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Studying the complex quantum dynamics of interacting many-body systems is one of the most challeng-
ing areas in modern physics. Here, we use machine learning (ML) models to identify the symmetrized
base states of interacting Rydberg atoms of various atom numbers (up to six) and geometric con-
figurations. To obtain the data set for training the ML classifiers, we generate Rydberg excitation
probability profiles that simulate experimental data by utilizing Lindblad equations that incorporate
laser intensities and phase noise. Then, we classify the data sets using support vector machines (SVMs)
and random forest classifiers (RFCs). With these ML models, we achieve high accuracy of up to 100%
for data sets containing only a few hundred samples, especially for the closed atom configurations
such as the pentagonal (five atoms) and hexagonal (six atoms) systems. The results demonstrate
that computationally cost-effective ML models can be used in the identification of Rydberg atom

configurations.

Keywords Rydberg atoms, machine learning

1 Introduction: Background and motivation

Rydberg-atom quantum simulators currently draw much
attention due to the scalability and diverse multi-qubit
configurations of single-atom trap arrays. Three dimen-
sional (3D) 100 Rydberg atom-arrays [1] and fast process-
ing of holographic 3D arrays [2] have been recently demon-
strated. However, as the number of atoms increases, the
quantum dynamics of interacting Rydberg atoms become
significantly more complex compared to few-qubit Ryd-
berg atom cases. In real situations of nonzero decoher-
ence, the resulting partially-entangled N-body states, in
general, require data processing of 2V-by-2V density ma-
trices, which is a formidable task for large N. Hamilto-
nian symmetries shall reduce the computational complex-
ity and identification of the symmetrized base states of
the interacting Rydberg atoms shall be of great benefit
for further studies of Rydberg quantum simulators.

This paper intends to use machine learning (ML) meth-
ods to identify the symmetrized base states of interacting
many-body systems. ML has started to affect many ar-
eas of our everyday life in recent years, from personal-
ized internet search algorithms and voice recognition to
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diverse decision-making activities. ML is used in physics
research [3] to predict the bandgaps of inorganic com-
pounds [4], represent topological ground states as short-
range neural networks [5], and optimize the electrochemi-
cal properties of battery materials [6]. In quantum physics
research, ML has been implemented to reconstruct the
density matrices in quantum state tomography [7] and
quantum motional state tomography for levitated parti-
cles [8], retrieve topological quantum phase transitions [9],
and also perform optimum parameter search [10]. Such
needs become popular in the broad range of quantum
information science as the parametric space (e.g., qubit
numbers) increases, thereby resulting in greater complex-
ities.

Most ML models implemented in quantum research up
until now have utilized artificial neural networks (ANNs),
which require large amounts of computational resources,
data sets with large sample sizes, and longer training time.
However, these general requirements of ANNs may not be
fully necessary for certain tasks. As to be shown below,
our Rydberg-identifier (Rydberg-ID) of intrinsic symme-
tries is a good example. To the best of our knowledge,
ML models have not been used for classification tasks in
Rydberg-atom configurations.

2 Research methods: Collecting Rydberg
quantum simulation data

We simulate experimental data sets of temporal Rydberg
excitation probabilities to train and test the identifica-
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tion of its atom configuration (i.e., number and shape).
Each configuration corresponds to its interaction Hamil-
tonian, the second term U(rjx) in Eq. (1) below if we con-
sider Rydberg fraction. For the classification, we assign an
identifier (ID = 0, 1, 2, ---) to each Rydberg base state
from the interaction Hamiltonian, U(r;z). Here, we use
two supervised machine learning algorithms implemented
with a python machine learning library: scikit-learn [11].
Support vector machine (SVM) and random forest clas-
sifier (RFC) models are developed for the Rydberg-ID.
Both models show accuracy up to 100% within the 2% er-
ror range with only a few hundred data samples for each
atomic configuration up to four Rydberg atoms. The clas-
sifications consistently show high accuracy, close to 100%
for all the closed atomic configurations up to six atoms.
We define the following variables of N related to certain
numbers used:
N: Number of samples in a data set;
N,: Number of atoms, which is qubit numbers;
Npryq: Number of atoms in the Rydberg excited state;
Nip: Number of possible quantum base states, WﬁRy "
where the superscript G denotes a specific graph.
Considering the Rydberg-atom blockade regime [12], we
use various connected graphs consisting of vertices and
edges that represent atoms and blockaded couplings [13]
respectively, as illustrated in Figs. 1(a)—(c). Each configu-
ration corresponds to Rydberg base states of a Rydberg in-

teraction Hamiltonian that generates time-evolution prob-
ability. In general, we can write the N, atom Rydberg
Hamiltonian as

E[:

No
5 2 (11)5{01; +10)5(1];) +) Ure)ngie, (1)
j=1 i<k
where |0); and |1); are the ground and Rydberg energy
states of an atom j located at r; respectively. The sec-
ond term U(rjz) = Cg/|rjx|° corresponds to the van der
Waals interaction between two Rydberg atoms, where
n; = [1);(1]; is the excitation num-
ber [12, 13]. In the graphs representing atomic arrange-
ments, we set the length of the edges to be d = 8 pm,
which is within the range of the Rydberg-blockade radius
d < r, = |Cs/(hQ)[Y/C. Thus, in this case, Rydberg ex-
citation of an atom only occurs whenever its neighboring
atoms are in the ground state. The distance r;; differs
according to the geometry of the atomic arrangements.
For example, r;, = 2d for atoms at opposite vertices in
the hexagonal configuration (H6). To simulate real experi-
mental data, we add the next nearest neighbor interaction
(NNN) between two Rydberg atoms U(rjx). For linear
chains, we may consider only the nearest neighbor (NN)
interaction between atoms. However, considering actual
experimental data, it is more accurate to add the next

nearest neighbor interaction. Adding the next nearest
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Fig. 1 Schematics of considered Rydberg-atom configurations. Classification by (a) the number of atoms from one to six, (b)
various connected graphs of 4 atoms, and (c) Rydberg excitation. (d) Illustration of the possible decision boundaries to classify
the ground state and excited single atoms and SVM’s optimal decision boundary. (e) A decision tree from the random forest
classifier used to classify the ground state and excited single atoms generated with plot_tree(), as explained in Section 3.2.
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neighbor interaction increases the accuracy significantly
for linear chains of four and five atoms, as discussed later
in Fig. 10.

We model our ML classification based on the experi-
ments in Ref. [13]. The experimental process starts with
the Rubidium (87Rb) magneto-optical trap (MOT) and
single atom arrays in three-dimensional optical tweezers
via dipole trap laser. The atom arrangements are de-
termined by a phase mask and a spatial light modula-
tor (SLM) that control the focal points of the dipole trap
laser. All atoms are optically pumped to the ground hy-
perfine state [0) = |55 /2, F' = 2, mp = 2) as initial states.
We then implement the Hamiltonian of Eq. (1) by the
two-photon excitation (780-nm and 480-nm lasers) of the
Rydberg atoms to [1) = |715},,m; = 1/2) via the off-
resonant intermediate state |m) = |[5Ps/p, F' = 3,mp, =
3). By the final state readout process [13], we may obtain
the experimental probability data to which we can apply
our ML classifiers. We implement the two Rydberg laser
noises in our simulation to generate the experimental-like
data used in our ML models.

For generating experimental-like data, we include de-
coherence by implementing the Lindblad equation in our
simulation using MATLAB. In detail, we set the dephas-
ing rates associated with the laser noise, including inten-
sity fluctuation. The phase noise of lasers is measured
and imported. To consider the situation of dephasing
fluctuations, we randomly generate the intensity fluctu-
ation by setting the mean value of the fluctuation (3%)
and its deviation (1%). Here, we consider the typical ex-
citation scheme to Rydberg states via two-photon transi-
tion [14, 15], so the Lindblad model is included to consider
the dissipation to the intermediate transition level. We
randomly generate the intensity fluctuation by setting the
mean value of the fluctuation (3%) and its deviation (1%).
Consequently, the Lindblad model’s dephasing rates fluc-
tuate due to the laser intensity-induced power broadening.

We compared classification accuracy for other mean val-
ues (deviations) of the laser intensity fluctuation for three
combined sets —3% (1%), 7% (2%), and 10% (5%), as we
discuss later in Fig. 14 and Fig. 15. Both 3% (1%) and 7%
(2%) represent realistic experimental situations, and the
accuracy does not change much for these two. However,
considerable fluctuation with 10% (5%) that lowers the
accuracy does not represent our experimental condition.

For N, atom qubit configuration, only a few out of the
2N eigenstates represent the possible Rydberg-atom ex-
citation (bright eigenstates) and its ground state. There-
fore, we only consider possible excitations as our config-
urational basis. Time evolution of the state, |¥(t)), from
the initial ground state Wy = |¥(¢t = 0)) = |00---0)
[Rydberg-atom base state, W, , = [¥ng,,)], is deter-
mined by the Hamiltonian [Eq. (1)] in the Lindblad model
as discussed in Ref. [13],

Po(t) = (L (0)[ (1)), (2)
PNRyd(t) = |<\I]NRyd|lI](t)>|27 (3)
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where Py(t) [Pny,,(t)] is the probability amplitude at time
t. The time evolution becomes complicated and negligible
as we increase the number of atoms N,. From the data
of certain Rydberg base states that do not show much
distinction, we may ask questions such as:

i) Can we count the number of atoms, N,, in the ground
state? [Fig. 1 (a)]

ii) With a fixed number of atoms, can we identify
different geometric configurations, W, in their ground
state [13]? [Fig. 1(b)]

iii) With fixed configuration, can we classify all possible
Rydberg quantum base states, WﬁRyd? [Fig. 1(c)]

The three questions above can be considered as a re-
verse engineering process if we can determine the Hamil-
tonian or base state of the system from its probability
data, Py(t) or Pyy,,(t). The motivation of this paper is
to perform such classification (Rydberg-ID) tasks using
machine learning models.

3 Research methods: Machine learning
algorithms

In this section, we briefly introduce two supervised classifi-
cation models that we implement as our Rydberg-ID: sup-
port vector machines (SVMs) and random forest classifiers
(RFCs). Both methods are built with scikit-learn [16].

The method described in Section 2 generated the Ry-
dberg atoms’ temporal probabilities of being in a certain
state for the ML data sets. Each probability plot is col-
lected for a duration of 1 us. As is the norm for real ex-
periments, each probability data point is generated every
50 ns. Thus, each plot has 21 data points. The nota-
tion X[i] represents a probability value at the i'" data
point representing a certain time, ¢. These data points
are used as the features for our ML models. The term
feature means a variable that describes the samples used
to train the ML model. We assume that the probability
plots of the configurations are sufficiently different from
each other such that the models can classify them.

3.1 Support vector machines

Figure 1(d) illustrates the main idea of support vector ma-
chines (SVMs) with a few samples from the single-atom
data set in Figs. 5(a) and (¢). The axes denote the proba-
bility value at the 3"¢ and 4! time data points; only 2 out
of the 21 features are plotted for visualization. The green
lines are decision boundaries that classify the data points
into the two classes: ground state and excited state.

An SVM determines the optimal decision boundary that
separates the classes and maximizes the distance between
the decision boundary and the nearest data point from
each class, as shown on the right side of Fig. 1(d). For
data with p features, the decision boundary is a (p — 1)-
dimensional hyperplane. We build the linear SVM model
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with scikit-learn’s SGDClassifier() with the default loss
function: “hinge”. In the model, we scaled the training
data with StandardScaler() to improve the performance
of the SVM since SVMs are sensitive to the scales of the
features [16].

3.2 Random forests

Contrary to the SVM, a random forest is an ensemble
method that has more than one predictor and combines
the predictions of the predictors to improve its perfor-
mance [16]. The final prediction of the ensemble method
is the average of all the individual predictions. An ensem-
ble method usually has better performance than its con-
stituent predictors, especially if the constituent predictors
make diverse errors. Random forests consist of decision
trees diversified by being trained on random subsets of the
samples and features.

Figure 1(e) shows a decision tree from the random for-
est classifier used in Fig. 5(c) to classify the single-atom
data set. The decision tree learns the rules at each node
using the Classification and Regression Tree (CART) al-
gorithm [16] with randomly selected training samples. If
a sample fulfills the rule at a decision tree node, it moves
down to the left and vice versa. In each node, sample
represents the percentage of training samples that pass
through by satisfying the condition in its parent node.
The wvalue shows the proportion of the training samples
belonging to each class determined by its known ID. The
class denotes the predicted class of the samples, which is
the node’s mode value. Similar to the SVM model, we
build a random forest classifier (RFC) with scikit learn’s
RandomForestClassifier(). We used the default pa-
rameters of the models provided by scikit-learn [11].

3.3 Training and testing of models

To train and test the ML models, we generated 300 data
samples for each atomic configuration. Consequently, the
total number of data samples is N = 300x Np, where N;p
is the total number of atomic configurations considered
in the experiment. For each data set, we split it into a
training set with 80% of the samples and a test set with
the remaining 20% of samples. The training sets are used
to build the classification model, and the test sets are used
to estimate the generalization error. To create the training
and test sets, we use stratified sampling with scikit-learn’s
train_test_split() function to ensure our training and test
sets have equal proportions of Nyp similar to the whole
data set. We label the samples in the data sets with an
identifier (ID) from zero to N;p—1 as shown in the figures
for these supervised learning tasks.

We test the models on the test set and obtain the mod-
els’ estimated accuracy on other data that we did not use
in training before. The accuracy is simply the propor-
tion of correct predictions of each model. To quantify the
precision of accuracy on the test set, we calculated the
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95% confidence interval. The correct interpretation of the
confidence interval can be achieved as follows. If we had
more data sets and created their confidence intervals, al-
most 95% of the constructed confidence intervals would
contain the true classifier’s accuracy [17]. One may misin-
terpret that there is a 95% probability that the true clas-
sifier’s accuracy is within the confidence interval [18]. We
view each prediction as a Bernoulli trial with the prob-
ability of success equal to the model’s accuracy. Thus,
we create a binomial proportion confidence interval and
use the Agresti—Coull interval as it is preferred for large
sample sizes (N > 40) [19].

4 Results

4.1 Classification by the number of atoms up to six

First, we identify the number of atoms in the ground state
by considering two types of configurations: linear chains
and closed shapes. We increase the number of atoms in
line from one to six (ID: 0, 1, 2, 3, 4, 5). Figure 2(a) shows
time evolution of the probability Py(t) = |[(¥(0)|¥(¢))|? in
Eq. (2) for each case (ID). The models are trained on tem-
poral probability plots with 21 data points corresponding
to the 50 ns duration between each data point similar to
our model experiment in Ref. [13]. However, the 21 points
are not enough to show all features of the temporal pro-
files. Thus, for better visualization in the figures, we sim-
ulate a single temporal profile with 201 data points for
each Rydberg configuration set.

To check classification performances, we tested the ac-
curacy depending on different i) total evolution time and
ii) observation duration in Fig. 3. The accuracy values
are compared to Figs. 2(a), (c), (e) obtained by our de-
fault parameter settings, which is 1 us total evolution time
and 50 ns duration. For the identification of the number
of atoms N,, our accuracy tests employ both SVM and
RFC. Figure 3(a) shows that the SVM [RFC] accuracy
drops from 91% (£0.03) [93% (£0.03)] to 86% (=£0.04)
[90% (40.03)] when we decrease the overall time evolu-
tion from 1 ps to 0.75 us while keeping the observation
duration constant, 50 ns. It drops further to 51% (£0.05)
[66% (£0.05)] at 0.25 us.

Figure 3(b) shows that the SVM [RFC] accuracy drops
as we increase the observation duration from 50 ns to
250 ns while keeping the overall time evolution constant,
1 us. The overall performance is higher with RFC com-
pared to SVM, although both show similar trends. The re-
sults confirm that the classification performance decreases
as the range of evolution time decreases and the duration
increases. The reason is that reducing the total evolution
time and increasing the observation duration lessens the
amount of information present in the data set, which ham-
pers the performance of the ML models. This is because
ML models usually perform better when they are trained
on more data, provided that the data is reliable. Note that

Daryl Ryan Chong, et al., Front. Phys. 17(1), 12504 (2022)
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our default setting maintains the overall accuracy above
90%.

Figure 2(c) shows the accuracy of the models on the test
set rendering the N;p x Njp confusion matrix for both
SVM and RFC. We use the confusion matrix to assess
ML models as it shows the predicted ID of the samples

together with its actual ID; the diagonal elements rep-
resent correct predictions while the off-diagonal elements
indicate the wrong ones. For example, non-negligible off-
diagonal elements between ID = 4 and 5 indicate incorrect
identification between five and six atomic linear chains.
Then, we need to maximize the diagonal values represent-
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Fig. 2 Identifying the number of atoms in its Rydberg ground states: Wy = |¥(0)), |0), |00), |000), |0000), |00000), [000000),

from one to six ground state atoms either in linear chains (a, c, e) or closed shapes (b, d, f), respectively. We plot time
evolution of the probability Py(t) = [(¥(0)|¥(¢))|* [Eq. (2)] in (a) and (b). We plot the confusion matrix for the (c) linear
chains, and (d) closed shape using two ML methods: SVM and RFC. The accuracy of the test sets is shown in (e) and (f) for
both SVM (blue dots) and RFC (orange dots) methods, as a function of sample numbers N. The saturated accuracy of the
linear chains is 91%-93%, which is less than the 100% accuracy of the closed shape. The reduced accuracy results from the
off-diagonal elements of the confusion matrix in (c), which shows the mixture between ID = 4 and 5 corresponding to their
similarity in probabilities Py (¢).
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ing “true positive (TP)” predictions.

To estimate the minimum number of samples required
to train our models, we performed 10-fold cross-validation
on the training sets while varying their sample size. Fig-
ure 2(e) plots the cross-validated accuracy of the training
set as a function of N. The accuracy of the linear-chain
data set [Fig. 2(e)] is less than the closed-shape data set
[Fig. 2(f)] because of the similarity between probability
data shapes (ID = 4 and 5) as shown in Fig. 2(a). The
similarity of the data of different classes affects the predic-
tion accuracy. If the data of different classes are linearly
separable in the feature space, as in Fig. 1(d), the ac-
curacy of the ML models would be higher. However, if
the data of different classes are very close to one another,
the accuracy of the SVM and RFC would be lower. Such
similar patterns also explain the reason for the significant
off-diagonal elements between five and six linear chains.

Contrary to the linear chains with open ends, we de-
fine the following closed shapes for the same number of
atoms. There is no such closed shape for single and two
(binary) atoms, S1 and B2. The closed two-dimensional
shapes begin with three-atom configurations: triangular
(T3), square (C4), pentagonal (P5), and hexagonal (H6)
configurations, as shown in Fig. 1(a). Figure 2(b) shows
the probabilities of being in the base state for each closed
shape. We obtain higher accuracy of 98% from SVM and
99% from RFC [Fig. 2(d)]. The saturation accuracy of
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99% occurs near 200 samples [Fig. 2(f)].

4.2 Classification by various connected graphs of four
ground state atoms: S4, K4, C4, and K4e

We consider four-atom arrays with various graphs as dis-
cussed in Ref. [13] for supervised training and testing of
N sample data. Figure 4 shows the ML multiclass classi-
fication of four geometric configurations (connected graph
denoted as G) in its ground state: S4, K4, C4, and K4e,
labeled as 0, 1, 2, and 3, respectively. The time evolu-
tion of probabilities is plotted in Fig. 4(a). To check the
performance of the ML classification, we evaluate the con-
fusion matrix in Fig. 4(b), indicating the high saturated
accuracy of 99% (2% error) by SVM and 100% (1% er-
ror) by RFC. Figure 4(c) shows that the accuracy reaches
its saturation value even before N = 200. The multiclass
classification of four graphs has high accuracy for both
models due to the distinctive data patterns in Fig. 4(a).
So far, we discussed the classification of the number of
atoms or shape of a fixed number of atoms in the ground
state. For this case, the Rydberg-ID has a one-to-one cor-
respondence with its own interaction Hamiltonian, U (),
in Eq. (1). Next, we extend such multiclass classification
to identify possible Rydberg excitation base states. For
such cases, the Rydberg-ID does not represent the interac-
tion Hamiltonian unless we form a Rydberg fraction from

Daryl Ryan Chong, et al., Front. Phys. 17(1), 12504 (2022)
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as 0, 1, 2, and 3, respectively. (a) Time evolution of P (t) = [(¥C(0)|¥(¢))|? = [(0000|¥(t))|? [Eq. (3)], and (b) confusion
matrix by SVM and RFC methods. (c) Accuracy as a total number of samples N. The results show both SVM and RFC
accurately predict four graphs due to the distinctive data shapes.

each base state. two (binary) atoms [B2, Fig. 5(b)] with high classifica-

tion accuracy, which does not require ML classification
because of the obvious distinction between data shapes.
This trend even lasts for three-atom arrays (Fig. 6), and
four-atom cases (Fig. 7). The ML-based classification re-
sults in 100% accuracy even with tens of samples for some
cases. For such high accuracy, the data pattern distinc-
tively differs from each other. Except for the single-atom

4.3 Classification by Rydberg excitation of a fixed
configuration.

Now, we classify all possible Rydberg base states for each
graph. Figure 5 shows Rabi-oscillation of either a sin-
gle atom [S1, Fig. 5(a)] or collective Rabi-oscillation of

a b =
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Fig. 5 One or two atom Rydberg excitation. Both cases consist of two possible base states: Wy (ID = 0) and W1 (ID = 1).

Time evolution of probabilities for (a) either Wy =

|0) or W1 = |1) in a single qubit atom (S1), and (b) either Wy = |00) or

W1 = (]10) 4 |01))/v/2 in two (binary) atoms (B2). Filled grey circles denote atoms in the ground state, and empty circles
represent Rydberg excitation of an atom. Confusion matrix of SVM and RFC for (c) S1 and (d) B2 without any confusing
decision (no off-diagonal values) corresponding to its highest accuracy.
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Fig. 6 Identifying Rydberg states of three atoms in (a—c) triangle shape (T3) resulting in two bases as we label ID = 0 and

1: ground state, 0: Wy = |000), and excited state, 1: W1 = (]100) 4]010) 4-]001))/+/3, and (d—f) linear chains consisting of four
bases. We label each as ID = 0: Wy = |000), 1: Wi, = (]100) + |001))/+/2, 2: Wi, = |010), and 3: W2 = |101), respectively.
Pnp,a() = [(Unp,. [P (t))]* denotes time evolution of Ngyq number excitation for (a) T3, and (d) linear chains. Confusion
matrix from each ML method, SVM and RFC, for classifying all possible bases of Nryq = 0 and Ngyq = 1 in (b) T3 and (e)

linear chains. Accuracy as a function of sample number N is plotted in (c) and (f), respectively.

qubit case, multi-qubit atoms are located within the Ry-
dberg blockade range d = 8 pm of the nearest neighbor.

For more than three-atom arrays, we locate atoms in
two different ways; closed configurations and linear chains,
as shown in Fig. 6-Fig. 9. Specifically, we classify sym-
metric triangle (T3) [Figs. 6(a—c)] and equidistant lin-
ear chains [Figs. 6(d)—(f)]. Two possible bases of T3
are the ground state |000) and excited state (]100) +
|010) + |001))//3, respectively labeled as 0 and 1. Such
symmetric configuration for closed shapes are applied to
higher number of atoms discussed later: square (C4)
[Figs. 7(a)—(c)], pentagon (P5) [Figs. 8(a)—(c)], hexagon
(H6) [Figs. 9(a)—(c)].

The three-atom linear chain results in four possible Ry-
dberg base states labeled as ID = 0, 1, 2, and 3. The num-
ber of of atoms in the linear chain is increased up to six
later on [Fig. 7-Fig. 9(d-f)]. Png,.(t) = [(¥ng,.[¥ (1))
denotes time evolution of Ng,q number excitation. Fig-
ures 6(b) and (e) show the confusion matrix. We plot
the accuracy as a function of sample number N = (0,
N;px300) in Figs. 6(c) and (f) to estimate the sample
size needed to reach the saturation accuracy. The prob-
ability plots of T3 and three-atom linear chains are well
distinguished from each other, which results in high accu-
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racy for both models.

Figure 7 shows the four-atoms case similar to the three
atom case. Up to four atoms, the accuracy reaches 100%
with fast saturation even with few training samples for
both closed square shape (C4) and linear chains. As we
increase the number of atoms, however, the behavior of
accuracy changes in some cases. It is because the cor-
responding time evolution data Py, ,(t) becomes more
indistinguishable, and the patterns get complicated, espe-
cially for the linear chains.

The closed shape of the five-atom configuration (pen-
tagon, P5) has three base states corresponding to the time
evolution data in Fig. 8(a). Due to the distinct shapes, the
accuracy is 100% (1% error) with only true positives (TP)
or diagonal elements for both SVM and RFC in Fig. 8(b).
Consequently, Fig. 8(c) shows constant 100% accuracy re-
gardless of the training sample size N.

Figure 8(d) shows the probability of five-atom linear
chains with each graphic configuration, respectively. The
confusion matrix in Fig. 8(e) has non-zero off-diagonal val-
ues indicating the false-positives (FP) and false-negatives
(FN) of our models. Such errors arise from similar prob-
ability profiles, for example, between ID “17 (Wi, =
(|10000) + |00001))/+v/2) and “2” (Wi, = (]|01000) +

Daryl Ryan Chong, et al., Front. Phys. 17(1), 12504 (2022)
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Fig. 7 Identifying four-atom Rydberg bases of (a—c) square shape (C4) and of (d—f) linear chains. Time evolution Py, ,(t) =

(VU Ng,q Y1) |* of the Ngyq excitation for (a) C4. We label each as N = 0: Wy =

10000, 1: W, = (]1000) + |0100) +

|0010) + [0001))/+v/4, 2: Wa = (]1010) 4 |0101))/+/2. Classification of each shows high accuracy of 100% from (b) confusion
matrix and (c) accuracy. For linear chains of four atoms, we plot (d) time evolution Pnp, ,(t) labeled as 0: Wy = |0000), 1

Wia = (|1000) 4 |0001))/v/2, 2: Wy, =
accuracy.

|00010))/v/2) in Fig. 8(d). The notable difference be-
tween SVM and RFC is the diagonal value of “3”. The
single model method (SVM) shows 50, and the ensemble
method (RFC) has 57 true positives (TP). The origin of
the SVM model error seems to be the mixture of “1” and
“3” compared to RFC. It would be one example to see how
those two multiclass classifiers work from the data shape in
Fig. 8(d). Nonetheless, the accuracy cannot reach 100%.
The saturated accuracy of RFC reaches up to 92% (2%

12504-9

(10100) + [0010))/v/2. 3: W2 = (]1010) + |0101))/+/2, (e) confusion matrix, and (f)

error) instead [Figs. 8(e), (f)].

A hexagonal array of six atoms (H6) is the most rep-
resentative closed system for various multi-partite entan-
gled systems as shown in Fig. 9(a). Because of the clear
distinction among data, the confusion matrix’s main di-
agonal values in Fig. 9(b) guarantee both models’ classifi-
cation accuracy up to 100%. However, the linear counter-
part in Fig. 9(d) shows otherwise with saturation accuracy
around 80% [Figs. 9(e) and (f)]. Interestingly, the confu-

Daryl Ryan Chong, et al., Front. Phys. 17(1), 12504 (2022)
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Fig. 9 Identifying Rydberg excitation configuration of six atoms in (a—c) hexagonal shape (H6), and (d—f) linear chains.
We label each as 0, 1, 2, ---, 11, respectively. (a) Time evolution of Py, ,(t) = |<\IlNRyd|\I/(t))\27 where the Uy, ) denotes
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80%.
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sion matrix in Fig. 9(e) shows acceptable main diagonal 5.1 Accuracy dependence on nearest neighbor
values (TPs) except for significant mixed off-diagonal el- interaction and combined closed-linear chains

ements between “2” (Wy;) and “3” (Wy.), “5” (Way) and
«g» <W2e) wrn (W2d> and “8” (W2e) «g” (W2€> and “9” To simulate experimental data reasonably, we include the

(Way), and “10” (Wa,) and “117 (Ws,). For example, next nearest neighbor (NNN) interaction in addition to
the nearest neighboring (NN) atom interaction for all
87Rb atom arrays discussed above. We note that the NNN
approximation also improves the ML classifiers’ accuracy.
For example, we compare the classification accuracy of the
NNN and NN only interaction cases as well as combined
sets in Fig. 10.

From Fig. 7-Fig. 9, we have seen the high accuracy for
the closed shapes compared to their linear counterparts of
four-, five-, and six-atom linear chains. Figures 10(a)—(c)
In the previous sections, we use two supervised classifi- show the accuracy plots for linear chains as our reference
cation algorithms, SVM and RFC, implemented in scikit- to compare with other effects. Figures 10(d)—(f) show that
learn [16] to identify Rydberg interaction Hamiltonians the accuracy drops significantly when considering only
based on the graph of the 8"Rb-single atom array. In this the nearest neighbor interaction, except for the six-atom
section, we further test accuracy beyond the categories linear chain, compared to when the NNN interaction

such off-diagonal properties (FNs-FPs) appear among cer-
tain doubly excited Rydberg states (ID = 5, 7, 8, and 9)
[Fig. 9(e)]. These are also associated with the indistin-
guishable data patterns in Fig. 9(d).

5 Discussion

discussed. was included in Figs. 10(a)—(c). Therefore, considering the
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Fig. 10 Effect of interaction or mixture on accuracy as a function of data samples N for linear chains. The reference linear
chains from Fig. 7-Fig. 9 are shown for (a) four-atom linear chains, (b) five-atom linear chains, and (c) six-atom linear chains
with the default next nearest neighbor interactions for comparison with other effects. Accuracy drops significantly when we only
consider nearest neighbor (NN) interactions for (d) four-atom linear chains, (e) five-atom linear chains. The accuracy of (f)
six-atom linear chains is relatively unaffected. It shows that the next nearest neighbor consideration (a—c) demonstrates high
accuracy compared to only the nearest interaction cases (d—f). We further compared (a—c) to the combined shapes, including
both closed and linear chains in (g—i), which follows the accuracy of the reference linear chains in (a—c). Note that the above
two factors do not really affect the six-atom cases that appeared in (¢), (g), and (i).
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Accuracy against sample numbers for (b) NNN interaction and (d) NN interaction. Consequently, for our default NNN, we see
dramatically enhanced accuracy from 55% to 98% for both SVM and RFC.
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Fig. 12 Identification of all 12 configurations of both P5 and five-atom linear chain. IDs are 0: WE?, 1: W{?°, 2. Wif®, 3:
Wo, 4: Wia, 5: Wi, 6: Wie, 70 Waq, 8: Wap, 91 Wac, 10: Wag, and 11: W3. Confusion matrix for (a) next nearest neighbor
(NNN) interaction and (c) nearest neighbor (NN) interaction. Accuracy for (b) NNN interaction and (d) NN interaction. We
see dramatically enhanced accuracy when the NNN interaction is considered, especially for IDs between 4 and 11.
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Wsp. Confusion matrix for (a) next nearest neighbor (NNN) interaction and (c) nearest neighbor (NN) interaction. Accuracy
against sample numbers N for (b) NNN interaction and (d) NN interaction. Interestingly, in contrast to the four and five atom
configurations, adding the NNN interaction does not change the accuracy that much, within the uncertainty range.

next nearest neighbor interaction represents the actual ex-
perimental data and improves the performance of the ML
classifiers.

We further test ML accuracy by combining both closed
and linear shapes as in Figs. 10(g)—(i). It shows that the
mixture causes relatively similar classification accuracy to
the linear chain cases in Figs. 10(a)—(c). It means that the
linear chains’ classification characters limit the accuracy
of the mixed set of closed and linear chains.

For more details, the combined sets are tested for both
the default next nearest neighbor (NNN) interaction and
the nearest neighbor (NN) interaction for four, five, and
six atoms from Fig. 11 to Fig. 13. The default NNN inter-
action results in the confusion matrix’s main diagonal val-
ues similar to the case of linear chains discussed in Fig. 7—
Fig. 9.

Figure 11(a) shows the confusion matrix of all the seven
base states from the combined C4 and four-atom linear
chains. We show the accuracy plot in Fig. 11(b), which is
the same as Fig. 10(g). The same base states with only NN
interaction are shown in Fig. 11(c) confusion matrix, and
(d) the accuracy plot, which shows drastically degraded
classification performance from 55% compared to 98% for
NNN. Figure 11(c), for example, shows erroneous decision
between ground states of C4 (W4, ID = 0) and four-
chains (Wy, ID = 3). The next nearest neighbor (NNN)
interaction seems to be the essential part of rendering the
linear chains’ physical character in this case.
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For the 12 cases of the combined P5 and five-chains,
the confusion matrix in Fig. 12(a) and the accuracy plot
in Fig. 12(b) follow the pattern of the linear chains as
discussed in Figs. 10(b) and (h). However, with only the
nearest neighbor (NN) interactions in the linear chains,
we see wrong predictions among I D = 4-11, which is the
linear-chain part. When we consider the default NNN, the
confusion matrix keeps its diagonal character representing
high classification performance.

Figure 13 shows how NNN or NN affects the confusion
matrix and accuracy for identifying all 17 base states from
the combined H6 and its linear counterpart. The perfor-
mance of both, however, does not differ much. Natural
questions that arise are “Why does the NNN correction
term enhance the accuracy dramatically for four and five-
atom linear chains?” and “Does it indicate intermediate
regime at a certain number of linear chains?”. These ques-
tions indicate that ML classification could be useful to
study the Rydberg Hamiltonian and base states in detail
in the future.

5.2 Noise effect on accuracy

For the data in the previous sections, we considered 3%
laser intensity noise fluctuation level and its 1% standard
deviation based on our experience in taking real experi-
mental data. To see how the ML accuracy depends on the
noise, we increase the average noise level and its standard

Daryl Ryan Chong, et al., Front. Phys. 17(1), 12504 (2022)
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Fig. 14 Accuracy dependence on laser noise intensity for four atoms. (a) Accuracy as a function of sample size N for various

laser noise intensity fluctuations.

(b) Accuracy as a function of fluctuation level (standard deviation). The fluctuation of

3% (1%) and 7% (2%) represent practical experimental situations in the lab. For comparison, we considered the significant

fluctuation level of 10% (5%), which rarely occurs.

deviation to 7% (2%) and 10% (5%).

For four atoms, Fig. 14(a) shows the effect of noise fluc-
tuation on the accuracy. The accuracy does not decrease
much for both realistic experimental situations of 3% (1%)
and 7% (2%). However, increasing the mean value to 10%
(5%) drops the accuracy to 97%-98% for closed and lin-
ear chains, still showing high accuracy except for the com-
bined case. For the mixed case, the accuracy drops dra-
matically to 88% for SVM and 93% for RFC. Figure 14
shows accuracy as a function of (a) sample size and (b)
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the noise (fluctuation). Increasing the noise seems to con-
fuse data shapes further for the mixture of the closed and
linear chains.

For five-atom linear chains and the combined set in
Fig. 15(a), the accuracy drops below 90% for the noise
level of 7% (2%) and significant drops below 80% for the
noise level of 10% (5%). On the other hand, the closed
configuration (P5) keeps the 100% accuracy level and 98%,
respectively. Figure 15(b) shows the detailed noise depen-
dence. The accuracy of the closed shapes, C4 and P5, is

Daryl Ryan Chong, et al., Front. Phys. 17(1), 12504 (2022)
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Fig. 15 Accuracy dependence on laser noise intensity for five atoms. (a) Accuracy as a function of sample size N for various

laser noise intensity fluctuations.

(b) Accuracy as a function of fluctuation level (standard deviation).

The fluctuation of

3% (1%) and 7% (2%) represent practical experimental situations in the lab. For comparison, we considered the significant
fluctuation level of 10% (5%), which rarely occurs.

insensitive to the noise due to the distinctive data pat-

terns.

6 Conclusion

In summary, we have classified various Rydberg Hamilto-
nians using two machine learning models. Rydberg iden-
tifier (Rydberg-ID) can determine Rydberg Hamiltoni-
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ans reversely from the time evolution data using machine
learning (ML). We compared a support vector machine
(SVM) trained with stochastic gradient descent (SGD)
and a random forest classifier (RFC). The RFC shows
slightly higher accuracy compared to the SVM because
the ensemble method (RFC) is more efficient than using a
single model (SVM) in our classification of Rydberg atom
configurations. We obtain better performance of the RFC,
especially for complicated data sets such as the six-atom
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linear chain. Both models performed exceptionally well in
classifying the closed atomic configurations reaching close
to 100% for all the configurations tested.

Both models can classify the number of ground-state
atoms in a configuration well (accuracy > 90%). How-
ever, the models performed better for the closed shapes
with accuracy close to 100%. We then tested the mod-
els’ ability to identify the geometric configuration of a
fixed number of atoms. The various four atom-connected
graphs discussed in Ref. [13] were classified almost per-
fectly (Fig. 4).

Lastly, we assessed the models’ performance in classi-
fying all possible Rydberg quantum base states of a fixed
atomic configuration. Nonetheless, ML methods converge
faster for the closed configuration of C4, P5, and H6 com-
pared to the linear chains for each case. The confusion
matrix shows that the distinctive data patterns are re-
lated to the high accuracy.

To investigate further the effect on the accuracy, we
considered the range of the interaction for the linear
chains: NNN vs. NN. Experimentally realistic NNN con-
tributes to better performance in the classification. We
also considered combined data sets of closed and linear
chains to investigate how the interaction affects the dis-
tinction of the probability data’s time evolution. Fur-
ther investigation of machine learning classification for the
Rydberg Hamiltonian associated with multi-partite qubit
systems paves the way for the diverse usage of ML in Ry-
dberg quantum simulation.
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