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In contrast to classical chemical reaction kinetics, for diffusion limited chemical reactions the
anisotropy of the geometry has far reaching effects. We use tubular two and three-dimensional
spaces to illustrate and discuss the dimensional crossoyet B— 0 reactions due to dimensional
compactification. We find that the crossover titges W* scales asx= 8/(a—b), wherea, b, and

B are given by the earlier and the late time inverse density scaling &ft2 and p~ 1~ t°W#,
respectively. We also obtain a critical wid¥, below (above which the chemical reaction
progresses withoutwith) traversing a two or three-dimensional Ovchinnikov—Zeldovi€Y)
reaction regime. As a result we find that there exist different hierarchies of dimensionally forced
crossovers, depending on the initial conditions and geometric restrictions. Kinetic phase diagrams
are employed, and exponents are given for various Euclidean and fractal compactified geometries,
for the A+ B andA+ A elementary reactions. Monte Carlo simulations illustrate some of the kinetic
hierarchies. ©1999 American Institute of Physids$0021-960609)00504-§

I. INTRODUCTION with equal initial densitiespa(0) = pg(0), thedensity scales
. o _ asymptotically asp(t)~t~%*, for isotropic spaces with

It is well known that in diffusion-limited reactions the <4, instead of the classical resplt(t)~t L. Thus the gov-

reaction rate is slower than in the case when the reactants fning differential equation of this reaction is

well mixed. This is valid for any spatial dimensionality, with

the only assumption being that the geometry of the reaction  dpa(t) «

container is isotropic. This anomaly is well understood for dt ~=palD)

the prototype reactiondé+C—C, A+A—0, and A+B

()

é(vith the reaction poweforden given byx=(4/d) + 1, where

as the Ovchinnikov—ZeldovicliOZ) regimel? The slow-  he inverse density exponent pfi~t"is given by

down in reaction rate originates from various kinds of den- 1
sity fluctuations, such as the reactant segregation in the bi- f= —1 v
molecular reaction oA+B— 02 and the depletion zone of
the reactant in the reactioms+ C—C, A+ A—A or A+A As the reaction progresses, the segregated reactant zones
—0. keep growing until the front of the segregated reactant
Recently anisotropic geometries, such as of tubulareaches the boundary of the container, at which time the
shapes, were introduced in order to investigate the behavidroundary effect makes the density decrease exponentially.
of experimental systems with reactions in micropipettes, cap©On the other hand, for thanisotropic spacesfor example
illaries, etc®™® The introduction of the anisotropy poses a tubular, when the front of the segregated reactant reaches the
challenge; to understand how the reaction mechanisrghorter boundary of the geometry, it already “feels” the
changes in the early time period, including the crossoveboundary and the reaction rate changes dramatically when
between the classical and the nonclassical reactions with arilis occurs. We may call this phenomenon ‘“dimensional
without the anisotropy forced dimensional crossover, as weltompactification”'® and we expect the time when this hap-
as the anisotropy forced crossover from one nonclassical rggens to depend on the widW of the tubular space, specifi-
action regime to another. In the classical chemical reactiorgally as t.~W¢“. Before this crossover, the reaction
the change in the density of the reactants depends only on thgogresses “without knowing” the width of the tube but,
global concentration, which is also the local concentrationafter the crossover, the reaction follows a one-dimensional
and the reaction process does not depend on the dimensioghemical reaction behavior, asymptotically, such as
ality of the container. However, for th&+B—0 diffusion- ~1__q1apB 3)
limited reaction, there appears a reactant segregation which '
is due to the local concentration fluctuation stemming fromWe definef=a for t<t. and f=b for t>t.. While the
the initial randomness of the reactant distribution. Due to thisxponentsa and b have been investigated before, the
density fluctuation, in the bimolecular reactigx-B—0,  W-dependence df. has not been studied in detail, and one
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would like to know how does the early time behavior of the TABLE I. Scaling exponents of chemical reactions in anisotropic spaces.
reaction and, in particular, the crossover titge(before or

after the onset of thd-dimensional Ovchinnikov—Zeldovich ‘ a_i
effec depend onw. Reaction class Geometry a b a-b o B
In this paper, in Sec. Il we consider the relations be- 1
tween the scaling exponents 8, andf, using the scaling ~ ~*A~° d=d,+1 13 2d, d
ansatz in various reaction regimes and anisotropic geom- d=d;+2 1 1 ® d;
etries. In Sec. lll we consider the early time behaviors with d=d+1 1 1 2d, d;
emphasis on the dimensional crossovers, between classical 2
and nonclassical reactions as well as between nonclassical d=di+2 1 1 * dy
reactions, and also on crossovers not due to dimensional d=1+d, 1 s 2 1
compactification. In Sec. IV we discuss the method of the 2 2—d;
calculations (simulation algorithmg while in Sec. V we d=2+d, 1 S 4 5
present the results, with emphasis on the method developed 2 2—ds
to measurd accurately when using Monte Carlo simulation. di1 1 o g
Finally in Sec. VI we give the conclusions. A+B—0*  d=d;+1<4 14 3 2 ?1 El
Il. SCALING ANSATZ APPROACH d=d;+1>4 1 % = %dl d;l
The scenario of the reaction in the anisotropic geometry d=d,+2<4 dh+2 1 2 dy &
that we use here is that at early times, before the fluctuations 4 2 2
(which are amplified by the local chemical reacliorach d=d;+2>4 1 1 d; ¢@ &
the size of the widthw, the reactant density follows the 2 2
power law: d=d,+1 &1L Z—df:dw 2 d
~1_ .a 4 4 O 3 2
pot ) Gedsn &2 12 g
Then there is a crossover at tine, which obeys a power f S
law with W, d=1+d, 1+ds  dy ’ 2 1
t=We. ) 4 4 4-ds 2
, o o d=2+d, 2% & 2 nA
Finally, when the fluctuation is larger than the finite si¥e f 2 2 4—d
the time power lawEq. (4)] changes to another expondmnt
1 b % or theA+B—0 the column fora assumes that the crossover to segrega-
p 17, (6) tion (Refs. 3, 4 occurs before the crossover due to dimensional compacti-
accompanied by &V scaling law as well(double scaling fication.
law),
-1__tb\wB
pr WS @ p L (W), ®)

We call a and b the earlier and the late time exponents, o
respectively, and observe the inverse density scaling beforéheref(x) satisfies

and after the dimensional crossover. The expoecan be f(x)=1 for x<1 (98)
either 1, when the dimensional crossover happens while the '
classical reaction is still going on, or, for instance, for f(x)=x""2 for x>1. (9b)

+B—0, a=d/4 in d-dimensional tubes d=4) if the . . - .
L . . At this point, we can easily find out the relation between
Ovchinnikov—-Zeldovich(OZ) nonclassical anomaly already and 8
r

has appeared before the crossover happens. If the crossove

happens during the interim behavior between the classical B

and the OZ regimesy has a certain effective value between 3 b (10

1 andd/4, corresponding to how much the OZ reaction has

developed. and it becomes even simpler when we notice patd, , for
A similar approach is applied to the late time exponentA+A—0 andg=d,/2 for A+B—0, as

b. It could be 1 if the classical reaction is still going on even d,

in the reduced geometry, but usually it will be=1/4 in a=———+ for A+A—0, (119

tubular space¢for any d) when the OZ reaction already has a-b

started. Alsob can be any number between 1 and 1/4 if the d,

reaction is in between these regimes, or if we have a reaction a= 2(a=b) for A+B—0, (11b

different from A+B—0. Furthermore, for slabs or slicés

would be 1/2, etc(Table ). whered; denotes the original dimensionality minus the di-

Now we can assume a scaling ansatz such that it satisfiesensionality of the reduced geometry, for examgle=d
the above scenario, —1 for tubular andd, =d—2 for slablike spaces.
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For theA+B—0 reaction, we have two kinds of most in a time—space coordinate system. In three-dimensional tu-
important dimensional crossovers; one is called thebular spaces, four coordinates,L,, L,, andL,, are al-
a-transition witha=d/4 (for d<4) and b=1/4, and the lowed but normally we take,=L,=W andL, is considered
other is thea'-transition witha=1 andb=1/4. The scaling to be infinite so, without considering the finite size effect of
exponents corresponding to the and «’ transitions are thelL,-direction, we need only 2 coordinateésandW.
shown in Table I. The scaling law for the exponghfEq. However, compared to other order parameters in physics
(7)] was derived befofeand is also given in Table I. The such as the density of particles in a gas—liquid phase transi-
scaling law derivation for the exponent [Eq. (5)] was tion or the magnetic moment in para-ferromagnetism, this
sketched out befofeand relies on equating, at, Eq. (7) density scaling exponeffiis not so well defined, for it has a
with Eq. (4). However, there are two different cases. distinct number only asymptotically, in a large size system

Single crossover case (IHere Eq.(4) describes the and only at the long time limit. Also, the transition between
classical kinetics regime, whefae ignore the logarithmic the phasegregimes, for example fromf =1 tof=1/2, is not
correction ford=2) a=1 andt. is a dimensionally forced like those of the first order but more like the titration curves
crossover which leads directly to the one-dimensional OZ4n chemistry or crossovers in percolation; the analytic behav-
segregation regime; henbe=1/4. Now substituting=t. in ior is approximate even at the large size limit, the so-called
both Egs.(4) and (7), and usingB8=(d—1)/2, givest,  thermodynamic limit. However, in dealing with the kinetic
~W?@= 1B and thusa’ =2(d—1)/3 for anyd. Note thatin  behaviors of the chemical reactions in anisotropic geom-
this case | we use “alpha prime” fow. Also note that in  etries, those kinetic regimes which come from the dimen-
Table | we used;=d—1, the number of compactified di- sionality and the reaction process do appear in a hierarchy,
mensions. and the order of appearance may be switched, depending on

Two crossovers case (lIXere the first crossover time the geometric conditions, which can be well described by
(7.) is not due to the dimensional constraint but simply de-using the concept of phases and crossovers between them.
scribes the classical to OZ crossover of Lindenbeirgl 1112 In regular(large lattices of V=L9 with 2<d=<4, there
for noncompactified dimension®.g., d-dimensional cubes exist only, as far as we know, two clear phaseg ofl and
whered=2, 3, and possibly ¥ This crossover time#;) is  d/4, where the former corresponds to the classical reaction
independent of the widthV. Thus the dimensionally forced regime and the latter to the OZ regime, though we may mea-
crossover(the second crossoveat t. is from a time power sure many intermediate values bfwhich do not exist as
law of a=d/4 to b=1/4. Equating again Eqg4) and (7), clear phases. The classical regime is well defined in the limit
and using agai8=(d—1)/2 givesa=2. This resultis lim-  of t—0 and the OZ regime dt—« (for infinite containers
ited to 2<d=<4 and is analogous to the Einstein diffusion and the crossovet,;, depends on the initial reactant den-
formula. sities and on the dimensionality. The reason vplayaffects

In principle there is also the two crossovers case lllty; is as follows:ty; is a time when the initial randomness of
where the dimensionality forced crossover leads to a northe reactant distribution changes considerably towards reac-
classical nonsegregated reaction regime, the so-cAlled  tant segregation, i.e., &=0 each reactant has neighbors of
regime of theA+B—0 reaction in one dimensio:?? This  the same and the opposite species with equal probability but
case gives the same result as the- A reaction derived aftert, it sees its own species with much higher probability.
previously*® and is also given in Table I. However, we doubt In a randomly distributed reactaitp? st reactants disappear
that this case is relevant, except possibly for very low initialin 6t, so we guess that a considerable change in the distri-
densities. Here, is followed, eventually, byr, for one-  bution is made aftet,~p~2. Therefore now we think of,

dimensional systems. as a typical time when the initial randomness of reactants
Finally, we note that Table | extends the scaling resultdisappears.
to A+ A reactiongwhich also covers th&+ C—C), to frac- Also the dimensionality is very important in the forma-
tal tubes(e.g., “toblerones’) as well as to slabs and fractal tion of the density fluctuations or the segregation, i.e., OZ
slices(e.g., “toblerone slices). reaction. We consider an ensemble of small volumes iof
which the A and B particles exist randomly with the initial
Ill. KINETIC PHASE DIAGRAM density pa(0)=pg(0)=p. Then, due to the statistical fluc-

éuations, each volume has = \/pv particles. As the par-

We observe that we have various kinds of crossover _ d_.d2
icles move randomly, maximally (t)=£&“=t%< is corre-

present in the systems of tubular geometry. By monitorin

the density of the reactants, we noticed that the inverse de gted(,j_Le., thoscfa de_n3|ty f_Iuctluatl?nsdm S'.“a”‘;rh are:\s than
sity scaling changes into a different value as the reactioﬁ(t) ISappear, forming unimolecular domains. Therelore we

meets a new crossover. For a certain geometrical conditiorf" think Of, SUCh_ a time necessary for washing ‘?m the den-
i.e., with a fixedW, the reaction develops in a certain path, sity fluctuations in a certgln volume@vhere the difference
for example in two-dimensional tubes it may go frdns 1 betweenA andB particles is constanby equating
to f=1/2 and then tof =1/4, or from f=1 directly to f ~\y2d__ ,~20 12

. . Toz Po - 12
=1/4. Therefore, the understanding of the reaction mecha-
nism behind the density change follows the full understandThis agrees with previously derived results gy, .** There-
ing of the possible paths dfchanges in time and in various fore, for a very sparse density condition, higher dimensional
geometric conditions. We considéto be the order param- density fluctuations disappear faster than the low dimen-
eter for the chemical reaction and we draw the phase diagrasional ones. In other words, the three-dimensional OZ al-



J. Chem. Phys., Vol. 110, No. 4, 22 January 1999 Ahn, Kopelman, and Argyrakis 2119

ways appears earlier than the one-dimensional OZ reaction
regime. Although the characteristic time for the appearance
of the one-dimensional OZ scales with the same power

as the characteristic time for the disappearance of random- d=2 0-Z
nesst,, the higher dimensional OZ reaction appears faster Classical f=1/2

than the one-dimensional OZ, and thus the higher dimen- W f=1

sional OZ is faster thaty in the tubular geometry. =We
For 2=d=<4 tubes there exist only thE=1 classical -
regime att=0 and the OZ reaction regime d¢f&=1/4 att

= (or f=d/4 if W=L). In a tube, as the reaction , d=10-Z
progresses, thé=1 classical regime changes to the d/4 t=We f=1/4
OZ regime, if the growth of the density fluctuation domain is
not blocked by the tubular widtW. Then the crossover time time
is fixed by the initial density condition which will scale as

=20 . . FIG. 1. Schematic phase diagrdfor a givenp,) of the behavior of, as a
Toz~po "~ Without dependence oW. Later the dimensional - ¢, i "t ime and lattice widthw, for the A+B reaction in two-

crossover happens gt=W*, with a=2, in tubular spaces, gimensional tubular lattices. One can distinguish at early times the classical

whena=d/4 andb=1/4 [see Eq.(10)]. kinetics result of the slopé=1, and at long times the higher ¢2 and
However, if the width is small enough for the reaction to one-dimensional OZ results of 1/2 and 1/4, respectively. Different values of

feel the tubul,ar wall before the three-dimensional fluctuatio the exponent characterize the scaling laws in the different regions, while

. . . . r}here exists one “triple” point (W=W_,) where these trends come together.

domam; form Fhemselvefs,= 1 of thed dimensional classi-  For a 3-dim tube replace=1/2 by f=3/4 (andd=2 by d=3).

cal regime directly crosses over té=1/4, the one-

dimensional OZ regimgwhere the reaction skips thé _ .

=d/4, d dimensional OZ regime We call this crossover the Species or not. Eventually a total oN2particles are created.

o' -transition and the crossover time is=W<', with o’  1he number of A particles is exactly equal to the number of

—=2(d—1)/3, if a=1 andb=1/4. We note that thiz’ de- B particles. The reaction starts by letting the particles diffuse

pends on the dimensionality while « does not. Fod>5, N the lattice. We randomly pick particles, one at a time,

this is the case for alV. regardless of their type, which then move to one of their

We expect the upper limit of the time when ttelimen- neighboring sites. Each mov@nd all subsequent moves
sional classical reaction feels theW boundary to bew consume a certain time, which increases the reaction clock

~ X, so the critical width below which the'-transition Py an amount equal tat=1/N(t), whereN(t) is the num-

exists is obtained from _ber of partic!e; present gt this partigular time. If the new site
o ) is empty or if it is occupied by particls) of the same type,
Toz~po~ ~W (13)  then the particle move is completed, and we go on to the next

giving W~ pg 1 Therefore the tubular space whose width particle. But if the new site contains a particle of the opposite
is less thalW,, will have a dimensional crossover with time- SPecies, then both of them are taken out from the lattice
scaling with thea’ and the reaction skips triedimensional (annihilated, and the total number of particles is decreased
OZ reaction regime. by 2. The reaction proceeds with the rest of the particles.
The complete phase diagraffor a givenpy) of the in- Notice that reactions occur only due to diffusion, while any
verse density scalinfy in t—W space, is given in Fig. 1. We OPPOsite particles that are initiallfat timet=0) placed on
need to keep in mind when considering this conceptual phasté‘e same lattice site do not react, but are free to diffuse when

diagram that due to the continuous changes infthalue the clock is turned on. Since the shape of the reaction vol-
even in large systems, there may or may not exist a cled!Me is tubular, and we want to investigate the effect of the

o' -transition, especially for higp,. finite sizc_e 'of thg short dimensions_, we use refleptive b'o.und—
ary conditions in the short dimensions, but cyclic conditions
in the long dimension. When the particle attempts to move

IV. METHOD OF CALCULATIONS out of the boundary in the short dimension the move is not

allowed, but consumes a regular time uai$ in the so-called

myopic ant modgl We monitor the particle density
hl(t)/N(O)zp(t) as a function of time.

Monte Carlo simulations were employed as follows: first
we prepare the tubular lattice of volunve=L WY~ in the
computer memory. Then all reactants are placed on the la
tice in this manner: One A patrticle is placed in a random
position using customary random number generators. One
particle is also placed in the same manner. Any number of Conventionally the exponeiiithas been measured from
particles can occupy a given site at one moment. Thus ththe slope of a log—log graph dfi/p(t)]—[1/p(0)] vs t,
incoming particle ignores the presence of the former particlevhich produces a variety of different regimes, as a function
or particles(they are “bosons). We repeat the same proce- of time. The use of the quantifyl/p(t)]—[1/p(0)] relates to
dure over and over again until the total number Nf the value ofx=2 in the rate equatiofEqg. (1)]. We general-
=Vp(0)=LWI"1p(0) pairs have been placed on the lattice.ize now this equation, in the spirit of the discussion of the
In doing so, all A and B particles totally ignore all the other previous sections, and develop a direct way to meaSwae
particle locations, regardless whether they are of the samfllows: From Eq.(1) we get a general solution,

g. RESULTS
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FIG. 2. The exponeritas a function of time for thé&+ B reaction in 2-dim
tubular lattices. Top to bottomV/=20, 10, 5, 3, 2, and 1L.=10 000 and
averages of 10 000 runs. Notice that the casel corresponds to a simple
1-dim lattice.

FIG. 3. Similar plot of the scaling exponeftas in Fig. 2, but now for the
case of 3-dim tubular lattices. Top to bottoM/=10, 5, 3, 2, and 1L
=5000 and averages of 2000 runs.

the A+ A behavior, which has an exponent 1/2, while for
1 1 it (14) W>1 we have theA+A behavior in two and three-
p()* 1 p(t)*? 1 dimensional lattices, since the effect of the tubular structure

that includes the exponertas a parameter. Obviously, it is E.O ne—lemr(]a nszlog_al AcraAracjers hnot fellt yet_tr?t .SUCh eatr_ly
very difficult to solve this equation in the entire time domain IMES. The 2-dimA case has a logariihmic correction
using a singlex value, so we do this piecewise, and we pIotfactor to the classical behavior, which typically is of the

) 1 0 . . . . . .
only three consecutive data points at a time, thus covering 8rder C;f f.lo %, t;Ut tthh's IS W'tk:.m thti If¥el of nc:)Llse mfthe
very limited time domain. However, in this small domain ?rﬁsen. 'Elur?' ur ertwet nollce, f?/4or hich i C?ﬁe 0z
only one value ofx will produce a straight line segment, alls quickly o a constant value o » WHICh 1S The
while all otherx values will give either concave or convex expected result. In this case we have only one crossover, that

curves. By varyingk we can find the value that produces afrom the early time behavior 1o the OZ result. M is in-

straight line, and save it. Next, the same is done for the ne)&reased we observe that the curv_es_start having a second
set of three points, and we thus findin the entire time plateau, whose extent increases with increa$ihgrhe pla-

: o . : teau is approximately at the valde=0.5, for Fig. 2 andf
domain. Specifically, we use data points at timet, andt = . . : S
+r to fit the data, in the form =0.75 for Fig. 3, which shows that in these systems, in this

intermediate time domain, the reaction proceeds in the high

1 1 dimensional OZ regime until the effect of the restrictads
p(t+nF p(ty) t+7—t, felt. At that point thef values are further decreased to reach
log 1 1 =log t—t, (19  the asymptotic value of 1/4, which is simply the expected
o0ty long-time behavior of the OZ one-dimensional system. This

is the second crossover, which is dimensionally forced. Thus,
The reason why we chose the log-scale on both sides is béhis figure contains a pictorial representation of both cross-
cause the linear relation is seen only in a log—log scale. Nowavers present, and the trend by which they collapse to one. It
we use the computer program férto get the best fitting is seen that at highéi's the first crossover happens about
values which satisfy the above equation. Thdsealues the same time for aW's. This is expected for the, transi-
which satisfy 0.995 LHS/RHS<1.005 were collected so as tion, which isW independentsee Fig. 1. However, the sec-
to compare the uncertainties in this measurement. A typicabnd transition isW dependent and, rises monotonically
measurement is seen in Fig. 2, which shows clear transitionsith W, which is expected from the scaling~W* (compare
from f=1 to f=1/2 and then tof=1/4 in the two- Fig. 1). On the other hand, the lowe®¥ curves (W=2,3)
dimensional tubular chemical reaction. approach the cage) of a single crossoveicompare Fig. L

In Figs. 2 and 3 we show a plot 6fvs time, for several It thus appears that/; is about 2 or 3 for this high density
different W values. Included is the case @=1, which is case.
simply the one-dimensional lattice. We observe that at early The apparent “overshoot” during the. crossover in
times, t<1, we have a very large amount of noise for all Fig. 3 (d=3) also appears fod=2, but for lower initial
cases. An approximate average value can still be estimatedgnsities py). Its origin is not clear to us, but the fluctua-
for W= 1, we clearly see that the average value is about 0.8jons(noise in the simulations prevent clear-cut conclusions.
while for all largerW values, we see that it is of the order of Regarding the exponents we note that the scaling re-
1. This result is consistent with previous works and the lit-sult for « is valid only for W=W,_ and fora’ for W<W,.
erature, because for th&=1 case we have at early times Our present simulations do not cover either one of these
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limits, but fall close toW,, and slightly above. Fod=2 we  These different kinetic regimes can be described by kinetic
expecta=2 anda’=2/3. We obtain an effective value of phase diagrams. The tubular geometry B reaction cases
about 1.4 from the simulations, which is indeed intermediateare generalized to other bimolecular reactions and to other
to the expected limits. Previous work gave about 1.0dor compactified geometries, Euclidean and fractal. The scaling
=2 (and 1.4 ford= 3, where we expeat’ =4/3 anda=2). arguments are consistent with Monte Carlo simulations and
We note that the exponemtis independent ofV, and thus are amenable to experimental verification in capillaries and
easier to obtain and satisfactory simulation values have beeasther confined domains.

obtained in previous work:®
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