate changes dramatically w
this occurs. We may call this phenomenon ‘‘dimension
compactification’’10 and we expect the time when this ha
pens to depend on the widthW of the tubular space, specifi
cally as tc;Wa. Before this crossover, the reactio
progresses ‘‘without knowing’’ the width of the tube bu
after the crossover, the reaction follows a one-dimensio
chemical reaction behavior, asymptotically, such as7

r21;t1/4Wb. ~3!

We define f 5a for t!tc and f 5b for t@tc . While the
exponentsa and b have been investigated before, th
W-dependence oftc has not been studied in detail, and o
6 © 1999 American Institute of Physics
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would like to know how does the early time behavior of t
reaction and, in particular, the crossover timetc ~before or
after the onset of thed-dimensional Ovchinnikov–Zeldovich
effect! depend onW.

In this paper, in Sec. II we consider the relations b
tween the scaling exponentsa, b, and f, using the scaling
ansatz in various reaction regimes and anisotropic ge
etries. In Sec. III we consider the early time behaviors w
emphasis on the dimensional crossovers, between clas
and nonclassical reactions as well as between nonclas
reactions, and also on crossovers not due to dimensi
compactification. In Sec. IV we discuss the method of
calculations~simulation algorithms!, while in Sec. V we
present the results, with emphasis on the method develo
to measuref accurately when using Monte Carlo simulatio
Finally in Sec. VI we give the conclusions.

II. SCALING ANSATZ APPROACH

The scenario of the reaction in the anisotropic geome
that we use here is that at early times, before the fluctuat
~which are amplified by the local chemical reaction! reach
the size of the widthW, the reactant density follows th
power law:

r21;ta. ~4!

Then there is a crossover at timetc , which obeys a power
law with W,

tc5Wa. ~5!

Finally, when the fluctuation is larger than the finite sizeW,
the time power law@Eq. ~4!# changes to another exponentb,

r21;tb, ~6!

accompanied by aW scaling law as well~double scaling
law!,

r21;tbWb. ~7!

We call a and b the earlier and the late time exponen
respectively, and observe the inverse density scaling be
and after the dimensional crossover. The exponenta can be
either 1, when the dimensional crossover happens while
classical reaction is still going on, or, for instance, forA
1B→0, a5d/4 in d-dimensional tubes (d<4) if the
Ovchinnikov–Zeldovich~OZ! nonclassical anomaly alread
has appeared before the crossover happens. If the cros
happens during the interim behavior between the class
and the OZ regimes,a has a certain effective value betwee
1 andd/4, corresponding to how much the OZ reaction h
developed.

A similar approach is applied to the late time expone
b. It could be 1 if the classical reaction is still going on ev
in the reduced geometry, but usually it will beb51/4 in
tubular spaces~for any d! when the OZ reaction already ha
started. Alsob can be any number between 1 and 1/4 if t
reaction is in between these regimes, or if we have a reac
different from A1B→0. Furthermore, for slabs or slicesb
would be 1/2, etc.~Table I!.

Now we can assume a scaling ansatz such that it sati
the above scenario,
-

-
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r21;taf ~ t/Wa!, ~8!

where f (x) satisfies

f ~x!51 for x!1, ~9a!

f ~x!5xb2a for x@1. ~9b!

At this point, we can easily find out the relation betweena
andb

a5
b

a2b
~10!

and it becomes even simpler when we notice thatb5d1 , for
A1A→0 andb5d1/2 for A1B→0, as

a5
d1

a2b
for A1A→0, ~11a!

a5
d1

2~a2b!
for A1B→0, ~11b!

whered1 denotes the original dimensionality minus the d
mensionality of the reduced geometry, for exampled15d
21 for tubular andd15d22 for slablike spaces.

TABLE I. Scaling exponents of chemical reactions in anisotropic space

Reaction class Geometry a b
a5

b

a2b a8 b

A1A→0 d5d111 1
1

2
2d1 d1

d5d112 1 1 ` d1

d5df11 1
1

2
2df df

d5df12 1 1 ` df

d511df 1
ds

2

2

22ds

1

d521df 1
ss

2

4

22ds

2

A1B→0a d5d111<4
d111

4

1

4
2

2d1

3

d1

2

d5d111.4 1
1

4

2d1

3

2d1

3

d1

2

d5d112<4
d112

4

1

2
2 d1

d1

2

d5d112.4 1
1

2
d1 d1

d1

2

d5df11
ds11

4

1

4

2df

ds
5dw

2df

3

df

2

d5df12
ds12

4

1

2

2df

ds
5dw df

df

2

d511df
11ds

4

ds

4
2

2

42ds

1

2

d521df
21ds

4

ds

4
2

4

42ds

1

aFor theA1B→0 the column fora assumes that the crossover to segreg
tion ~Refs. 3, 4! occurs before the crossover due to dimensional compa
fication.
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For theA1B→0 reaction, we have two kinds of mos
important dimensional crossovers; one is called
a-transition with a5d/4 ~for d<4! and b51/4, and the
other is thea8-transition witha51 andb51/4. The scaling
exponents corresponding to thea and a8 transitions are
shown in Table I. The scaling law for the exponentb @Eq.
~7!# was derived before8 and is also given in Table I. The
scaling law derivation for the exponenta @Eq. ~5!# was
sketched out before8 and relies on equating, attc , Eq. ~7!
with Eq. ~4!. However, there are two different cases.

Single crossover case (I):Here Eq. ~4! describes the
classical kinetics regime, where~we ignore the logarithmic
correction ford52! a51 and tc is a dimensionally forced
crossover which leads directly to the one-dimensional
segregation regime; henceb51/4. Now substitutingt5tc in
both Eqs. ~4! and ~7!, and usingb5(d21)/2, gives tc

;W2(d21)/3, and thusa852(d21)/3 for anyd. Note that in
this case I we use ‘‘alpha prime’’ fora. Also note that in
Table I we used15d21, the number of compactified di
mensions.

Two crossovers case (II):Here the first crossover tim
(tc) is not due to the dimensional constraint but simply d
scribes the classical to OZ crossover of Lindenberget al.11,12

for noncompactified dimensions~e.g., d-dimensional cubes
whered52, 3, and possibly 4!. This crossover time (tc) is
independent of the widthW. Thus the dimensionally forced
crossover~the second crossover! at tc is from a time power
law of a5d/4 to b51/4. Equating again Eqs.~4! and ~7!,
and using againb5(d21)/2 givesa52. This result is lim-
ited to 2<d<4 and is analogous to the Einstein diffusio
formula.

In principle there is also the two crossovers case
where the dimensionality forced crossover leads to a n
classical nonsegregated reaction regime, the so-calledA1A
regime of theA1B→0 reaction in one dimension.11,12 This
case gives the same result as theA1A reaction derived
previously8,9 and is also given in Table I. However, we dou
that this case is relevant, except possibly for very low init
densities. Heretc is followed, eventually, bytc for one-
dimensional systems.

Finally, we note that Table I extends the scaling resu
to A1A reactions~which also covers theA1C→C!, to frac-
tal tubes~e.g., ‘‘toblerones’’! as well as to slabs and fracta
slices~e.g., ‘‘toblerone slices’’!.

III. KINETIC PHASE DIAGRAM

We observe that we have various kinds of crossov
present in the systems of tubular geometry. By monitor
the density of the reactants, we noticed that the inverse d
sity scaling changes into a different value as the reac
meets a new crossover. For a certain geometrical condi
i.e., with a fixedW, the reaction develops in a certain pa
for example in two-dimensional tubes it may go fromf 51
to f 51/2 and then tof 51/4, or from f 51 directly to f
51/4. Therefore, the understanding of the reaction mec
nism behind the density change follows the full understa
ing of the possible paths off-changes in time and in variou
geometric conditions. We considerf to be the order param
eter for the chemical reaction and we draw the phase diag
e
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in a time–space coordinate system. In three-dimensiona
bular spaces, four coordinates,t, Lx , Ly , and Lz , are al-
lowed but normally we takeLx5Ly5W andLz is considered
to be infinite so, without considering the finite size effect
the Lz-direction, we need only 2 coordinates,t andW.

However, compared to other order parameters in phy
such as the density of particles in a gas–liquid phase tra
tion or the magnetic moment in para-ferromagnetism, t
density scaling exponentf is not so well defined, for it has a
distinct number only asymptotically, in a large size syste
and only at the long time limit. Also, the transition betwe
the phases~regimes!, for example fromf 51 to f 51/2, is not
like those of the first order but more like the titration curv
in chemistry or crossovers in percolation; the analytic beh
ior is approximate even at the large size limit, the so-cal
thermodynamic limit. However, in dealing with the kinet
behaviors of the chemical reactions in anisotropic geo
etries, those kinetic regimes which come from the dime
sionality and the reaction process do appear in a hierar
and the order of appearance may be switched, dependin
the geometric conditions, which can be well described
using the concept of phases and crossovers between the

In regular~large! lattices ofV5Ld with 2<d<4, there
exist only, as far as we know, two clear phases off 51 and
d/4, where the former corresponds to the classical reac
regime and the latter to the OZ regime, though we may m
sure many intermediate values off which do not exist as
clear phases. The classical regime is well defined in the li
of t→0 and the OZ regime att→` ~for infinite containers!
and the crossover,tOZ, depends on the initial reactant de
sities and on the dimensionality. The reason whyrO affects
tOZ is as follows:tOZ is a time when the initial randomness o
the reactant distribution changes considerably towards r
tant segregation, i.e., att50 each reactant has neighbors
the same and the opposite species with equal probability
after tc it sees its own species with much higher probabili
In a randomly distributed reactant,Vr2dt reactants disappea
in dt, so we guess that a considerable change in the di
bution is made aftert r;r22. Therefore now we think oft r

as a typical time when the initial randomness of reacta
disappears.

Also the dimensionality is very important in the forma
tion of the density fluctuations or the segregation, i.e.,
reaction. We consider an ensemble of small volumes ofv in
which theA and B particles exist randomly with the initia
densityrA(0)5rB(0)5r. Then, due to the statistical fluc
tuations, each volume hasrv6Arv particles. As the par-
ticles move randomly, maximallyv(t)5jd5td/2 is corre-
lated, i.e., those density fluctuations in smaller areas t
v(t) disappear, forming unimolecular domains. Therefore
can think of such a time necessary for washing out the d
sity fluctuations in a certain volume~where the difference
betweenA andB particles is constant! by equating

tOZ;V2/d;r0
22/d. ~12!

This agrees with previously derived results fortOZ.12 There-
fore, for a very sparse density condition, higher dimensio
density fluctuations disappear faster than the low dim
sional ones. In other words, the three-dimensional OZ
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ways appears earlier than the one-dimensional OZ reac
regime. Although the characteristic time for the appeara
of the one-dimensional OZ scales with the same powerr22

as the characteristic time for the disappearance of rand
ness,t r , the higher dimensional OZ reaction appears fas
than the one-dimensional OZ, and thus the higher dim
sional OZ is faster thant r in the tubular geometry.

For 2<d<4 tubes there exist only thef 51 classical
regime att50 and the OZ reaction regime off 51/4 at t
5` ~or f 5d/4 if W'L!. In a tube, as the reactio
progresses, thef 51 classical regime changes to thef 5d/4
OZ regime, if the growth of the density fluctuation domain
not blocked by the tubular widthW. Then the crossover time
is fixed by the initial density condition which will scale a
tOZ;r0

22/d without dependence onW. Later the dimensiona
crossover happens attc5Wa, with a52, in tubular spaces
whena5d/4 andb51/4 @see Eq.~10!#.

However, if the width is small enough for the reaction
feel the tubular wall before the three-dimensional fluctuat
domains form themselves,f 51 of thed dimensional classi-
cal regime directly crosses over tof 51/4, the one-
dimensional OZ regime~where the reaction skips thef
5d/4, d dimensional OZ regime!. We call this crossover the
a8-transition and the crossover time istc5Wa8, with a8
52(d21)/3, if a51 andb51/4. We note that thisa8 de-
pends on the dimensionalityd while a does not. Ford.5,
this is the case for allW.

We expect the upper limit of the time when thed dimen-
sional classical reaction feels theW boundary to beW
'At, so the critical width below which thea8-transition
exists is obtained from

tOZ;r0
22/d;W2 ~13!

giving Wc;r0
21/d. Therefore the tubular space whose wid

is less thanWc will have a dimensional crossover with time
scaling with thea8 and the reaction skips thed dimensional
OZ reaction regime.

The complete phase diagram~for a givenr0) of the in-
verse density scalingf, in t –W space, is given in Fig. 1. We
need to keep in mind when considering this conceptual ph
diagram that due to the continuous changes in thef value
even in large systems, there may or may not exist a c
a8-transition, especially for highr0 .

IV. METHOD OF CALCULATIONS

Monte Carlo simulations were employed as follows: fi
we prepare the tubular lattice of volumeV5LWd21 in the
computer memory. Then all reactants are placed on the
tice in this manner: One A particle is placed in a rando
position using customary random number generators. On
particle is also placed in the same manner. Any numbe
particles can occupy a given site at one moment. Thus
incoming particle ignores the presence of the former part
or particles~they are ‘‘bosons’’!. We repeat the same proce
dure over and over again until the total number ofN
5Vr(0)5LWd21r(0) pairs have been placed on the lattic
In doing so, all A and B particles totally ignore all the oth
particle locations, regardless whether they are of the s
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species or not. Eventually a total of 2N particles are created
The number of A particles is exactly equal to the number
B particles. The reaction starts by letting the particles diffu
on the lattice. We randomly pick particles, one at a tim
regardless of their type, which then move to one of th
neighboring sites. Each move~and all subsequent moves!
consume a certain time, which increases the reaction c
by an amount equal toDt51/N(t), whereN(t) is the num-
ber of particles present at this particular time. If the new s
is empty or if it is occupied by particle~s! of the same type,
then the particle move is completed, and we go on to the n
particle. But if the new site contains a particle of the oppos
species, then both of them are taken out from the lat
~annihilated!, and the total number of particles is decreas
by 2. The reaction proceeds with the rest of the partic
Notice that reactions occur only due to diffusion, while a
opposite particles that are initially~at time t50! placed on
the same lattice site do not react, but are free to diffuse w
the clock is turned on. Since the shape of the reaction v
ume is tubular, and we want to investigate the effect of
finite size of the short dimensions, we use reflective bou
ary conditions in the short dimensions, but cyclic conditio
in the long dimension. When the particle attempts to mo
out of the boundary in the short dimension the move is
allowed, but consumes a regular time unit~as in the so-called
myopic ant model!. We monitor the particle density
N(t)/N(0)5r(t) as a function of time.

V. RESULTS

Conventionally the exponentf has been measured from
the slope of a log–log graph of@1/r(t)#2@1/r(0)# vs t,
which produces a variety of different regimes, as a funct
of time. The use of the quantity@1/r(t)#2@1/r(0)# relates to
the value ofx52 in the rate equation@Eq. ~1!#. We general-
ize now this equation, in the spirit of the discussion of t
previous sections, and develop a direct way to measuref, as
follows: From Eq.~1! we get a general solution,

FIG. 1. Schematic phase diagram~for a givenr0) of the behavior off, as a
function of time and lattice widthW, for the A1B reaction in two-
dimensional tubular lattices. One can distinguish at early times the clas
kinetics result of the slopef 51, and at long times the higher (2d) and
one-dimensional OZ results of 1/2 and 1/4, respectively. Different value
the exponent characterize the scaling laws in the different regions, w
there exists one ‘‘triple’’ point (W5Wc) where these trends come togethe
For a 3-dim tube replacef 51/2 by f 53/4 ~andd52 by d53!.
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1

r~ t !x212
1

r~ t1!x21 ;t2t1 ~14!

that includes the exponentx as a parameter. Obviously, it i
very difficult to solve this equation in the entire time doma
using a singlex value, so we do this piecewise, and we p
only three consecutive data points at a time, thus coverin
very limited time domain. However, in this small doma
only one value ofx will produce a straight line segmen
while all otherx values will give either concave or conve
curves. By varyingx we can find the value that produces
straight line, and save it. Next, the same is done for the n
set of three points, and we thus findx in the entire time
domain. Specifically, we use data points at timet1 , t, and t
1t to fit the data, in the form

log

1

r~ t1t! f2
1

r~ t1! f

1

r~ t ! f2
1

r~ t1! f

5 log
t1t2t1

t2t1
. ~15!

The reason why we chose the log-scale on both sides is
cause the linear relation is seen only in a log–log scale. N
we use the computer program forf to get the best fitting
values which satisfy the above equation. Thosef values
which satisfy 0.995,LHS/RHS,1.005 were collected so a
to compare the uncertainties in this measurement. A typ
measurement is seen in Fig. 2, which shows clear transit
from f 51 to f 51/2 and then to f 51/4 in the two-
dimensional tubular chemical reaction.

In Figs. 2 and 3 we show a plot off vs time, for several
different W values. Included is the case ofW51, which is
simply the one-dimensional lattice. We observe that at e
times, t!1, we have a very large amount of noise for
cases. An approximate average value can still be estima
for W51, we clearly see that the average value is about
while for all largerW values, we see that it is of the order
1. This result is consistent with previous works and the
erature, because for theW51 case we have at early time

FIG. 2. The exponentf as a function of time for theA1B reaction in 2-dim
tubular lattices. Top to bottom:W520, 10, 5, 3, 2, and 1.L510 000 and
averages of 10 000 runs. Notice that the caseW51 corresponds to a simple
1-dim lattice.
t
a

xt

e-
w
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l
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5,

-

theA1A behavior, which has an exponentf 51/2, while for
W.1 we have theA1A behavior in two and three
dimensional lattices, since the effect of the tubular struct
~one-dimensional character! is not felt yet at such early
times. The 2-dimA1A case has a logarithmic correctio
factor to the classical behavior, which typically is of th
order of 10%, but this is within the level of noise in th
present figure. Further we notice, that for theW51 casef
falls quickly to a constant value of 1/4, which is the O
expected result. In this case we have only one crossover,
from the early time behavior to the OZ result. AsW is in-
creased we observe that the curves start having a se
plateau, whose extent increases with increasingW. The pla-
teau is approximately at the valuef 50.5, for Fig. 2 andf
50.75 for Fig. 3, which shows that in these systems, in t
intermediate time domain, the reaction proceeds in the h
dimensional OZ regime until the effect of the restrictedW is
felt. At that point thef values are further decreased to rea
the asymptotic value of 1/4, which is simply the expect
long-time behavior of the OZ one-dimensional system. T
is the second crossover, which is dimensionally forced. Th
this figure contains a pictorial representation of both cro
overs present, and the trend by which they collapse to on
is seen that at higherW’s the first crossover happens abo
the same time for allW’s. This is expected for thetc transi-
tion, which isW independent~see Fig. 1!. However, the sec-
ond transition isW dependent andtc rises monotonically
with W, which is expected from the scalingtc;Wa ~compare
Fig. 1!. On the other hand, the lowestW curves (W52,3)
approach the case~I! of a single crossover~compare Fig. 1!.
It thus appears thatWc is about 2 or 3 for this high density
case.

The apparent ‘‘overshoot’’ during thetc crossover in
Fig. 3 (d53) also appears ford52, but for lower initial
densities (r0). Its origin is not clear to us, but the fluctua
tions~noise! in the simulations prevent clear-cut conclusion

Regarding the exponentsa, we note that the scaling re
sult for a is valid only for W@Wc and fora8 for W!Wc .
Our present simulations do not cover either one of th

FIG. 3. Similar plot of the scaling exponentf, as in Fig. 2, but now for the
case of 3-dim tubular lattices. Top to bottom:W510, 5, 3, 2, and 1.L
55000 and averages of 2000 runs.
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limits, but fall close toWc , and slightly above. Ford52 we
expecta52 anda852/3. We obtain an effective value o
about 1.4 from the simulations, which is indeed intermedi
to the expected limits. Previous work gave about 1.0 fod
52 ~and 1.4 ford53, where we expecta854/3 anda52!.
We note that the exponentb is independent ofWc and thus
easier to obtain and satisfactory simulation values have b
obtained in previous work.5–9

VI. CONCLUSIONS

Geometries with compactified dimensions show a r
kinetic behavior for elementary bimolecular reactions. As
example, theA1B→0 reaction in a tube shows sever
cases of crossovers, with different kinetic regimes and
tinct crossover exponents relating the crossover timetc to the
tube-width W. Critical tube widthsWc , which scale with
initial density, separate these crossover cases. Case I~below
Wc! has a singleW-dependent, dimensionally forced kinet
cal crossover, from classical to one-dimension
Ovchinnikov–Zeldovich~OZ! behavior. Case II~aboveWc!
has a first, W-independent crossover from classical
d-dimensional (d52,3) OZ behavior, followed by a
W-dependent crossover fromd-dimensional to one-
dimensional OZ kinetic behavior. Case III~low density! has
a dimensionally forcedW-dependent crossover to a depleti
zone controlled A1A like regime, followed by a
W-independent crossover to one-dimensional OZ behav
e

en

h
n

s-

l

r.

These different kinetic regimes can be described by kin
phase diagrams. The tubular geometryA1B reaction cases
are generalized to other bimolecular reactions and to o
compactified geometries, Euclidean and fractal. The sca
arguments are consistent with Monte Carlo simulations
are amenable to experimental verification in capillaries a
other confined domains.
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