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We propose and experimentally demonstrate a fast Berry-phase gate, which is implemented by picosecond-
timescale optical pulses to make the qubit system of atomic clock states adiabatically evolve on a closed loop.
The characteristic features of the proposed gate are gate speed and robustness against control fluctuations, which
can potentially resolve the decoherence and reliability issues in quantum information processing, at the same
time. The experiment is conducted with two linearly polarized, chirped optical pulses, interacting with five
single rubidium atoms simultaneously in an array of optical tweezer dipole traps, to demonstrate the proposed
picosecond-timescale clock-state gates. The robustness of the qubit rotation angle δ�/δA = 1.5% is achieved
with respect to the laser intensity (of pulse area A) fluctuation.

DOI: 10.1103/PhysRevResearch.2.023045

I. INTRODUCTION

The Berry phase is one of the hallmarks of quantum me-
chanics, dealing with the geometric phase, gained by a quan-
tum wave function subjected to an adiabatic process, which
can remain nonzero even after a cyclic evolution in which
the more familiar dynamic phase disappears [1]. It appears
ubiquitously in numerous physical phenomena including the
Aharonov-Bohm effect, the quantum Hall effect, and neutron
interferometry, to list a few [1–3]. The Berry phase written as
a unitary operator U for a cyclic evolution is holonomy, which
depends only on the evolution path but not on other dynamic
details during the evolution. Thus, a geometrical manipulation
of two-state systems utilizing the Berry phase is expected for
robust quantum information processing against environment
and parameter noises (characteristically of local nature) due
to their independence from local phase changes (dynamic
phases).

One way to implement these holonomic quantum
gates [4,5] is adiabatic time evolution [1,6]. The time evo-
lution of a qubit system |ψ (ti)〉 = α|0〉 + β|1〉 driven by the
time-varying field of the Hamiltonian HI (t ) from ti to t f is
written in the bare basis as

|ψ (t f )〉 = eiφdU (�)|ψ (ti)〉, (1)

where φd is the dynamic phase that is only global, thus
ignorable, and � is the geometric phase. The adiabatic time
evolution of a qubit system allows no leakage from the
initial adiabatic state of degenerate eigenenergy, so if an
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appropriate interaction picture removes this eigenenergy, a
parallel transport condition 〈ψ (t )|HI (t )|ψ (t )〉 = 0 can be im-
posed for the holonomy. Original proposals for holonomic
quantum gates are based on this adiabatic evolution [4,7–
9]. However, in many physical systems of limited coher-
ence time, it is difficult to satisfy the adiabatic condition
and experimental implementation has been limited to long-
lived transitions [10] or the shortcut to adiabaticity [11,12].
Most other examples utilize nonadiabatic holonomic quantum
gates [13–17], but their nonadiabatic characteristic makes
them sensitive to parameter fluctuations [18].

In the present paper we propose a method implement-
ing adiabatic holonomic gates, thus Berry-phase gates, of
atomic clock states in picosecond timescales. Experimental
demonstration is performed on the hyperfine states of an
atomic system, interacting with chirped optical pulses that
allow adiabatic time evolution in the qubit system, to achieve
the robustness of the Rabi oscillation angle δ�/δA = 1.5%
with respect to the laser intensity (pulse area) fluctuation. We
further demonstrate a scheme for rotation operators about ar-
bitrary axes, with which a set of universal one-qubit quantum
gates can be constructed.

II. THEORETICAL CONSIDERATION

Let us consider an atomic system [see Fig. 1(a)], of an
excited level |e〉 = |P1/2〉 and a ground level |g〉 = |S1/2〉, in
which |g〉 consists of two ground hyperfine states (qubit states)
|0〉 = |S1/2, F = I + 1/2, mF = 0〉 and |1〉 = |S1/2, F = I −
1/2, mF = 0〉. When the hyperfine energy splitting h̄ωhf is
negligible compared to the inverse of the gate-operation time,
these qubit states can be considered as energy degenerate
states.

We utilize a cyclic time evolution of the qubit system, by
a pair of chirped pulses [see Fig. 1(b)]. As each chirped pulse
implements a rapid adiabatic passage (RAP) [19] that pro-
vides robust adiabatic population transfer between |g〉 and |e〉,
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FIG. 1. (a) Energy-level diagram of a ground level |g〉, an excited level |e〉, and two degenerate qubit eigenstates |0〉 and |1〉 within the
ground level |g〉. A cyclic transition between |g〉 and |e〉 results in the evolution from the initial qubit state |ψ〉 to U |ψ〉. (b) Pulse sequence
of Berry-phase gates (top) and the corresponding time evolutions of the two-level system (bottom). When the system undergoes successive
adiabatic passages by two linearly polarized, chirped laser pulses with relative polarization angle θ [(i) θ = −π/2, (ii) θ = 0, and (iii) θ =
π/4], the first RAP excites the system from |g〉 to |e〉 along the path shown by the blue line and then the second RAP deexcites the system
back to |g〉 along the two different paths labeled by σ+ and σ−, shown by red lines. The geometric phase gained through the cyclic transitions
is proportional to the shaded area enclosed by the two red lines in the Bloch sphere.

a pair of RAP applications adiabatically drives the transition
from the ground initial state |ψ (ti )〉 = α|0〉 + β|1〉 to |e〉 by
the first pulse and then back to the ground state by the second.
Suppose the pulses propagate along the quantization axis (+ẑ
axis) of the qubit states |0〉 and |1〉, being linearly polarized
with a relative polarization angle θ between them. Here we
set the coordinate system to let the polarization unit vector
of the first pulse be the x̂-axis unit vector x̂ = (R̂ + L̂)/

√
2,

where R̂ and L̂ are the right and left circular polarization unit
vectors, respectively. Then the polarization unit vector of the
second pulse is expressed as (e−iθ R̂ + eiθ L̂)/

√
2. Correspond-

ingly, the qubit system is considered in the Cartesian basis,
as |ψ (ti )〉 = α−β√

2
|−〉 + α+β√

2
|〉+, where |±〉 ≡ (|0〉 ± |1〉)/

√
2

are the fine-structure states |S1/2, mJ = ±1/2〉 in our case. By
the dipole selection rule, the right and left circular polariza-
tions drive σ± transitions between |∓〉 and |e〉, respectively.

The Bloch sphere representation in the lower figures of
Fig. 1(b) shows the time evolution pathways of |∓〉 driven by
respective polarization components. After the cyclic evolution
by the two pulses, |∓〉 states get geometric phases ±θ − π ,
respectively, corresponding to − 1

2 of the solid angle enclosed
by the evolution pathways [5], while the dynamic phase φd is
due to the intensity- and detuning-dependent eigenenergy [19]
and dynamic Stark shift from neighboring transitions [20].
Thus we get |ψ (t f )〉 = α−β√

2
eiφ− |−〉 + α+β√

2
eiφ+ |〉+, in which

φ∓ = ±θ − π + φd are the phases gained during the time
evolution (see the Appendix for more details). The final state
|ψ (t f )〉 is then expressed in the qubit basis as

|ψ (t f )〉 = −eiφd

(
cos θ −i sin θ

−i sin θ cos θ

)
|ψ (ti )〉

= −eiφdUx̂(2θ )|ψ (ti)〉, (2)

where Ux̂(�) is the X -rotation operator of the qubit states by
the rotation angle � = 2θ . Note that the dynamic phase φd is
always global because linear polarization guarantees an equal

magnitude of the σ± transitions and thus the same dynamic
phase for each transition. Therefore, this scheme implements
the holonomic transition determined by only the geometric
phase �, robust against laser parameters such as intensity and
detuning.

Qubit rotations about an arbitrary axis n̂ = nxx̂ + nyŷ can
be implemented with an additional pair of time-delayed
pulses. Since our scheme works in the regime where the
hyperfine splitting is neglected, we adopt a method utilizing
the hyperfine interaction in a longer timescale [20]. In the
interaction picture where the qubit basis is |0′〉 = |0〉 and
|1′〉 = e−iωhf t |1〉, the Cartesian basis is given by |±〉 = |0′〉 ±
eiωhf t |1′〉. Then, with the second Berry-phase gate applied after
time delay T , the time evolution of the qubit system from ti +
T to t f + T becomes |ψ (t f + T )〉 = −eiφdUn̂(�)|ψ (ti + T )〉,
where

Un̂(�) =
(

cos θ −i(nx + iny) sin θ

−i(nx − iny) sin θ cos θ

)
(3)

is the rotation operator of the qubit states about the axis n̂,
with nx = cos(ωhfT ) and ny = sin(ωhfT ) controlled by the
time delay T .

III. EXPERIMENTAL PROCEDURE

An experimental demonstration of the Berry-phase gates
of atomic clock states was performed with an array of sin-
gle rubidium atoms driven by pulse-shaped ultrafast optical
pulses [see Fig. 2(a)]. Fast optical control of atomic and ion
systems has been studied before through direct or Raman
excitations [21–23], which we borrowed in the present work
to implement adiabatic operations for geometric phases. Laser
pulses were produced by a femtosecond Ti:sapphire amplifier
system operated at a 1-kHz repetition rate (carrier frequency
377.1 THz, bandwidth 3.8 THz), which were resonant to
the D1 transition. The pulses were linearly chirped by an
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FIG. 2. (a) Schematic of the experiment. (b) Fluorescence image
of single atoms at positions xi (i = 1, 2, . . . , 5). The following de-
notations are used: BS, beam splitter; HWP, half-wavelength plate;
EMCCD, electron multiplying charge-coupled device; and SLM,
spatial light modulator.

acousto-optic pulse shaper to stretch the pulse length to 1.5 ps
with a chirp rate of 2.6 ps−2, to satisfy the adiabatic condition
for the RAP (see the Appendix for more details). Each pulse
was split into two pairs of double pulses, with the interpair
(intrapair) delay T = 70–370 ps (τ = 6.7 ps). The relative
polarization angle θ was varied by a combination of a half
waveplate and a polarizer, realizing Ux̂ with the first pair and
Un̂ with the second. These pulses were delivered along the
counterpropagating directions (±ẑ), respectively, to the atom
array in a magneto-optical trap.

Five single atoms (87Rb) were prepared by optical tweez-
ers [24,25] at fixed positions of 26.5-μm spacing along the
transverse direction of the laser beam propagation so that
they experienced different intensities of the same laser pulses
[see Fig. 2(b)]. The optical tweezers were tightly focused
852-nm laser beams (2-μm 1/e2 diameter) with a trap depth
of 1.6 mK. The atoms were first optically pumped to the
|0〉 = |5S1/2, F = 2, mF = 0〉 qubit state using π -polarized
continuous light resonant with the F = 2 → F ′ = 2 transition
of the D1 line and the F = 1 → F ′ = 2 transition of the
D2 line, in the presence of an applied magnetic field of
2.4 G which defined the quantization axis along the laser
propagation axis.

Then the laser pulse sequence, each pair of which con-
stituted one Berry-phase gate operation, was focused to the
single-atom array with a beam waist of 60 μm (90 μm) for
pulses 1 and 3 (pulses 2 and 4) which was smaller than the
array size of 106 μm. Thus each atom in the array experi-
enced largely different laser intensities. Finally, a push-out
measurement [26] was applied to record the probability of
the |1〉 = |5S1/2, F = 1, mF = 0〉 state of each atom with an
electron multiplying charge-coupled device camera.

IV. RESULTS AND DISCUSSION

With the experimental apparatus, we first demonstrate the
robustness of Ux̂(�) in Eq. (2) against laser power fluctuation.
We used the first pair of pulses [pulses 1 and 2 in Fig. 2(a)],
while blocking the second pair (pulses 3 and 4), and mea-
sured the state |1〉 probability of each atom as a function of
the relative polarization angle θ . In Fig. 3(a) the measured
probabilities P(θ ) = |〈1|ψ (t f )〉|2 of the five atoms exposed to
different position-dependent pulse areas [Amax ≈ 5 × Amin;
see Fig. 3(b)] are plotted and numerically fitted to the function

P(θ ) = γ sin2(θ + �θ ) + η, (4)

with fitting parameters γ , �θ , and η.
The ideal case is γ = 1 and �θ = η = 0, while experi-

mental imperfection results in degraded fringe visibility (γ <

1 and η > 0) and a fringe shift (�θ 
= 0). Imperfections in
γ and η that result in gate infidelities are due to errors in
state preparation and measurement (SPAM). In our experi-
ment, there exist optical pumping infidelity (∼4%), push-out
measurement infidelity (∼3%), and polarization mismatch be-
tween the pulses and the quantization axis (∼1%), in addition
to the effect of weak pre- and postpulses [27]. However, we
note that the SPAM errors are not directly related to the
robustness of the Berry-phase gate.

On the other hand, a nonzero fringe shift �θ 
= 0 could im-
ply failure of the intensity robustness of the proposed Berry-
phase gate. This error mainly came from the birefringence of
the vacuum window [28], which affected the polarization of
the laser pulses and the imbalance between the σ± transitions
causing a dynamic phase error. This polarization imperfection
was verified by measuring the gradient of the fringe shift
δθ/δA vs polarization ellipticity, as shown in Fig. 3(c). In
our present demonstration of the Ux̂ which was limited by the
remaining polarization ellipticity of 1/40, a robustness against
the laser intensity is achieved up to δ�/δA = 2δθ/δA =
1.5%, and the ultralow birefringence technique [29,30] of
1/3000 ellipticity is expected to further improve this below
δ�/δA = 0.01%.

In the second experiment, we tested the robustness of the
rotational axis n̂, using two Berry-phase gates Ux̂ (pulses 1
and 2) and Un̂ (pulses 3 and 4). The relative polarization angle
θ of both gates was fixed to π/4 for maximum visibility and
the Ramsey fringe of the F = 1 state probability P(θ, T ) =
|〈1|Un̂(T )(2θ ) Ux̂(2θ )|0〉|2 was measured, with respect to the
time delay T between the pulse pairs, and numerically fitted
to the function

P(θ, T ) = γR sin(2θ ) cos2(ϕn̂ + ϕ0) + ηR, (5)

where γR is the fringe visibility, ϕn̂ = ωRT/2 is the angle
of the rotational axis, ϕ0 is the Ramsey phase shift, and ηR

is the offset. At each atom, the measured frequency resulted
in 〈ωR〉 = (6.79 ± 0.08) × 2π GHz, agreeing well with the
87Rb hyperfine frequency within the 95% confidence interval,
in which the equivalent time-domain error is as small as
0.9 ± 1.8 ps.

In order to estimate how robust the rotation axis of
the Berry-phase gate is, we consider the possibility of an
intensity-dependent axis shift ϕ0(A), i.e., n̂(T ) → n̂′(T,A)
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FIG. 3. (a) The |1〉 state probability of the qubit, prepared in the |0〉 state followed by the Ux̂ operation. Each plot shows the probability
measured from each single atom at positions xi for various relative polarization angles θ . Black dots are the measurements and the red lines
are their fits to a sinusoidal function. (b) Pulse areas measured by Rabi oscillation at five trap sites, respectively, for pulse 1 (red circles) and
pulse 2 (green squares), and their fits to a Gaussian function (red and green lines, respectively). (c) Gradient of fringe shift vs the polarization
ellipticity for four different values of polarization ellipticity of the pulses: 1/40 (induced by the vacuum window), 1/20, 1/10, and 1/7 (varied
by a quarter waveplate). The polarization ellipticity induced in the experiment is indicated by the star. The inset shows the fringe shifts �θ as
a function of the pulse area for the four values of polarization ellipticity.

with n′
x(T,A) = cos[ϕn̂ + ϕ0(A)] and n′

y(T,A) = sin[ϕn̂ +
ϕ0(A)]. Ramsey phase differences �ϕ0 = ϕ0 − 〈ϕ0〉 are
shown in Fig. 4, with the Ramsey fringe of each atom in
the inset. The Ramsey fringes in the insets exhibit the same
phase shift for all the atom positions regardless of the pulse
areas, demonstrating the robustness in n̂. In other words, all
the values of �ϕ0 are zero within 95% confidence intervals
among the atom positions. The mean value of the confidence
interval radius for all atom positions is 0.016π , while the
standard deviation of the pulse area among all the gates is
1.45π . So the robustness of the rotation axis against the laser
intensity is given within their ratio, i.e., δϕ0/δA < 1.1%.

Now we turn our attention to the numerical estima-
tion of the fidelity and robustness of the given Berry-
phase gates (for an ideal case without SPAM errors). The
Lindblad master equation is used to calculate the ampli-
tude and phase of the transition between the ground hy-
perfine states |5S1/2, F = 2, mF 〉 and |5S1/2, F = 1, mF 〉, via
|5P1/2, mJ = ±1/2〉|I = 3/2, mI = ∓1/2〉 and |5P1/2, mJ =
±1/2〉|I = 3/2, mI = ±1/2〉, in the presence of the off-
resonant coupling to |5P3/2〉 and spontaneous decay. The gate
fidelity [31] of Ugate is defined by

F = |〈ψin|U †
idealUgate|ψin〉|2, (6)

where Uideal= Ux̂(π ) and Ugate = U (θ2 − θ1 = π/2), aver-
aged over the set of input states, i.e., |ψin〉 ∈ {|0〉, |1〉, (|0〉 +
|1〉)/

√
2, (|0〉 + i|1〉)/

√
2}. The contributing experimental pa-

rameters are the spectral width (FWHM) of the pulses �ω,
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transition probability from |0〉 to |1〉 after applying Ux̂ (π/2) (pulse 1
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as function of the detuning � for relative phases δφL = 0 (red), π/2
(green), π (blue), and 3π/2 (black).

the chirp parameter cp, the pulse area A = A1 + A2, the
time delay τ , the amplitude imbalance of the two pulses α =
(A2 − A1)/(A2 + A1), the frequency detuning � = ω1 −
ω0 = ω2 − ω0, and the relative phase between the laser pulses
δφL = φL

2 − φL
1 , i.e., F = f (�ω, cp,A, τ, α,�, δφL ).

Figure 5 shows the numerical calculation. The contour plot
of the fidelity F (cp,�ω) in Fig. 5(a) shows the high-fidelity
region around cp ≈ 0.072 ps−2 and �ω ≈ 2π × 4 THz. The
spectral width is upper bounded by the leakage D2 transi-
tion to 5P3/2 and lower bounded by the insufficient spectral
width (smaller than required by the chirp) that corresponds
to the spectral width ranging from about 2π × 3 THz to
2π × 4 THz in our experiment. To investigate the dependence
of the fidelity on the pulse area, amplitude imbalance, and
frequency detuning, respectively, in the rest of Fig. 5, we
choose �ω = 2π × 4 THz and cp = 0.072 ps−2. First, in
Fig. 5(b), the fidelity F (A) is calculated as a function of the
pulse area A for various time delays τ . The result exhibits a
nearly flat high-fidelity region within a wide range of pulse
area, e.g., between 3π and 8π for a 2.36-ps short pulse. Thus,
the Berry-phase gates are robust against the pulse area (or the
laser power fluctuation). This A-robust region (δF/δA ≈ 0)
is lower bounded by nonadiabaticity and upper bounded by
the interference between temporally close two pulses. Next
the robustness against the amplitude imbalance (α robustness
δF/δα ≈ 0) is shown in Fig. 5(c), where a sufficiently large
pulse area ensures the α robustness as the adiabatic condition
of the chirped RAP breaks down for a weaker pulse of
insufficient Rabi frequency. Finally, the robustness against the
detuning � and relative laser phase δφL is shown in Fig. 5(d).
The � robustness (δF/δ� ≈ 0) is achieved around zero

detuning, regardless of the relative phase (δφL robustness),
while the asymmetry between positive and negative detunings
stems from the dynamic Stark shift (due to the D2 transition)
of the 5S1/2 level. Thus, we expect that the fidelity above 0.999
can be achieved for about half of the laser spectral width in the
current experiment.

It is worthwhile to compare the robustness of the proposed
scheme with a state-of-the-art result. Wang et al. [32] consid-
ered the robustness of their single-qubit Pauli Z gate, which is
a composite-pulse dynamic phase gate. Their robustness, ob-
tained as δ� = 21 mrad × (δ f / f )2 for a laser-induced Stark
shift f , estimates the fidelity robustness of δF = 10−3 over a
7% change in laser intensity. In comparison, our Berry-phase
gate is robust over a 40% change in laser intensity, around
A = 6π , within δF = δ�2/4 = 10−3, estimated based on
measurements in Fig. 3(c).

V. CONCLUSION

We have implemented qubit rotations of atomic clock
states using Berry phases induced by two linearly polarized
chirped pulses in picosecond timescales. The results show,
as a characteristic of geometric phases of adiabatic pas-
sages, gate-operation robustness against laser parameter er-
rors, which has been hard to achieve in previous nonadiabatic
holonomic schemes. Berry-phase gates can offer a fast and
robust qubit control not only for atomic systems, but also for
solid-state systems of relatively short coherence time.
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APPENDIX: DETAILED DESCRIPTION OF THE
FAST BERRY-PHASE GATES

The proposed Berry-phase gates for the atomic clock states
are achieved with two successive chirped optical pulses that
are linearly polarized or in equal magnitudes of left and right
circular polarizations. Each circular polarization component
of the chirped pulses adiabatically drives population transfer
between the fine-structure ground and excited levels accord-
ing to the transition selection rules. The Berry-phase differ-
ence between the two driven evolution paths is determined
by the relative polarization angle between the two pulses,
resulting in robust qubit rotation insensitive to other laser
parameters except the polarization. After we briefly review the
chirped rapid adiabatic passage, we describe the Berry-phase
gates for atomic systems.

1. Chirped rapid adiabatic passages

The robust population transfer is implemented by using the
chirped rapid adiabatic passage [19]. Let us consider a two-
level system, of the fine-structure states |g〉 and |e〉 with energy
separation h̄ω0, interacting with a Gaussian chirped pulse of
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an electric field written in the frequency domain as

E (ω) = E0

2
e−(ω−ωL )2/�ω2−icp(ω−ωL )2/2 + c.c., (A1)

where E0 is the peak amplitude, ωL is the laser center fre-
quency, �ω is the bandwidth, and cp is the chirp parame-
ter [33]. The corresponding time-domain electric field is given
by

E (t ) = E
2

e−t2/�t2−i(�t2+ωLt+φL ) + c.c., (A2)

with E = E0
√

�ω/�t , �t = √
4/�ω2 + cp

2�ω2,
� = cp/(2cp

2 + 8/�ω4), and φL = − tan−1(cp�ω2/2)/2.
The Hamiltonian of this interaction is given by

H = h̄

2

(−�(t ) �(t )
�(t ) �(t )

)
(A3)

in the interaction picture basis |g′〉 = exp[−i
∫ t
−∞

�(t ′)/2dt ′]|g〉 and |e′〉 = exp{−i[− ∫ t
−∞ �(t ′)/2dt ′ + ω0t +

φL]}|e〉, where �(t ) = ω0 − ωL − 2�t is the detuning,
�(t ) = −μEe−t2/�t2

/h̄ is the Rabi frequency, and μ is the
transition dipole moment. The eigenstates of Eq. (A3) are
given by

|ε+(t )〉 = sin ϑ (t )|g′〉 + cos ϑ (t )|e′〉, (A4a)

|ε−(t )〉 = cos ϑ (t )|g′〉 − sin ϑ (t )|e′〉, (A4b)

with ϑ (t ) = tan−1[�(t )/�(t )]/2 [for 0 � ϑ (t ) � π/2]. The
corresponding eigenenergies are given by

ε±(t ) = ± h̄

2

√
�2(t ) + �2(t ). (A5)

Here, since the detuning �(t ) is linearly dependent on
time, the eigenstate |ε−(t )〉 [|ε+(t )〉] evolves from |g〉 (|e〉)
to |e〉 (|g〉) as time changes from t = −∞ to ∞, along the
meridian of the Bloch sphere. Thus, the complete population
transfer between |g〉 and |e〉 is achieved as

|g〉 → − exp

[
i

(
1

2

∫ ∞

−∞
(�+

√
�2+�2)dt−ω0t−φL

)]
|e〉,

(A6a)

|e〉 → exp

[
i

(
−1

2

∫ ∞

−∞
(� +

√
�2 + �2)dt + φL

)]
|g〉

(A6b)

when the adiabatic condition

|�̇� − ��̇|
2(�2 + �2)3/2

= �p|�|(2t2/�t2 + 1)

(|�|2 + 4�2t2)3/2
� 1 (A7)

is satisfied. The rapid adiabatic passage ensures the robustness
against the fluctuation of the laser parameters E0, ωL, and φL

(amplitude, frequency, and phase).

2. Description of the fast Berry-phase gates in atomic systems

In our consideration, the qubit states are the hyperfine
states |0〉 = |S1/2, F = I + 1/2, mF 〉 and |1〉 = |S1/2, F =
I − 1/2, mF 〉 of the ground state |g〉 = |S1/2, mJ = ±1/2〉
of an alkali-metal atom, while the excited level is |e〉 =
|P1/2, mJ = ±1/2〉. Berry-phase gates are implemented by

successive optical transitions between |g〉 and |e〉, which in-
duce the phase gates for the qubit system of |0〉 and |1〉 (atomic
clock states for mF = 0).

Let us consider two chirped pulses 1 and 2 that are time
separated by τ and propagating along the ẑ axis, of which the
total electric field is given by

�E (t ) = n̂1E1(t − τ/2) + n̂2E2(t + τ/2) + c.c.

= (E+
1 R̂ + E−

1 L̂) + (E+
2 R̂ + E−

2 L̂) + c.c., (A8)

where n̂ j = x̂ cos θ j + ŷ sin θ j ( j = 1, 2) are the polarization
vectors of the pulse j and E±

j (t ) = e∓iθ j E j (t − (−1) jτ/2)
are the corresponding electric field components for circular
polarizations R̂ = (x̂ + iŷ)/

√
2 and L̂ = (x̂ − iŷ)/

√
2, respec-

tively. The interaction Hamiltonian Hint = −�μ · �E has no
dependence on I in the picosecond timescale, so the coupling
for each polarization component of each pulse is given as an
independent two-level system, i.e.,

〈P1/2, m′
J , I, m′

I |Hint|S1/2, mJ , I, mI〉
= 〈P1/2, m′

J |Hint|S1/2, mJ〉〈I, m′
I |I, mI〉

=
∑
j=1,2

(〈P1/2, 1/2| − �μ · R̂E+
j |S1/2,−1/2〉δm′

J ,mJ +1

+〈P1/2,−1/2| − �μ · L̂E−
j |S1/2, 1/2〉δm′

J ,mJ−1)δm′
I ,mI .

(A9)

In the fine-structure basis |S1/2, F = I ± 1/2, mF 〉 =∑
mJ = ±1/2 C1/2,I,I±1/2

mJ ,mF −mJ
|S1/2, mJ〉|I, mI = mF − mJ〉,

the time evolution of the ground-hyperfine-state pair
|S1/2, F = I ± 1/2, mF 〉 can be described by the time
evolution of the two sets of two-level systems {|S1/2, mJ =
−1/2〉|I, mF − 1/2〉 and |P1/2, mJ = 1/2〉|I, mF − 1/2〉}, and
{|S1/2, 1/2〉|I, mF + 1/2〉 and |P1/2,−1/2〉|I, mF + 1/2〉}, for
mF = 0,±1. Note here that mF = ±2 states do not form a
pair of hyperfine states, so we will consider only mF = 0,±1.

For t � 0 (the first pulse case, j = 1), the time evolu-
tion from the initial ground hyperfine state |g〉 = |S1/2, mJ =
∓1/2〉 to the excited state |e〉 = |P1/2, mJ = ±1/2〉 is a rapid
adiabatic passage, as described by Eq. (A6a), when the time
separation is long enough to satisfy the adiabatic condition,
i.e., τ � 1/�p. So the initial state |S1/2, F = I ± 1/2, mF 〉
evolves to

−C1/2,I,I±1/2
−1/2,mF +1/2 exp

[
i

(
1

2

∫ 0

−∞
[�1 +

√
(�+

1 )2 + (�1)2]dt

−ω0t − φL
1 − θ1

)]
|P1/2, 1/2〉|I, mF + 1/2〉, (A10a)

−C1/2,I,I±1/2
1/2,mF −1/2 exp

[
i

(
1

2

∫ 0

−∞
[�1 +

√
(�−

1 )2 + (�1)2]dt

−ω0t − φL
1 + θ1

)]
|P1/2,−1/2〉|I, mF − 1/2〉, (A10b)

where �+
1 (t ) = 〈P1/2, 1/2| − �μ · R̂|S1/2,−1/2〉|E+

1 (t )|/h̄,
�−

1 (t ) = 〈P1/2,−1/2| − �μ · L̂|S1/2, 1/2〉|E−
1 (t )|/h̄, and

�1(t ) = ω0 − ωL − 2�(t + τ/2).
For t � 0 (the second pulse case, j = 2), the subsequent

adiabatic passage from |e〉 back to |g〉, according to Eq. (A6b)
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in Sec. 1, results in

C1/2,I,I±1/2
−1/2,mF +1/2eiφ− |S1/2,−1/2〉|I, mF + 1/2〉 + C1/2,I,I±1/2

1/2,mF −1/2eiφ+ |S1/2, 1/2〉|I, mF − 1/2〉
= ei(φ−+φ+ )/2

∑
k = ±1/2

C1/2,I,I±1/2
−k,mF +k eki(φ−−φ+ )|S1/2,−k〉|I, mF + k〉

= ei(φ−+φ+ )/2
∑

k, l = ±1/2

C1/2,I,I±1/2
−k,mF +k C1/2,I,I+l

−k,mF +keki(φ−−φ+ )|S1/2, F = I + l, mF 〉

= ei(φ−+φ+ )/2 U (φ− − φ+)|S1/2, F = I ± 1/2, mF 〉, (A11)

where the total phases, for the ± polarization components, gained during the two adiabatic evolutions are, respectively,

φ− = 1

2

∫ 0

−∞

(
�1 +

√
�+

1
2 + �1

2
)
dt − 1

2

∫ ∞

0

(
�2 +

√
�+

2
2 + �2

2
)
dt − φL

1 + φL
2 − θ1 + θ2, (A12a)

φ+ = 1

2

∫ 0

−∞

(
�1 +

√
�−

1
2 + �1

2
)
dt − 1

2

∫ ∞

0

(
�2 +

√
�−

2
2 + �2

2
)
dt − φL

1 + φL
2 + θ1 − θ2, (A12b)

with �+
2 (t ) = 〈P1/2, 1/2| − �μ · R̂|S1/2,−1/2〉|E+

2 (t )|/h̄, �−
2 (t ) = 〈P1/2,−1/2| − �μ · L̂|S1/2, 1/2〉|E−

2 (t )|/h̄, and �2(t ) = ω0 −
ωL − 2�(t − τ/2). The resulting unitary operations in Eq. (A11) are rotations given, respectively, by

U (�) =
(

cos �
2 −i sin �

2−i sin �
2 cos �

2

)
=

(
cos �

2 − i 1
2 sin �

2 ∓i
√

3
2 sin �

2

∓i
√

3
2 sin �

2 cos �
2 + i 1

2 sin �
2

)
for mF = 0,±1, (A13)

which correspond to Ux̂(�) and Ucos (π/3)ẑ±sin (π/3)x̂(�). For reference, the rotations for mF = ±2 are the identity.
Therefore, the two chirped pulses rotate the ground two-level system |0mF 〉 ≡ |S1/2, F = I + 1/2, mF 〉 and |1mF 〉 ≡ |S1/2, F =

I − 1/2, mF 〉 by inducing the relative phase between them. Note that since �+
j (t )2 = �−

j (t )2 is satisfied due to the symmetry
between mJ = ±1/2 and the linear-polarization condition [|E+

j (t )| = |E−
j (t )|], the dynamic phases represented by the integrals

for φ+ and φ− in Eqs. (A12) are the same. The relative phase is therefore given by

φ− − φ+ = 2(θ2 − θ1), (A14)

having no parameter dependence except the polarization difference θ2 − θ1 between the two pulses. This is the difference
between the Berry phases generated during the two time evolutions of |S1/2,±1/2〉, and thus the qubit rotation implemented
by this geometric phase is robust against laser parameters as long as the adiabatic condition in Eq. (A7) is satisfied.

Now we consider more general cases. First, when the dynamic Stark shift due to the off-resonant excited level P3/2 is taken
into account, the detunings �±

j for j = 1, 2 are to be replaced by

�+
j (t ) = � j (t ) + |〈P3/2, 1/2| �μ · R̂|S1/2,−1/2〉E+

j (t )|2

4h̄2
[
ω0 + �fs − ωL − 2�

(
t − (−1) j τ

2

)] + |〈P3/2,−3/2| �μ · L̂|S1/2,−1/2〉E−
j (t )|2

4h̄2
[
ω0 + �fs − ωL − 2�

(
t − (−1) j τ

2

)] , (A15a)

�−
j (t ) = � j (t ) + |〈P3/2, 3/2| �μ · R̂|S1/2, 1/2〉E+

j (t )|2

4h̄2
[
ω0 + �fs − ωL − 2�

(
t − (−1) j τ

2

)] + |〈P3/2,−1/2| �μ · L̂|S1/2, 1/2〉E−
j (t )|2

4h̄2
[
ω0 + �fs − ωL − 2�

(
t − (−1) j τ

2

)] , (A15b)

where �fs is the fine-structure splitting of the excited states. However, since the linear-polarization condition guarantees �+
j (t ) =

�−
j (t ) for both j = 1, 2, the presence of P3/2 makes no difference in Eq. (A14). Second, when the polarization is not perfect and

of nonzero ellipticity ε j ( j = 1, 2), the condition |E+
j (t )| = |E−

j (t )| is replaced by |E+
j (t )|2/|E−

j (t )|2 = (1 + ε j )2/(1 − ε j )2. In
this case, the dynamic phases represented by the integrals for φ+ and φ− in Eqs. (A12) are not equal, so the dynamic phase is to
be included in the qubit rotation angle, making the gate sensitive to laser-parameter fluctuations.
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