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Abstract

Terahertz time-domain spectroscopy was used to probe the optical constants of natural mineral com-
pounds and the polarization dependence of material confined in a sub-wavelength metal slit. The ex-
perimental results show that dolomite is a promising candidate as THz optical element material and
seraphinite exhibits lattice vibrations at 0.96 THz whose mode is analyzed by the Kurosawa formula.
The abnormal behavior predicted by Bethe’s diffraction theory is also experimentally observed from the

vanishing in absorption from a-lactose in the slit.

Keywords Terahertz time-domain spectroscopy (THz-TDS), seraphinite, lattice vibrations, Bethe

diffraction theory, THz dolomite lens
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Chapter 1. Introduction

Terahertz frequency waves refer to electromagnetic waves in the far-infrared (IR) frequency region
ranging from 0.1 THz (0.33 cm™!) to 10 THz (330 cm™!) between microwave and far-infrared elec-
tromagnetic waves [I—4]. In the far-infrared frequency range, many physical phenomena occur due to
material excitations resulting from magnons, plasmons, and phonons which are interesting topics in con-
densed matter physics [2—4]. Researchers studying in the field of atomic and molecular physics were
anticipating to investigate the molecular rotation, vibration, and other modes in the same frequency
range [2—1]. A half-century ago, it was recognized in the field of spectroscopy that probing the spectral
features of material in the far-infrared frequency below 3 THz (100 cm~!) was a challenging task due to
the lack of coherent THz sources and techniques for measuring them [4,5]. Blackbody radiation from an
incandescent light bulb was a commonly used light source to obtain low frequency waves although the
light intensity was weak [4,5]. Detectors such as the bolometer or the pyroelectric detector had poor
signal-to-noise ratios in the aforementioned frequency range so that researchers had to develop brighter
far-IR sources and detectors with high sensitivity [1].

Thanks to the nonlinear optics, the wave mixing by the difference frequency generation (DFG)
method was considered as a way to induce new frequencies covering the far-IR frequency range [1-7].
Advanced laser systems made it possible to generate and measure the coherent THz radiation [1]. The
DFG process for short pulses is their optical rectification in which a pico-second (ps) rectified field with
a shape of a single-cycle pulse can be generated by a femto-second (fs) Ti:sapphire mode-lock pulsed
laser [I—1]. The THz waves can also be generated through the time-varying transient photocurrents
excited by fs optical pulses in a photoconductive antenna [I-4]. The temporal shapes of the THz
waves can be directly measured by a co-propagating optical pulse acting as an optical gate, where
the linear electro-optic effect otherwise referred to as the inverse of optical rectification is used [1-4].
THz time-domain spectroscopy (THz-TDS) represents an integrated spectroscopic system comprised of
experimental components related to the generation and detection of THz waves. The generation and
detection of THz waves and THz-TDS are described in Chaper 2 in detail.

Direct field measurement carried out by electro-optic sampling allows us to simultaneously obtain
the phase information as well as the amplitude of the transmitted or reflected waves from a sample
without resorting to the Kramers-Kronig relationship [1,2]. Spectral information on the measured THz
waveforms is simply computed by applying Fourier transformation to the time-domain THz waveforms
with and without the sample. The index of refraction and the extinction coefficient are obtained by
comparing the spectral transmission and the theoretical transfer function. If the measured time-window
is sufficiently longer than the duration of the main THz waveform, several echo signals appear in the
time-domain data caused by the multiple internal reflections described by the Fabry-Pérot effect. Thus,
the numerical method to extract the material parameter given by the complex refractive index (72) should
be considered for use. In Chapter 3, the material parameter extractions for an optically thick sample as
well as two identical samples were explained. The dynamic range in THz-TDS was also discussed. All
the extractions are described only in the context of the transmission-type spectroscopy.

Chapter 4 describes the spectroscopic results of materials in the THz frequency range from 0.1 THz
to 2 THz. As mentioned above, THz-TDS played an important role in investigating new properties

and phenomena of materials in the THz frequency range. In our lab, we found out that natural stones



are transparent in the measured frequency range, where dolomite stone in particular had a uniform
refractive index of 2.7 and a slightly low absorption in the measured frequency range. The feasibility
of a THz lens fabricated with dolomite was also demonstrated by beam profile measurement which
showed good agreement with the Fraunhofer diffraction theory. Similarly, we found for the first time
that seraphinite gemstone with a monoclinic crystal system had terahertz frequency lattice vibrations
at 0.96 THz. This was proven by the phonon-polariton dispersion relation showing excellent agreement
with theoretical expectations based on Kurosawa formula with damping terms. It is worth to note that
the high quality factor of this mode is comparable to the well-known absorption mode at 0.53 THz
in a a-lactose monohydrate. Furthermore, we demonstrated that isotropic and anisotropic behaviors in
seraphinite can be described by linear and high-order polarization terms. We hope that THz spectroscopy
may become useful for the identification and characterization of various natural stones such as gemstones.

Chapter 5 describes the polarization dependence of material confined in a sub-wavelength metal slit
in which the experiments were conducted by THz-TDS. The diffracted field through a slit can be explained
by Kirchhoff’s diffraction theory provided that the slit width is large compared to the wavelength of the
incident field. Although Kirchhoff’s theory fails in the sub-wavelength region, where the slit width is
sufficiently small compared to the wavelength, we may induce from the waveguide theory that the electric
field perpendicular to the slit direction can propagate through the slit due to the low cutoff frequency.
Whereas the electric field parallel to the slit direction, however, is difficult to propagate owing to the same
analogy. Compared to the electric field, the magnetic field perpendicular or parallel to the slit direction
is always considered as constant over the slit. This is because the boundary conditions obtained by
Bethe’s first-order approximation are not influenced by the shape and size of the aperture. Thus, only
the E field inside the slit exhibits a strong polarization dependence. Using a-lactose monohydrate having
a strong absorption line at 0.53 THz, we investigated the temporal and spectral amplitude changes of
transmitted THz waves within a slit with respect to the slit width. Experimental result revealed that the
spectral response of the material was strongly coupled with the polarization state of the THz wave and
that the material did not interact with the THz wave in the limit of an extreme sub-wavelength-sized
slit.

The conclusions made throughout this dissertation will be summarized in Chapter 6.



Chapter 2. Experimental methods

2.1 Terahertz Time Domain Spectroscopy (THz-TDS)
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Figure 2.1: THz waves are phase measurable ultra-broadband light with frequency range from 0.1 to
10 THz.

Terahertz (THz) waves, also called as THz field, T-rays, THz radiation or submillimeter radiation,
are a kind of electromagnetic waves with frequencies ranging from 0.1 THz to 10 THz (or sometimes
100 THz), which lie between microwave and far infrared rays (FIR) as shown in Fig. 2.1. Physical

parameters corresponding to 1 THz have a relation given by
1 THz < 300 ym < 33 cm ™! < 4.1 meV, (2.1)

which is explained in section A.1. Typical physical units in the THz range are summarized in Table 2.1.

Terahertz time domain spectroscopy (THz-TDS) is a spectroscopic method widely used in a variety
of sciencific and industrial fields due to its specific properties. A conventional THz-TDS in a transmission
configuration is shown in Fig. 2.2. To understand the mechanism of THz-TDS, one needs to know about
the femtosecond (fs) pulsed laser, methods on THz generation and detection methods for the generated
THz wave. Each topic is further discussed in chapter 2.

Although many scientists have been conducting research on THz sources, there does not exist a THz
source with a high signal to noise ratio (SNR) that can scan the entire frequency range from 0.1 THz
to 10 THz (or 100 THz). There are, however, alternatives that can overcome this situation. One may
use a laser or an accelerator to generate THz waves. An accelerator, which is comprised of a variety of

components, consists of two primary components: a linear accelerator system and an undulator system.

Frequency Wavelength Wavenumber Energy

(THz) (um) (™) (meV)
0.1 3000
0.5 600
1.0 300 33 4.1
2.0 150

Table 2.1: Typical physical units in the THz range



A free electron laser (FEL) is generally known as the unit of a linear accelerator and undulator. THz
waves are generated from the linear accelerator system by coherent transition radiation (CTR) [8,9].
Other THz generation techniques using the accelerator are not treated here. If we does not use an
accelerator, then there is no alternative but to use a laser system.

There are several methods to generate THz waves using a table-top laser system. A femtosecond (fs)
Ti:Sapphire pulsed laser with a repetition rate of 80 MHz or an amplifier system with a repetition rate
of 1 kHz or 10 Hz is generally employed to generate THz waves in ambient free space. The THz waves
are generated through the optical excitation process induced by ultrashort fs lasers [10], which is easily

—
(

described with the wave equation [7] as

—— | Erp(z,t) = = = P (2, 1), (2.2)

[ 2_6(1)(w) 0%1 ~ 1 02
2 ot? c2 Ot?

where the nonlinear polarization (density) term PN acts as a source of THz waves and € is the
relative dielectric constant. Nonlinear polarization arises from the optical excitation process (sources
of THz waves are produced) which occur in the following cases. First, a semiconductor is illuminated

by ultrashort pulses, where free carriers are generated. Second, ultrashort pulses either pass through a
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Figure 2.2: A schematic diagram of a conventional THz-TDS system. PCA : Photoconductive antenna,
WP : Wollaston prism, QWP : quarter-wave plate.
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Figure 2.3: A variety of THz generation methods. (a) Photoconductive antenna. (b) Optical rectification
in nonlinear medium. (c¢) Plasma induced from intense laser pulses. A silicon (Si) substrate or a Teflon
substrate is widely used as a low-pass filter.

nonlinear medium or focus onto a nonlinear medium. Third, ultrashort pulses are focused in ambient
air or in another gaseous condition. To generate THz waves, each aforementioned case is experimentally
implemented using the photoconductive antenna (PCA), by optical rectification in nonlinear medium,
and optical-ionized plasma, rexpectively (Fig. 2.3). Each generation method is detailed in section 2.3.

How could the generated THz waves be measured? Although there are a few THz detectors such
as the bolometer, the pyroelectric detector or the Golaycell, these are all incoherent detectors. Electro-
optic (EO) sampling or detection is widely used to measure THz waves by many research groups. The
most powerful advantage of EO detection is directly measuring the THz electric field itself. It is to
note that there is no further way to measure the phase of the THz waves during measurement. By
using EO detection, the THz electric waveform itself can be obtained. Thus, the EO detection method
is a coherent detection method in which the amplitude and phase information of THz waves can be
obtained simulateneously [10]. For this reason, the waveform measurement in terahertz time domain
spectroscopy (THz-TDS) allows one to obtain not only the spectral amplitude but also the spectral
phase information by simply applying the Fourier transformation to the time domain signal without
resorting to the Kramers-Kronig relationship. EO detection is well described in section 2.5.

Figure 2.4 shows a typical THz signal in the time domain, spectral amplitude and phase in frequency
domain after applying the Fourier transformation to the time domain data. We find that the measured
THz waveform has only a few cycles of oscillations and consequently has a broadband spectrum. The

THz generation mechanism is explained in section 2.3.
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Figure 2.4: (a) Measured THz time domain signal through THz-TDS. (b) Frequency domain spectrum
after applying the Fourier transformation to time domain data. (¢) Phase information is also obtained
simultaneously. Blue and red indicate phase and phase after applying unwrap function, respectively.



2.2 Advantage of THz-TDS

Terahertz time domain spectroscopy (THz TDS) has many advantages. Above all, THz TDS allows
one to obtain not only the spectral amplitude but also the spectral phase information by simply applying
the Fourier transformation to the time domain signal. It is difficult to directly obtain the optical con-
stants (refractive index, absorption coefficient) of a sample as a function of frequency using conventional
interferometers such as the Michelson interferometer or Fourier transform infrared spectroscopy (FT-IR).
Since phase information as a function of frequency vanishes when there is no sample in the optical path
of the aforementioned interferometers, phase information of the reference beam cannot be obtained. The
Wiener—Khinchin theorem explains why the phase information cannot be obtained using conventional
interferometer techniques [11].

The Wiener-Khinchin theorem can be derived by the autocorrelation between two electric waves
denoted by E(t) and E(t + 7), where 7 represents the time-delay between the two waves. The inten-

sity (irradiance) can be obtained from the superposition of the two waves given by

I= /dt (E(t) + B+ (2.3)

Provided the interference term a(7) of the two electric waves is expressed as

a(r) = / dt B (t) - B(t+ 1), (2.4)

the intensity becomes'

I= /dt[@(t)lZ FIEt+7)?] +2 §R{a(7’)}. (2.5)

Therefore the intensity is proportional to the last term of a(7). The Fourier transformation is defined
as [7,12]

E(t) ! / " Fw) e ™ = Z[F(w)], F(w)= / S E(t) e“t = F7UE(®)]. (2.6)

2 — 00 —0o0

By a change of variable, the second term E(t + 7) in Eq. (2.4) can be expressed as follows

~ 1 ~ .
Et+7)=— [ dw F(w) e”+7)

(2.7)

2w
% /dw [ﬁ(w) e_i“”} et = ?{ﬁ(u}) e_i‘”]

IThe two electric waves can be represented in terms of real and imaginary part as follows
E; = E; e fori e {1, 2}.
Then the intensity becomes
~ ~ ~ ~ * ~ ~ ~ ~ ~ ~
Bi+ B2 = (Ev+ B2) - (Bx+ B2) = B2 + | Ba + 2 R(BY - Ba),

where

éR(Ef : Ez) = By By cos(¢1 — ¢2) = m(E; : El).



From this equation, we obtain

F1 [E(t + T)} = / dt E(t+71) et = F(w) e™™7. (2.8)

Therefore, the two terms of electric waves terms in Eq. (2.4) can be written as the Fourier component

in the form
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E*(t)-E(t+7) = /dt %/dw F(w) et

(2.9)
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Applying the Fourier transform to both sides of Eq. (2.9), we obtain the Wiener-Khinchin theorem given
by )
F1 [a(T)} - ]ﬁ(w)( . (2.10)

From this result, we find that the phase term in autocorrelation measured by conventional interferometer
techniques such as FT-IR or Michelson interferometer vanishes when the Fourier transform is applied in
the time-domain (or spectral-domain). THz-TDS is thus a powerful spectroscopic technique since it has

the power to obtain the phase information either with and without a sample.

2.3 THz generation using the Photoconductive antenna

A photoconductive antenna (PCA) is an electrical switch that increases the electrical conductivity
of a semiconductor by illuminated photons on the semiconductor with high enough energy exciting the
electrons in the valence band of the semiconductor [2]. A fs Ti:Sapphire pulsed laser with a sufficiently
high enough energy to excite electrons in the valence band of the semiconductor is generally used to

yield photons. When the electrons in the valence band are excited to the conduction band by the pulsed

(a) (b)
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Figure 2.5: (a) The radiation power as a function of the solid angle for the velocity term S < 1 and
B — 1. (b) THz waves emitted from accelerated free carriers induced from PCA are radiated in the
forward or backward direction of the PCA since the velocity of the accelerated free carriers is much
smaller than the speed of light ¢, which is the same when § <« 1.



beam, free carriers are produced in the conduction band.? The free carriers are then accelerated if a bias
electric field is applied to the semiconductor. In our experiment setup, a bias electric field is generated
by a step function signal using a 65 kHz function generator with a dc voltages of 30 V (TOELLNER
TOE 7704). The two generation processes of the THz waves are described below.

2.3.1 Radiation by an accelerated electric point charge

An accelerated electron, which can be described as a moving electric point charge, generates radiation
field into space [13,14]. An accelerated electric point charge can be expressed using the Liénard-Wiechert
potential. The radiated electric field from the accelerated particle using the Liénard-Wiechert potential

is given by [13,14]

ETHZ (ZC, t) =

, (2.11)

4mege (1-n-B)3R

c [ﬁx{mmxﬁ}

ret

where e is the charge of an electron, ¢ is the speed of light, R(t') is the distance from the source point
2’ to the field point @ at a retarded time ¢’ as R(t') = | — «’|, and the retarded time is defined by
t' =t— R/c. B and 7 are defined by

1d R

B = E@m’(t’), n = 7 (2.12)

The non-relativistic approximation has to be considered if 8 is much less than 1 (8 < 1). Eq. (2.11) in

the non-relativistic case is modified as [13, 14]

N X 47 X ﬁ
ETHZ(£B7 t) = 47-:506 [ {R }‘| , (213)
ret

Equation 2.13 is valid if § is much less than 1 (8 < 1), which means that the velocity term [ of the
particle is much smaller than the speed of light ¢. In this nonrelativistic situation described in Fig. 2.5—
(a), in the case of 8 < 1, there is no radiation in the forward or backward directions and the radiation
has maximum power in the direction perpendicular to the propagation direction of the particle.

To understand the generation processes of THz waves produced from PCA, we start from Eq. (2.13)
that can be slightly modified to

. lﬂx{ﬂxﬁ'}l

Ery,(z, t) =
(2, 1) 4megc R
(2.14)
1 [a (. & , pon (. dp
= | — R = - _— X X ——
drepc? | R x OTE (e r )}] . At R e t’
where p is a dipole moment that has the same meaning of the polarization density [13]. From Eq. (2.14),

we find that the polarization induced from a dipole moment can be a source of THz waves, which shows

the same result induced from the wave equation Eq. (2.2). The continuity equation is given by [2, 12]

VJ(& ) + %p(m', t') =0, (2.15)

2A frequency of 1 THz is corresponding to a wavelength of 300 ym. Similarly, we find that a wavelength of 800 nm is
corresponding to 375 THz. We thus find from an equation of E = hw (E means energy) that the photon energy at 800 nm
is 1.53 eV, which is larger than the bandgap of GaAs (1.42 eV). Note that GaAs is the typical composition of the PCA.



where p and J represent the charge carrier density and the photocurrent density, respectively. By

integration by parts, the time derivative in Eq. (2.14) can be expressed as®

14
dp _ d d3$/ wl p(l’,, t/) — /dg.');‘/ iL'l 8[)(33 i t)

BTV /
dt dt ot (2.18)
- —/d%’ & (V- I, t) = /d%' I, ),
where the Leibniz rule is used. Provided Ip¢ is the photocurrent, Eq. (2.14) becomes
Ern,(x, t) = polt o D [ gy J(x', t)
’ TR dt’ ’
ret (2.19)

o T R d , d
= —— — t —Ipc(t
1 x(nx t/lpc( )> toc tlp (1),

where d/dt' = d/dt and t' =t — R/c. This is described in section A.68 in detail.

The emitted THz waves are therefore proportional to the time derivative of the photocurrent. If we
let p (Ipc) be parallel to the polar axis of é, then the radiated electric field will be in the direction of
0 since 7 is the radial unit vector 7 itself. This is also described in more detail in section C. Note that
the polarization of THz waves generated from PCA is dependent on the direction of the bias electric
field (Fig. 2.5(b)) [2].

The photo-induced current I(t) is expressed in terms of the optical pulse and the impulse current
response given by

Ipc(t) = / dt' Iope (t — ') en(t)v(t'), (2.20)

where I, is the optical pulse with a Gaussian shape and e is the electron charge. n and v are the carrier
density and the velocity difference between electron and hole, respectively [2, 15]. Figure 2.6 shows the
calculated photocurrent I(¢) and the derivative of the current of the generated THz waves from the PCA.

Due to the generation mechanism, the THz waves exhibit a sub-cycle pulsed shape.

2.3.2 Radiation induced by the nonlinear polarization

The nonlinear wave equation in Eq. (2.2) shows that the electric field can be generated by the
nonlinear source term PNF. Before the polarization terms are divided into the linear and nonlinear

terms, the wave equation for the field E in free space with a given charge p and current density J can

3By integration by parts, the integral of the photocurrent J in the one dimension with respect to the given 1 D range
can be computed given by

d dJ dJ
/ dz J(x) [—x:| :Mf/ dr x |: (I)] = 7/ dr x [ (x)} , (2.16)
v dx v v dz v dz
where the first term should be canceled out due to the physical reality. With the same analogy, the photocurrent J in
3 dimensions can be written by

/Vd?’:c J(x) :/Vd% J(z)[V-z] = —/Vde z[V-J(x)]. (2.17)




be expressed as [12]*

1 0? 1 10

Analogous to Egs. (A.52) and (A.62), the retarded solution for the field can be obtained as [12]

__1 3/1_/ //_ii ry
E(z, t) = 47T60/dx 7 [ Vip(x', t) cgat’J(w7t) , (2.23)

ret,

where R = |R| = |z — ’| and the retarded time is denoted by ' =t — R/c. For the electrically neutral

media such as a semiconductor [1], p is zero. Thus, the field becomes

E(z, t) ! /dsx’ % [%J(x’, t’)] . (2.24)

= 2
Amege ret

Note that we are interested only in the far-field solution of the radiated THz field. By Eqs.(A.68) and
(A.82), the retarded field solution in the far-field is expressed (in analogy to Eq. (A.83)) as

E(x, t) = Z—;%%/d%’ J (a:', t'=t— E) ) (2.25)

c

where r = |x| and 1/(egc?) = po-
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Figure 2.6: Calculated photocurrent (gray line) in the PCA and the electric field amplitude of the THz
radiation (blue line) as a function of time. The red line indicates a temporal shape of the laser pulses.
All the lines were normalized for the sake of clarity [2].

4See Jackson [12] p. 246. This equation can be obtained by

- % [Eq. (6.16)] (2.21)

with —0A/0t = E+ V®. Eq. (6.15) and Eq. (6.16) are in Jackson [12].

—V [Eq. (6.15)]
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Figure 2.7: (a) The installed PCA. The generated THz waves from the PCA are vertically polarized. (b)
Photo of an enlarged PCA. (c¢) The antenna structure of the PCA (BATOP optoelectronics).

In a similar fashion to Eq. (A.85), the radiated electric field in the far-field can be consequently

obtained in the form [1, 15]

ETHZ(:E, t) 0.8 %J(t)7 (226)

where the medium is assumed to be spatially homogeneous.” The current density .J is induced by the

produced carriers excited by the optical pulsed beam, or
J=2J=2zen(t)(t), (2.27)

where Z is the direction of the current density, n is the carrier density, v is the average velocity of the
carrier and e is the charge of a proton. From Egs. (2.26) and (2.27), the radiated THz electric field
becomes [1,2,15]

0 on Ov

Erp,(t) aJ(t) =evoy + en—- (2.28)

The carrier density n and the carrier velocity v can be expressed as rate equations in the forms [1,2,15]

dn n

T _T_c + G(¢t), (2.29)
dv v e

- __ 1 °FE 2.

dt Te +m ’ (2.30)

where 7. is the carrier trapping time, 75 is the momentum relaxation time and m is the effective of the

carriers. The generation rate G of the carrier by the optical beam can be written as

610 = mess |2, e

where ng represents the initial carrier density [15].

Since the carrier trapping time between electrons and holes is much shorter than their recombination
time, the carrier lifetime is determined by the carrier trapping time 7.. Thus, the carrier lifetime is
considered to be 7. [15]. According to the state of the arts of the semiconductor technology, the carrier

trapping time 7. can be reduced to the sub-picosecond range resulted from a high concentration of

5See the description above Eq. (A.85).
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defects. By the Newton’s second law®, the differential equation in Eq. (2.30) can be expressed as’

v(t) = pE [1 — exp (—;S)] , (2.42)
where the electron mobility u. is denoted as pe = ers/m. The momentum relaxation time 75 is a char-
acteristic parameter obtained from the electron mobility pe, which is about 30 fs for a low-temperature-
grown GaAs (LT-GaAs) [2, 15].

The theoretical analysis shows that THz radiation from carrier density change is more dominant than
THz radiation from carrier acceleration [15]. This can be understood by comparing the time parameters
7. and 75. Since sub-femtosecond 7y is sufficiently enough compared to sub-picosecond 7., the current
density induced by change in carrier density change dn/dt becomes more prominent than the change in
current density induced by the carrier acceleration dv/dt.

Figure 2.7 shows a PCA (iPCAp-21-05-1000-800-h) from BATOP optoelectronics installed in a THz-
TDS setup. Although THz waves from a PCA are radiated in the forward or backward directions as in
Fig. 2.5(b), only the forward THz waves can be detected since they are needed for the electro-optic (EO)

sampling part to measure the THz waves.

6See D. J. Griffiths, Introduction to electrodynamics 2nd edition, p. 361.
"Let’s solve a differential equation in Eq. (2.30) given by

d
—er’y'U:i}Jr'y'U:A, (2.32)
dt
where v = 1/7s and A = eE/m. With the substitution d/dt — D, a complementary solution for Eq. (2.32)
(D+)v(@) =0, (2.33)
which implies that
o(t) = ere™ (2.34)

where ¢; is an arbitrary constant. Since there is a constant factor A in right-hand side in Eq. (2.32), the particular solution
vp for Eq. (2.32) can be expressed as

vp = C2, (2.35)
which follows that
Y Vp=cC2
1 0p(t)=0 (2.36)
Lop (¢)=~ca.
It is noted that e in Eq. (5.164) have to be consistent with A in Eq. (2.32). Then v, is represented in the form
A
vp(t) =ca = —. (2.37)
v

Therefore we obtain the general solution v(t) for Eq. (2.32) of the form

A
v(t) = cre 4 . (2.38)
Y

Because of the reality of the physical fields, there has to be an boundary condition as follows:

A
v(t=0)=c1 +— =0, (2.39)
0
which follows that
c1 =—A/~. (2.40)
As a result, we obtain the general solution v(t) given by
A
o(t) = Z[1—e]. (2.41)
0
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2.4 Other THz generation methods

2.4.1 Optical Rectification

The THz field can be generated using several different methods. Optical rectification is a commonly
used method to generate the THz field which is shown in Fig. 2.8. Optical rectification is based on the
second order nonlinear effect of nonlinear medium such as ZnTe and can be described by the Maxwell
equations [7, 16] in Eq. (2.2), where PNL s a source of the THz waves reduced from the nonlinear

polarization of the medium given by

PiNL(Q) = / Z XEJQ;)C(Qa Wopt, —Wopt + £2) Ej (wopt ) B (wopt — 2)dwopt

ok (2.43)

= / Z XE?})C(Qv —Wopt Q4+ Wopt)E; (Wopt)Ek(Q + Wopt)dwopta
—00 %

where {2 and wopt represent THz frequency and optical frequency, respectively. This equation shows

that the nonlinear response of the medium acts as a source term [7,16]. For example, when the laser
propagates through a ZnTe crystal, wave mixing between the two frequencies wy and ws occurs [17], or
2
P? DB E, = X(Q)% cos(wy —wa)t  +cos(wy + wg)t}, (2.44)
—_———

Optical rectification term

where
E, = Eycos(wit), Ey = Egcos(wat). (2.45)

This electric field is generally called the “Terahertz field (THz)” since this field consists of THz frequency
components when we use a pulsed laser whose centeral wavelength is A and the full width at half
maximum (FWHM) of A\ (i.e. Aw). The rectified term in Eq. (2.44) can thus be made. The THz field

generated via optical rectification is further described in detailed in section A.6.1 in detail.

w0 W3 = Wy — Wy
— )3 = Wy — W
pulse laser X(2)

wa

wo — W1

$eeeetee
$eeeetee

Figure 2.8: A simple physical picture of difference-frequency generation [7]
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The interaction length expressed as the coherence length [2] between the pump pulse and generated
THz waves has to be carefully considered due to efficient power and the spectrum of the generated THz
waves. When we measure the THz waves by electro-optic detection using ZnTe, the thickness of ZnTe
for probing THz waves plays an important role since the detectable frequency range is also determined
by the coherence length of the used ZnTe. By considering the coherence length of ZnTe for a given

THz frequency and optical frequency, the phase matching condition for the optical rectification process

is given by [1,18]

Ak = k(Q 4 wopt) — k(wopt) — k(2) =0, (2.46)
where w,p: and Q) are the optical and THz frequencies, respectively. This equation is identical to that
in the case of electro-optic sampling [18]. The Taylor series for the wavenumber k(w) about w = wep is
given by

dk
F(w) = k(wopt) + (& — wopt) o~ (2.47)

We only consider the first two terms in the Taylor series. Then the Taylor series for the wavenumber

E(Q 4 wopt) about w = wep is

dk dk
k(Q + wopt) >~ k(wopt) + (Q + Wopt — wopt)% = k(wom) + Q% . (248)
Wopt Wopt
The group velocity is considered to calculate the term dk/dw as follows
k= n(k)8 S cdk=wdn+n dw, (2.49)
c
where c is the speed of light. Then
c—wd—n—i-nd—w—wdid—n—i—nd—w— n—i—wd—n dw (2.50)
- dk dk " dk dw dk dw | dk’ '
As a result, the group velocity is calculated as [19]
dw c
=y = 2.51
dk‘ 'Ug n+ w% ( )
The term dn/dw can be calculated by
dn d\ d 2me dn A2 dn A2 dn
—=——-—nN=———=-"2Mc————~ = ———— 2.52
do  dwdx' " w2 dx TerZdx T 2mcd\ (2.52)
where the relation of A = ¢ t = 27¢/w in vacuum is used [19].
The group velocity as a function of wavelength and refractive index is
dw c c c
F dn Tc X2 dn dn’ (253)
EU T TR R R
which implies that
dk 1 dn
—=—|n—-X—|. 2.54
do ¢ [" A d)\] (2:54)
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Figure 2.9: The coherence length of ZnTe as a function of THz frequency for given optical frequencies
(wavelength).

From Eq. (2.54), Eq. (2.46) is reduced to

dk
Ak(w) = k(Q + wopt) — k(wopt) — k() = k(wopt) + Q% — k(wopt) — Kk(€2)
dk Q d Q
= Q% — k(ﬂ) = E nopt — )\opt anopt Nope - ; Nryz (255)

0 N
= E Topt — Aopt anopt

—NTHz|-
opt

The coherence length [1, 18] is defined as [, = w/Ak. Hence we obtain the coherence length given by

e

lc(Qv >\opt) =

, (2.56)
Q

d
Nopt — )\opt ax Nopt —NTHz

opt

where n,p,; can be calculated from the Sellmeier’s equation [18]. The optical refractive index of ZnTe

from the Sellmeier equation [18] is given by

2

A
2 opt
ng, =4.27+3.01 ol —p0.142’ (2.57)

opt

where Ao is the optical wavelength in pm. The THz refractive indices of ZnTe can be also calculated

by [15]

2 THz
2.
NrH~ 29.16 2 B ’ ( 58)

where frp, = Q/2n is in THz. The effective optical refractive index nop: — Aopt %nopt \ at 800 nm

is 3.2394. Since the unit in Eq. (2.58) is in THz, a factor of 10712 has to be multiplied to O]i:j)tq. (2.56).
Figure 2.9 shows the coherence length as a function of THz frequency at a given optical frequency.

We find that the coherence length of 3 mm for a given the optical wavelength of 850 nm is about 1.37 THz.

A ZnTe with a thickness of 1 mm or 2 mm is widely used in the THz detection processes.
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2.4.2 Air plasma

Figure 2.10: The energy-level diagram of the four-wave mixing [7, 10, 20].

THz wave generation in ambient air has been studied due to acceptable ultra broadband spectrum
up to 100 THz as well as intense THz field strength [10]. As described in Eq. (2.2), THz waves can be
generated from a source having the nonlinear polarization. In this case, the air plasma serves as a THz
source which can be produced by a Ti:Sapphire laser amplifier whose centeral wavelength is 800 nm,
repetition rate is 1 kHz and pulse energy is about 1 mJ.

THz waves are generated by focusing a fundamental pulse with a frequency of w and a second
harmonic pulse with a frequency of 2 w both produced by a type-I BBO crystal in air as shown in

Fig. 2.3(c). Consider the third-order nonlinear polarization [7, 10, 20]

PO () = egx® E3(t) (2.59)

induced by an applied field E having three components in the form [10,20]

E(t) = Eg()() (t) et + Egoo (t) et + E400 (t) e_i(QWt—Hp) +c.c, (260)

Eo(t) E.(t) E3.(t)

where the first and second terms are 800 nm pulses, the last term is a 400 nm pulse caused by the second
harmonic generation and ¢ is the phase difference between the two pulses. Then Eq. (2.59) results in
a 4w term, a 2w term, and a rectified term [20]. THz waves are thus generated through the four-wave

mixing process as shown in Fig. 2.10 given by
Eri, o PO(Q) o P (Q,2 w + Q, —w, —w) Ea, EX EY cos(p), (2.61)

where  is the frequency of the emitted THz waves [10]. Note that it is possible to obtain the Q frequency
component owing to the pulsed laser whose center frequency (wavelength) is w and full width at half
maximum (FWHM) is Aw which can produces a non-zero frequency component such as the 2 component
as likely as the optical rectification described in section 2.4.1.

Since a widely used THz detection method such as electro-optic (EO) detection is not useful in
obtaining ultra broadband spectrums due to the narrow bandwidths of EO materials caused by phonon

modes, the THz detection method using gas photonics has been recently extensively investigated [10].
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2.5 THz detection method: Electro optic detection

2.5.1 Introduction

Electro-optic (EO) medium such as ZnTe or GaP have a unique property that their refractive index
of the medium is changed proportional to the applied external electric waves which is known as the
linear EO effect or the Pockels effect. The Pockels effect is one of the nonlinear optical responses of EO
medium. The THz detection method using the Pockels effect is generally called EO detection, which is
a widely used technique to measure THz waves.

To measure the THz waves, the transmission axis of the quarter-wave plate must be defined to
minimize the difference in the intensities of two photodiodes as there is no THz waves, which means that
radiated THz waves are blocked. After defining the transmission axis of the quarter-wave plate, suppose
that THz waves and a probe beam copropagate through a (110) ZnTe crystal as in Fig. 2.11. Then
the THz waves serves as an applied external electric field to ZnTe. Here, the polarization of the probe
beam is linearly changed due to birefringence in ZnTe. . The probe beam is elliptically polarized when it
goes through a quarter-wave plate and then is separated to two orthogonal components by a prism such
as the Wollaston prism or Rochon prism. The THz waves can be measured by differentiating the two
intensities (detected by the photodiodes) of the two orthogonal components of the elliptical polarized
probe beam. Finally, the whole THz time-domain signals can be obtained by varying the delay between
the THz waves and the probe beam [21].

The Pockels effect is briefly explained in this section. As an external electric field is applied to
an EO medium, the refractive index (n) of the EO medium can be defined as a function of electric
field (E) [19,22] . The Taylor expansion of n at E = 0 is given by

dn 1 d*n

n(E)=n(E=0)+—| FE+

STaEE | B 2.62
dE | z=0 Z!dEQ‘Ezo + (2.62)

The propagation of the electric field in the crystal (EO medium) can be described by the imperme-
ablity tensor 7;; defined as

77ij = €0 (6_1) o (263)
1]

where € is the dielectric permittivity in free space and €' is the inverse matrix of the dielectric tensor.

(b)
)z )

' Polarizer (P)

4*
Y ~Analyzer

Figure 2.11: The schemes of electro-optic (EO) detection. A detailed description of EO detection can be
found in section 2.5.
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Hereafter, 7 is treated as a scalar for the sake of clarity. For simplicity, each coefficient in Eq. (2.62) is
denoted as

n(E = 0) = n(0), (dn/dE)‘EZO = a1, (dQn/dEQ)‘EZO = as. (2.64)

Using Eq. (2.64), Eq. (2.63) is calculated as

1 1 1
n=3= z = 2
n(0) + ar E + §E2 ln(O) {1+ Wg) B+ nzo)p}] .
1 ai as 1 2a1 az
o7 | 2@ 20 EQ)} RO P nop

Therefore Eq. (2.65) is reduced to

1 1 2a1 az o
— — =— E— E 2.66
n?  n(0)? n(0)3 n(0)3 7 (2.66)
which leads to the result
n(E) —n(E =0)=rE + sE? (2.67)
where 7 = —2a; /n(0)3 is known as the linear EO coefficient or Pockels coefficient and s = —aa/n(0)? is

known as the quadratic EO coefficient or Kerr coefficient. Terms higher order terms than the quadratic
term are ignored since these higher-order terms are too small compared to the linear and quadratic ones.
As seen in Eq. (2.67), the Pockels effect indicates that the change in the refractive index of the EO
medium is proportional to the applied electric field (F). On the other hand, the Kerr effect implies that
the change in the refractive index of the EO medium is quadratic to the applied electric field [19,22].

2.5.2 The Pockels effect and the Kerr effect

2.5.2.1 The electro-optic effects in terms of nonlinear polarization

For historical reasons, despite nonlinear effects such as the Pockels effect (the linear electro-optic
effect) and the Kerr effect (the quadratic electro-optic effect) can be described by the nonlinear polar-
ization in terms of higher-order electric susceptibility, these effects have been widely explained in terms
of the index ellipsoid [7]. In this section, it is briefly explained that the Pockels effect and the Kerr effect
are related to x? and x®), respectively [7].

The Pockels effect, or, the precise terahertz Pockels effect at optical frequency, is defined by

Pi(w+Qria) = 260 Y X @+ Qrra, w, Qria) B (w) Br(Qrma) = €0 Y x4 (W + Qrina) By (w), (2.68)
J.k J

where XEJQ.)(w—i—QTHZ) =2> XE?,)C (w+Qrns) Er (QrH,) is the terahertz field induced susceptibility tensor
and P(2,2) = 2!/(2 —2)! = 2 (= 2!/(11!)) represents also the number of distinct permutations for the
frequency w and Qrp, [2,7].

By the same analogy, the terahertz Kerr effect at optical frequency (Kerr effect) is defined by

Pi(w) =6e0 Y X, w, — Qrrs, Qria) By (wo) B (wrna) Ei(wrns) = €0 DX (W) Ej(w),  (2.69)

gkl J
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where Xz('?) (W) =63, Xg’,)d(w)E,j (wrnz) Ei(wrn,) is the terahertz field intensity induced susceptibility
tensor and P(3,3) = 3!/(3—3)! = 6 represents also the number of distinct permutations for the frequency
components w, —w, and Qry, due to the fact that E} (wrn,) = Ex(—wrh,) [7]. In addition to the Kerr
effect, the THz-field-induced second harmonic (TFISH) is defined by

P20+ Qri) = «D Y X\, (2w £ Q1 w, w, % Q1) Ej () Bi () B (Qra), (2.70)
W5kl

where P; = P;(2w+Qrn,) for Ey(Qru,) and P; = P;(2w—Qrn,) for Ef (Qrw,) and D(= 3 = 3!/(2!1!)) [7].

The quadratic electro-optic effect is expected to be small compared to the linear electro-optic effect
and is often neglected when the linear effect is present [7,19]. However, the linear electro-optic effect
must vanish in centro-symmetric crystals [7, 19], which is explained in section A.2 in detail. The two
effects can be summarized in table 2.2. The reasons why x(?) and x® are related to the Pockels effect

and the Kerr effect, respectively, are explained in the following section.

Crystal symmetry Property Existent effects
Non-centrosymmetry X&) < x@ Pockels, Kerr
Centrosymmetry x® > x® =0 Kerr

Table 2.2: The existent electro-optic effect for each crystal symmetry.

2.5.2.2 Induction of the Pockels effect in terms of refractive index from nonlinear suscep-
tibility

Let us consider that a probe beam with frequency of w propagates through a nonlinear medium with

x® and y®). In the presence of a strong pump beam with frequency of ©, the probe beam is modulated

by the nonlinear polarization of the medium. The nonlinear polarization induced by the Pockels effect

in the nonlinear medium is defined by
P(w+ Q) = 2e0xP(w + Q) E(w)E(Q), (2.71)

assuming that the incident pump and probe beams are linearly polarized for the sake of simplicity [7].
The displacement field D in the medium is expressed in terms of the dielectric constant and the intrinsic

electric field of the probe beam as
D(w) = e(w)E(w). (2.72)

The displacement field is defined in terms of the intrinsic electric field and polarization as [7,12]
D(w) =€eE =¢(1+ x)E = F + egxF = €0 E(w) + P(w). (2.73)

The Pockels effect can be produced when P(w) ~ P(w + ) or w + Q ~ w [7].¥ By substituting P by
Eq. (2.71), the displacement field can be written as

c(W)E(w) = egB(w) + 260X (w)E(w)E(Q), (2.74)

8w 4+ Q ~ w means that frequency  is sufficiently small compared with w. In other words, the electric field with
frequency of  represents a static (DC) or low frequency electric field.
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which is equivalent to °
e(w) = €0 + 260X P (W) E(Q). (2.76)

Since the dimensionless dielectric constant €/¢q is the square of the refractive index according to electro-

magnetic theory [7,12], the refractive index can be obtained by Eq. (2.76) as
1/2
n(w) = W) _ [1 +2x® (w)E(Q)} ~ 1+ xP(W)EQ). (2.77)
€0

Eq. (2.77) directly shows that x(? has relation to the Pockels effect.

The dielectric constant should be composed of linear x(!) and nonlinear susceptibility y(?) as
e(w) = eo + cox™M (W) + 260X P (W) E(Q). (2.78)

By the same analogy, the refractive index can be written in terms of ng and ny as

n@) = /9 = [1 4D @) 2@ @E@)]
K ng(w)
% nOw) o] ()
= @) + AP @E@] T =no(w) [1+ 25 E@)| o) 1+ XS E©)
ng(w) t(w)
X (w)
= no(w) + o) E(Q) = no(w) + n1(w)E(Q) = no(w) + Any (w), (2.79)

ni

where the linear refractive index ng is defined as /1 + x(1). We can see that the refractive index of
the nonlinear medium is perturbed in the presence of an external electric field with low frequency. The

magnitude of perturbed index An is proportional to the external electric field.

2.5.2.3 Induction of the Kerr effect in terms of refractive index from nonlinear suscepti-
bility

Under the assumption that the incident pump beam E(f2) and probe beam E(w) are linearly polar-
ized for the sake of simplicity [7], the nonlinear polarization induced by the Kerr effect in the nonlinear

medium is defined as
P(w) = 6eox P (w — © + Q) B(w) E(~ Q) B(2) = 6ex® (@) Ew) B[, (2.80)
where F(—Q) = E*(2). Then the total polarization of the medium is described as

P(w) = eox'V (W) E(w) + 6eox® ()| E(Q)*B(w)

2.81
= eo[XV(w) + 6x V()| BQ) ] E(w) = coxen () B(w), .

(W) E(w) = e E(w) + 2e0x@ () E(W)E(Q) = [Eo + 250X<2>(w)E(Q)] BE(w). (2.75)
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where the effective susceptibility e is denoted by
Xett = XV (w) + 6x3) ()| EQ)%. (2.82)

By the definition of the refractive index [7,12], the refractive index n is obtained from the rela-

tive (dimensionless) dielectric constant given by

n?(w) = gy Xeff - (2.83)
€0
From Eq. (2.77), Eq. (2.83) becomes
n(@) = = (10 @) @ @ E@E] " = [(w) + 6@ @)E@P]
60 w3e)
3 (4 1/ 3 (4
— no(w) |1+ 67’223(5))15(9)2 ~ no(w) l1 4 mm(mﬁ (2.84)
®(w
= ) + 2D IB@ = o) + na(w)| E@ = o) + Ana (o),

From this equation, we can see that the refractive index of the nonlinear medium is perturbed in the
presence of an external electric field and the magnitude of the perturbed index Ans in relation to (%)
is proportional to the intensity of the external electric field.

In this section, we find that the Kerr effect has in a relationship with x(®). The induction processes
of the Kerr effect can also be described by the same analogy from the former section 2.5.2.2 '°. The

refractive index n(w) of the nonlinear medium can be summarized in the form
n(w) = ng(w) + n1(w)E(Q) + na(w)|E(Q) % (2.89)

The represented n is slightly different but the same when compared with the Taylor expansion of n at
E =0in Eq. (2.62).
2.5.3 The index ellipsoid in the electro-optic medium

First of all, the index ellipsoid of an anisotropic medium needs to be considered to understand the

linear EO effect. Assume that a monochromatic plane wave propagates through an anisotropic medium.

0From Eq. (2.73), the displacement field can be written by
D(w) = e(w) B(w) = €0 B(w) + beox® (@) B@)| E(Q) %, (2.85)
which implies
e(w) = o + 6e0x P (W) E(Q)[2. (2.86)
From Eq. (2.86), the refractive index can be obtained given by
€(w)

€0

1/

n(w) = = [1 +6x<3)(w)|E(Q)\2] P14+ 3O W) E@. (2.87)

Eq. (2.87) directly shows that x(3 is in a relationship with the Kerr effect.
By Eq. (2.78), the medium has the intrinsic susceptibility denoted by X(l) given by

e(w) = eo + xP (W) + 6eox® (w)| E(Q)?. (2.88)
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The permittivity (e;;), the electric susceptibility (x;;), and the relative permittivity (§;;) have a relation
given by
€ij = €0 (L+ Xij) = €0 &ij- (2.90)

In an anisotropic medium such as an EO medium, the electric displacement D is defined by
Di=) eiBj=co) &Ej, (2.91)
J J

which is precisely expressed by

Dy|=¢|&n & &:| | Byl (2.92)
Dz fzz é-zy gzz Ez

If an anisotropic medium is optically inactive and lossless, then the relative permittivity tensor &;; is a
real symmetry tensor. Thus &y, = &uy, {ur = E2a, and &, = &,y Eq. (2.92) can be simplified by rotating

the coordinatess of (x, y, z) to the new coordinates of (X, Y, Z) as

DX fXX 0 0 EX
Dy = €0 0 €YY 0 Ey 5 (293)
Dy 0 0 &zz| \Ez

which is expressed using a diagonal matrix of §;; in Eq. (2.92). These new coordinates are known as the
principal axes because the permittivity is represendted as a diagonal matrix.

Consider the energy density of the stored electric field in an anisotropic medium defined by

1 1 . R 1 1
U= B E-D By zl: &L - € %: ;&inEr = 560 Z i Ei&jiEr = €0 ZEjfjkEk. (2.94)

ijk ik

Using Eq. (2.93), Eq. (2.94) in the principal axes becomes

1 1 62 2 E2 62 2 E2 62 2 E2
U= ;e {fxxE}i + &y EY + fZZE%} = 5¢0 OfQXX X Oiyy * OiZZ Z
2 2 e5€xx €5éyy €5ézz

(2.95)

1 [py Dy DY
_260

Exx &y | Ezz

The shapes of these ellipsoids can be described in terms of the principal coordinates (X, Y, Z) them-
selves [7]. If we replace X, Y, and Z by

Dx Dy Dy
X=——2_ y= , 7= : 2.96
vV 260U vV 2€0U vV 260U ( )
then Eq. (2.95) becomes
Dx 2 1 Dy 2 1 Dz \2 1
1= + — + -—
(\/ 260U) EXX (\/ QGOU) fYY (\/ 260U) EZZ (2 97)

X2 y? 2z
el= 45+,
nk ny o ong

22



where €;/eg =§; = n? (j =X, Y, Z) and n; are the principal refractive indices.

Eq. (2.97) is known as the index ellipsoid or the optical indicatrix in the absence of an external
electric field [7,19]. Note that the index ellipsoid is formed when the incident wave propagates through
a medium. If the coordinates do not correspond to the principal axes of (X, Y, Z), then it is needed to
go back to Eq. (2.91) and Eq. (2.92). In other words, it is considered that the index ellipsoid is changed
in the presence of an external applied electric field that is another field and different with the incident
wave.

The electric field E is expressed in terms of the inverse of the electric displacement D as
Ei = Z(Eil)iij. (298)
J

It is time to introduce the impermeablity tensor, shortly introduced in the last section 2.5.1, which is
used to derive the index ellipsoid of an anisotropic medium. The impermeablity tensor 7;; is associated

with the permittivity €;; as

z—oﬂ - ((1)”. (2.99)

Therefore the electric field E satisfies the following relation
E-—iz iD;j (2.100)
= j Mi;D;. .

By using the preceding procedure, the energy density is computed as

1 1 1 1 1
U=-FE-D=- ei—mnii D - e Dy = — 0irnii D; D = — i D D;, 2.101
2 2%36 6077] J z}g:ek k 260%}; kNij Pk 260%:77] J ( )

where 7;; is defined by

M1 N2 7113
n=(m21 MN22 "N23]| - (2.102)
31 7M32 7133

Eq. (2.101) becomes

2eU = Y _1i;D;D; = 011D} + 122D + 1133 D3
ij (2.103)
+ (M2 + 121) D1 D2 + (023 + 132) D2 D3 + (13 + 1131) D1 D3.

Since 7 is a real symmetric tensor, the last equation can be reduced as
20U = n11.D7 + 122D5 + 13303 + 2m12D1 D5 + 2193 D2 D3 + 2131 Ds. (2.104)

By using relations given by

D; ‘
= for j € {1,2,3}, 2.105
x] \/m or j { } ( )
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then Eq. (2.104) can be expressed as

M1 (\/%>Q+7722 (\/%)2+7733 (\/%)2

+2mz(\/%)(\/%)+2ms(\/%)(\/%)+2n23(\/%)(\/%):1 (2.106)

& N11TT + Noas + N335 + 20127172 + 223ToT3 + 2137173 = 1,

which is the general expression of the index ellipsoid.

From Eq. (C.29), considering the impermeability tensor of an anisotropic medium in the presence
of an external electric field, the Taylor expansion of n;; at E = 0 is given by
1 8277ij

_ 3771" ..
mj(E):eo(e 1)ij:mj(E:O)+zk:aEiEk+;2!8Ek6ElEkEl for i,7,k,1 € {1,2,3}, (2.107)

where the higher order terms than the quadratic term are neglected since they are too small compared

with the linear and quadratic coefficients [19,22]. Therefore, the two EO coefficients are given as
i
— = Tiik, 2.108
aEk Tijk ( )
E=0

1 8277ij

- = Sijki- 2.109

20B0E, |, (2.109)

The Pockels coefficient () and the Kerr coefficient (s) are tensors with ranks 3 and 4, respectively. To
be used effectively, the index of the tensor needs to be reduced. Hereafter, we will focus on the Pockels
coefficient.
Suppose that an anisotropic medium is optically inactive and lossless. Then n;; is the same as
n;; since €;; is the same as €j; [19]. Therefore, 1 is a symmetric tensor and the indices ¢, j, and k in
Eq. (2.107) can be permuted as
Nij = MNji
n 2 (2.110)
Tijk =  Tjik-
Using this permutation symmetry, the indices ¢ and j of the tensor (r;;i) for given k index can be

abbreviated using the contracted indices defined as [19]

1= (11)

2 = (22)

3=03) (2.111)
4=(23) = (32)

5= (13) = (31)

6= (12) = (21)
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Then the Pockels coefficient for k € {1,2,3} can be reduced by

Tk = T11k, T4k = T23k = T32k,
T2k = 122k, T5k = T13k = T'31k, (2-112)

T3k =T33k, Tek = T12k = T21k-

Therefore, the third-ran } tensor 7;;, having 27 components is simplified to a 6x3 tensor matrix. Using

this notation, the impermeablity tensor 1 in Eq. (2.107) becomes
nij(E) = n;;(E =0) + ZrijkEk for k € {1,2,3}
k
=n(E=0)+ Y ryBy for I €{1,2,3,- 6} ke {1,2,3} (2.113)
k

= T]I(E)v

where 17 (0) for I € {1,2,3,--- 6} is given as

m(E=0) ni%

n2(E = 0) ,%g

| mE=0) | ni%
n(E=0) = mE=0 | =1 % (2.114)

n5(E = 0) 0

ne(E = 0) 0

Note that 1/n?, 1/n2, and 1/n3 are the principal refractive indices of the anisotropic medium in the
absence of an electric field. Here, 1, 2, 3 correspond to the principal axes x, y and z, respectively.

Therefore Eq. (2.106) can be written as
ma® +12y” + 132% + 2nayz + 52w + 2ery = 1, (2.115)

where the indices in 7 is simplified by using the contracted indices shown in Eq. (2.113).

From Eq. (2.113), the impermeability tensor 7 in the presence of an electric field becomes

1 _ _
nZ 11 T2 T13
1
2 T21 T22 T23
nly Er
== 31 T32 T33
2
n(E)=|[" |+ E, |, (2.116)
0 T41 T42 T43
E,
0 rs1 Ts52 T53
0 761 T62 T63]
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where each element of the n(E) is expressed as

1
m(B)=m(E=0)+Y rxE= ot > rikEr,
k k

1
m(E) =m(E=0)+> ruB=—+ > raFy,
k k
1
n3(E) =n3(E =0) + ZT3kEk =5t > raEy,
£k (2.117)
m(E) = )+ Z rapEr =0+ ZTMEky

ns5(E) = )+ Z rspEr =0+ ZTSkEky

n6(E) = ne(E = 0) + ZTGkEk =0+ ZTGkEk-
k o

Therefore the index ellipsoid in EO medium in the presence of an external electric field can be written

1 1 1
<n2 + ZﬁkEk)ZQ + (nQ + ZTQkEk>y2 + (nQ + ZT3kEk> 22
3 y 3 z %

as

xT

(2.118)
+ QyZkaEk + 2zer5kEk + Q:EerGkEk =1for k €{z, y, z}.
k k k
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Probe beam

THz waves

Figure 2.12: Geometry of the (110) ZnTe crystal represented as a THz sensor. A ZnTe has a (110) plane. The THz beam and probe beam counterpropagates
through (110) ZnTe. « and ¢ are angles of the polarization of the THz beam and the polarization of the probe beam, respectively [21]. Here, the principal
axes of the crystal and the lab frame are denoted as (x, y, z) and (z*, y*, z*), respectively.



2.5.4 THz detection process using the Jones matirx

Consider that a polarized probe beam is propagated through (110) ZnTe to measure the THz waves.
We now define the transmission axis of a polarizer to be parallel to the x*-axis of the lab frame shown

in Fig. 2.12. Then the Jones matrix of a polarizer is given as

cosp —sing| |1 0 cosy  singy
singp  cosy 0 0| |—siny cosy

cos?p  cosy sin ga]
)

(2.119)

COs p sin ¢ sin? o

= R(—p) P R(p) = l

where ¢ indicates the oriented angle between the lab frame and the slow axis of the polarizer. The

rotation matrix R is defined as

R(p) = [ (2.120)

cosp  singp
—sing cosg '
EO cystals such as ZnTe can be considered as a wave plate (or retardation plate) having a slow axis
oriented at an angle 6 and a phase shift I'ry, induced by an external electric field, which are THz waves

in this case [19], or

Mo = R(=0) J(I'tu,) R(0) = [‘3089 ‘51“9] [1 0 HCOS9 sin

0 et Iros ‘| = M(FTHZ)- (2.121)

sinf  cosf —sinf cosf

If the incident wave having a linear polarization sate parallel to the z* axis of the lab frame is

1
E;,=E, (o) , (2.122)

then the transmitted electric field through a polarizer and ZnTe is'!

denoted as

E = R(—0) J(U'ru=) R(0) R(—p) Py R(p) E;

ZnTe polarizer
cos? 4 sin? @ et T'rue cos® sinf — cosf sinf et
cosfsin® — cos@ sinf et 'ru= sin? @ + cos? f e I'rnz
(2.124)
cos? ¢ cos p singp 1
X ] o x E,

Cos Y sin ¢ sin” ¢ 0
B cos? 0 + sin? § ¢ Tru= cos® sinf — cosf sinf ez | [cos
cos® sin® — cosf sinf e I'tus sin? @ 4 cos? 6 e Frue sin @

Now the phase retardation I'rg, in ZnTe induced by THz waves is calculated. We used (110) ZnTe
with thickness of 1 or 2 mm in all of the THz-TDS setups.

11

2 H 1 2 < <
cos® cos.@Qsmzp} ( ) _ ( cos” ) — cosg (C?bg&) ~ (gosgo) 7 (2.123)
cos psin ¢ sin® ¢ 0 cos @ sing sin ¢ sin
where the common factor cos ¢ can be neglected if interference effects are not important [19]. The optical probe beam

with p-pol can be polarized by 45° by either a polarizer or a half-wave plate. The intensity of the optical probe beam with
45° polarization depends on which optical component is used. In the experiment, it is recommended to use a half-wave
plate instead of a polarizer, which is fully described in section A.11.
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2.5.5 Calculation of the phase retardation I'ry.

A (110) oriented'? ZnTe crystal [n-type, high-resistivity > 10° Q/cm (un-doped)] with thickness
of 2 mm is used for measuring the THz waveform by the EO detection method. ZnTe is a member of
43m in the point group, is a cubic crystal in the crystal system, and is isotropic in terms of optical
symmetry [19]. Since a (100)-cut ZnTe crystal does not exhibit 2"¢-order nonlinear response, there is no
THz waves radiated from the (100)-cut ZnTe in the case of THz generation via the optical rectification.
THz waves can not be measured by the (100)-cut ZnTe in the case of detection, which is explained in
section A.6.2 in more detail.

Zn'Te has no intrinsic birefringence since ZnTe is optically isotropic and only has birefringence when
it is applied by an external electric field. Therefore, ZnTe has a refractive index of n, =ny, =n, =n
in the optical frequency provided that (x, y, z) is the principal axes of the crystal. Consider that the
probe beam and THz waves counterpropagate through ZnTe, where the polarization of the probe beam
and THz waves with respect to the z-axis of the ZnTe crystal are described in Fig. 2.12. Recall that the
THz waves is an external electric field applied to the (110) ZnTe as the probe beam passes through the
ZnTe crystal.

The Pockels coefficients of ZnTe in a point group of 43m is given by [19)]

0 0
0 0
r= 00 (2.125)
T41 0 0
0 T41 0
0 0 T41

If x, y, z are the principal axes of the ZnTe cystal and z-axis is parallel to (001) of the crystal as shown

in Fig. 2.12, then the index ellipsoid from Eq. (2.118) can be written as

z—z + z—z + ;—z + 2141 Efy,yz + 2ran By, 2z + 2ra1 Efy,zy = 1, (2.126)
where By, , E¥y,, F%y, are the components of the THz waves applied to ZnTe. There are cross-terms
of zy, yz, rz in Eq. (2.126), which means that x, y, z are not the principal axes of the ZnTe anymore in
the presence of an applied external electric field, which is THz waves.

The index ellipsoid as a function of the modified principal axes in the presence of the THz waves is
calculated. As shown in Fig. 2.12, we can immediately see that the orthogonal components of THz waves
have a relation as Erw, , = —ETHZJ/.13 Coordinates need to be transformed to find the new principal

axes. Consider that the new coordinates (2, y’, z’) are formed when the current coordinates (z, y, z)

12The direction of a crystal plane and the plane of a crystal can be described by the Miller indices [23]. The set of all
planes equivalent to (hk€) by symmetry is denoted by the notation {hk€}. And the all directions equivalent to [hk¢] by
symmetry is denoted by (hkl) [23,24].

13 As shown in Fig. 2.12, the amplitude components of the THz waves are

EZ

THz sin o - cos(—45°)
Ern, = | EYy, | = Erne | sina-sin(—45°) |,
cos o
E’;’Hz

where |E| = Erpy,. Therefore ELy = —EYy .
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are rotated by 45° with respect to the z-axis. Then the rotation matrix in this case is given by

z/ [ cos45°  sin45° O_ x
y | = |—sin45° cos45° 0| |y
2 0 0 1 z
- : (2.127)
T cos45° —sin4b° 0f [2'
< |y sin 45° cos45° 0| | ¢
z 0 0 1 z

Using Eq. (2.127), Eq. (2.126) is transformed in the form

1 1 12
z'? (712 + 741 Erp, cOS a) +9 (n — 741 Erp, cOS a> + 2—2 +2rg Eragsina y'2’ = 1. (2.128)

We can see the cross-term of 3’2’ in Eq. (2.128). Another coordinates transform needs to be considered
to remove the cross-term. Consider that the new coordinates (" ,y”, 2”) are constructed by rotating
the coordinates (2, y’, 2’) by 6 with respect to the z’-axis. The corresponding rotation matrix is given
by

x” 1 0 0 !
" =10 cosf sinf| |y
" 0 —sinf cosf| \ 2 5 19
2\ [t 0 o | ([« (2129
S|y | =10 cos —sind "
2! 0 sinf cos 6 "

Then Eq. (2.128) can be written as '

1
2" [—2 + 741 Erp, cOS a}
n

1

I y//Q{—Q —ry By [Cos - sin? 6 + cos(a + 29)] }
n
1

+ z"2{—2 — 141 B, [cosa - cos? 0 — cos(a + 29)} }
n

+v" 2" r41 Bty {cosoz -sin 20 + 2sin« - cos 29} =1, (2.131)

where we find that the (", y”, 2”) coordinates can be the principle axes of the index ellipsoid if the

14y// term:

cos? 6 + sin 20
n2

1
=— —r41ETHZ[cosa~COSQG+O—ZSina-COSH-SiHG]
n

— ra1 B, cos a - cos? 0 + 2r41 BTy, sin o - cos 0 - sin 0
= — — 741 Frp, | cosa-cos20 + (cosa - sin? 6 — cosa - sin? §) — 2sina - cos 0 - sin 0]

= — —ra1ErHy [cosa -sin? 0 4 cos a(cos? 6 — sin? §) — 2sina - cos B - sin 9]

1
= — — r41 BTy | cosa - sin® @ 4 cosa - cos 20 — sin « - sin 26] — — T4 ETH, [cosoz -sin? 0 + cos(a + 29)] (2.130)
n
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cross-term of y” 2" vanished. 1° 16

To eliminate the cross-term y”2” in Eq. (2.131), a relation given by 7
20 = —tan"'(2tana) — nw (2.139)

needs to be considered, where the condition of tan « in Eq. (2.139) is

tan o = tan(o + n) = tan(o — nw), (2.140)
which implies that
T < T (2.141)
5 Sa—nm<g, .
so that
T T
TL7T—§§(I<’FL7T+§, n=20,1,2---. (2.142)

From Eqs. (2.139) and Eq. (2.140), we finally obtain the index ellipsoid given by

1
" (ﬁ + r41 ET11, COS a)
1
+ ;1/’2{—2 — 141 BrH, {cos - sin? @ + cos(a + 26‘)} }
n

1
+ z”2{—2 —r41 ErH, [cosa - cos? 0 — cos(a + 29)} } =1 (2.143)
n

For a small external electric field, the refractive indices for a probe beam propagating along the x”

1527 term:

2 .
cos” 6 + sin 20 . . .
vy Ermgcosa-sin 0 — 2r4 BTy sina - cos 0 - sin 0

n2
1 L _ )
=— - r41 BT, [cosa -sin“ 0+ 0+ 2sina - cos6 - sm@]
n
1
=— - r41 ETH, [cosa -sin? 0 + (cosa - cos? 0 — cos a - cos? 0) + sina - - sin 29]
n
1
= - r41 ETH, [cosa - cos2 @ — cos a(cos? 0 — sin? 0) + sin « - sin 29]
n
1 1
=— - r41 ETH, [cosa -cos2 0 — cosa - cos 260 + sin « - sin 29] =—- r41 ETH, [cosa - cos? 0 — cos(a + 29)] (2.132)
n n
16417 2! term:

r41 ETH, [cos « - sin 260 + 2sin « - cos 29] . (2.133)

17When the coefficient of y''2’" term is zero, the coefficient given by

cosa -sin26 + 2sina - cos20 =0 (2.134)
becomes
sin260 4+ 2tan o - cos 20 = 0. (2.135)
Then we find that
sin 260
2tana = — = — tan 20 = — tan(nw + 260) = tan[—(n7 + 26)], (2.136)
cos 20
which implies that
nw + 20 = —tan~[2tana], (2.137)
where 26 is given by
20 = —tan"![2tana] —nw n € Z U {0}. (2.138)
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direction (z* direction) can be obtained as *

3
ny (o) ~n+ %ETHZT41 [cos - sin? 0 + cos(a + 29)]

: (2.149)
Ny () ~n+ %ETHZT41 [cos a-cos? 0 — cos(a + 20)} .

We can see that ny~(a) and n,~(«) are different in Eq. (2.149). We find that the refractive index of
ZnTe for a probe beam is changed due to an external THz waves. Therefore the polarization along 3"
direction and z” direction of the probe beam is changed and then the resulting polarization of probe

beam is elliptical. Hence the phase retardation I'ry, in ZnTe with thickness of L induced by THz waves

is
w
FTHZ(w) = ;{nyn(a) — Ny (O[)} L
wn® Brsral L (2.150)

_ S22
= %0 [cosa (sin® @ — cos“ 6) + 2 cos(a + 29)],

where c is the speed of light and w is the optical angular frequency of the probe beam [21].

2.5.6 Electro-optic detection : Probing the index ellipsoid induced from el-
liptically polarized probe beams

There are two experimental schemes to measure THz waves as shown in Fig. 2.13. The key point to
measure the generated THz waves is to measure the altered polarization of the probe beam due to THz
waves applied to ZnTe. The first way is to use the balanced detection of the elliptically polarized probe
beam through a quarter-wave plate. For this, a polarization beam splitter (PBS) such as a Wollaston
prism or a Rochon prism as well as a quarter-wave plate are commonly used as shown in Fig. 2.13—(a).
When the probe beam is transmitted through a quarter-wave plane (QWP), ZnTe, and a polarizer (P)

propagates toward the Wollaston prism (WP), two orthogonal components of the transmitted field are

18

z'"? (% + 741 ETH, cos a) + y”z{n—l2 —r41ETH, [cos a-sin?0 + cos(a + 29)] }

' (2.144)
+ z//Q{—Q —rqa1ETH, [cos a-cos? 0 — cos(a + 29)] } =1
n
is equivalent to
1.//2 y//2 Z//Q
s+ o+ =1 (2.145)
nz// ny// nZ//
By comparing coefficients of z”/, y”/, and 2" in Egs. (2.144) and (2.145), we obtain
1 1
— = —r41E'THZ[cosa-sin20+c0s(a+20)], (2.146)
n?, n
Yy
which implies that
1 2
n2, = = L . (2.147)
7712 — 141 ETH, [COSQ -sin? 6 + cos(a + 29)] 1 —n2r41 ETH, [Cos a-sin? 0 + cos(a + 20)]
We thus find from this equation that
_1
My = n{l —n2ry1 BTy [cos a-sin?0 + cos(a + 29)] } 2
n2
~ n{l + ?T41ETHZ {cos a - sin? 0 4 cos(a + 29)] } (2.148)

Note that n,/ can be obtained using the same method.
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Figure 2.13: The electro-optic detection using a quarter-wave plate and a Wollaston prism.

then separated. Using Eq. (2.124), this procedure can be written as

Y
E=R(-) J(5) B(}) R(=0) J'ri) R(O) R(—p) P Rlp)  Ei (2.151)
ZnTe Polarizer Probe beam
A/4 plate

where J(m/2) represents a Jones matrix of a quarter-wave plate given by [19]

J(g) = E 6?3] . (2.152)

The probe beam was defined as the lab frame of (z*, y*). The 7/4 in Jones matrix of a quarter-wave
plate indicates the oriented angle between the z* direction and the slow axis of a quarter-wave plate.

Equation (2.151) can be fully calculated as

A0, Ty, B(0, I'ryy) si By
g = (A0 D) cosp+ BEO, Trng) sing) : (2.153)
C(0, T'rh,) cose + D(0,T'rp,) sineg Ey-
where each coefficient is denoted as A, B, C, and D, yielding
A0, Trg,) = (1/2 —i/2) cosOsin b + (1/2 +i/2) cos* 6
+(1/2+i/2) et sin? 9 — (1/2 —i/2)e™ ™= cos O sin 6, (2154
B(#, I'ri,) = (1/244/2) cos@sinf + (1/2 —i/2)sin? 0 .
+(1/2 —i/2)er ™ cos? 0 — (1/2 +1/2)eT ™= cosfsin),
C(0, Tray,) = (1/24i/2) cosOsinf 4 (1/2 —i/2) cos? 0
+(1/2 —i/2)et e s5in? 9 — (1/2 + i/2)eT ™2 cos O sin,
j2-i/2 /252" -
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The elliptically polarized beam through a quarter-wave plate is separated into two orthogonal components
by a polarization beam splitter (PBS) such as a Wollaston prism or a Rochon prism. The intensity
difference AT of the polarization components '? of the transmitted probe beam through a PBS can
therefore be written as [21]

Al = |Ey|* — |B,-

2 = I, sinDry, sin [2(<p - 9)}, (2.157)

where I, is the intensity of the probe beam and equals |E,|?. The calculation processes for Eq. (2.153)
obtained by Eq. (2.151) and Eq. (2.157) obtained by Eq. (2.153) with Egs. (2.154) and (2.155) are fully
described by a Matlab code in the last part of this section A.11.

When the phase retardation I'rg. in Eq. (2.150) induced by THz waves is small, then Eq. (2.157)

is approximately reduced as

Al =1, sin {2(4,0 — 9)} sin'rg, ~ I, sin {2(4,0 — 9)} 'y
U}TLSETHZT41L
2c

(2.158)
= Ip

sin {2((,0 - 0)} {cosoz (sin? @ — cos? ) + 2 cos(a + 26)|,
where the last two terms can be simplified using a relation (2.138) following as

sin {2 ® 9)} {cosa (sin? @ — cos? ) + 2 cos(a + 29)}

( _
{Q(so
{ (¢

sin } [ —cosa cos260 + 2 cos(a + 20)]
sin

2

—0)
—0)}(00801 cos26 — 2 sina sin20)

(sin 2¢p cos 26 — cos2p sin 29) (cos a cos20 —2 sina sin 29)

19
AL= By [? = |Bye 2
=1 [2 cos cos* @ sinTrp, sin @ —2 cosp sin'ry, singp sin* 0
— 2 cos? @ cosf sin'pyy, sin® 0 — 2 cos? %) cos® 0 sinTrp, sinf
+2 cosf sinTrp, sin?¢ sin® 60+ 2 cos® 0 sin [y, sin? ¢ sin 6]
=1Ip sin'ry, [2 cosp cos?f singp —2 cosp sing sin? @
—2 cos? ¢ cosB sin®0 — 2 cos? o cos® O sinf+2 cosh sin? ¢ sin® 0 + 2 cos® O sin? ¢ sin 9]
= I, sinl'ry, [2 cos ¢ sinp { cos? 6(1 — sin? 9) — sin? (1 — cos? 9)}
—2 cos? ¢ cosf sinf { sin? 0 + cos? 9} +2 cosf sinp sinf { sin¢ sinZ 6 + cos? 6 sin goH
=1Ip sinT'mh, [2 cos p sin g { cos? 0 — cos? 0 sin® 0 — sin® 6 + sin? 6 cos? 0}
—2 cos? ¢ cosf sinf 42 cosf sing sinb { sing (1 — cos? 0) + cos? 0 singo}]
=1Ip sinT'ry, [2 cos p sin g { cos? 6 — sin? 9} —2 cos? ¢ cosf sinf
+ 2 cosf sinp sinf {sin(p —sing cos? 0 + cos? 0 sincp}]
= 1Ip sin'ry, [2 cosp sing cos20 — 2 cos? ¢ cosf sinf+2 cosf sin? ¢ sin 6’]
= I, sinl'ry, [sin 2¢ cos20 —2 cos® sin® (cos? o — sin? go)]

= I, sinI'rp, | sin2¢ cos260 — cos2¢ sin20| = I, sinI'ry, sin(2p — 20). 2.156
2 P
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= cosa cos?20 sin2p — cosa sin20 cos26 cos2¢p
~—_——

—2 sina cos 260

+ (—2) sina cos26 sin26 sin2p + 2 sina sin? 26 cos 2p

cos a sin 260

= cosa cos? 20 sin2p + 2sina cos2¢p cos® 20 4 cosa sin2¢ sin®20 4+ 2 sina sin® 26 cos 2
= (cos a sin2¢ + 2sina cos 2(,0) cos? 20 + (cos a sin2¢ + 2sina cos 2@) sin? 26

= (cos a sin2¢ + 2sina cos 24,0) (0052 26 + sin? 20) = cosa sin2¢ 4 2sina cos 2¢p. (2.159)

Therefore we obtain the intensity difference Al as a function of two polarization angles of o for THz

waves and ¢ for probe beams with respect to (001) given as [21]

wn3 ETHZT41 L

Alfa, ¢) = I, =21

(cosa sin 2¢ 4+ 2sina cos 2@), (2.160)
where we find that the THz waves is proportional to the intensity difference Al.

It is concluded that the polarization of the probe beam is changed by THz waves and the whole THz
waveform in time-domain is measured by a balanced detection of the transmitted probe beam through
PBS, a quarter-wave plate, and ZnTe by varying the time delay between probe beam and THz waves
shown in Fig. 2.2.

Figure.2.14 describes the whole THz detection processes. In section A.6.2, the brief process of EO
sampling with (110) ZnTe as well as (100) ZnTe is shown. The balanced detection was carried out using

a Lock-in amplifier, which is explained in Appendix B.1.
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nTe |) o
(EO crystal)

Figure 2.14: Schematic diagram of a typical setup for free-space EO detection. The polarization of the
probe beam does not changed without THz waves. The polarization of the probe, however, is changed by
birefringence in ZnTe induced by THz waves. By sweeping in time-domain using time-delay, the whole
THz waveform can be measured. QWP and WP indicate a quarter-wave plate and a Wollaston prism,
respectively.
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2.5.7 Electro-optic detection : Probing the index ellipsoid induced from lin-

ear polarized probe beam

y

RPN 2
\

ZnTe \
o \
( nalyzer
% (6

E= E1 1—‘l Hz >
%,_/

Zn'Te S~~~

Analyzcr Eobe

Figure 2.15: The electro-optic detection using crossed polarizers.

Recall that ZnTe is a member of 43m in the point group, is a cubic crystal in crystal system, and
isotropic in terms of optical symmetry [19]. ZnTe has no intrinsic birefringence since ZnTe is optically
isotropic and it must be remembered that the birefringence in ZnTe is induced by the external electric
field.

The transmitted probe beam through a ZnTe and crossed polarizers can be written by the Jones

matrix given as

0 0 1
E=E, 0 R(-0)J(Trr.)R(0) (O)
R , ZnTe \ ,
Analyzer Eprobe (2161)

0
—F _ ,
b (cos 0 sin® — e'THz ol sin 9)

where the polarization of the incident wave has a linear polarization in the direction of x* axis of the
lab frame for sake of simplicity. The corresponding Jones matrix of an analyzer is shown in Eq. (2.161).

Then the intensity from a photodiode becomes?"

I=|E|?=21, cos?0 sin?0 (1 — cos'rp,)
I (2.163)
2 )

=1, cos®6 sin?@ sin® <

where I, is the intensity of the probe beam which equals |E,|?. Using Eq. (2.138), the above equation is
slightly changed into

Iray
I=1, |tan™'(2 tan a)} sin? ( TQH ) (2.164)

20
) ) ) iCrHy, —ilTH,
11— eilTHa |2 = (1 — ¢~ iTTHs)(1 — ¢iTTHe) = 2 2 % =2(1 — cos Drppy). (2.162)



which is then a function of the polarization of the THz waves with respect to the x*-axis of the lab frame.

Provided I'rp, < 1, Eq. (2.164) shows that the intensity is proportional to F%HZ, and not to I'py,.
Recall that T'ry, is proportional to Erp,. Thus, Eq. (2.164) implies that the intensity is proportional
to the square of the THz electric field (E%y,). However, it has been confirmed experimentally and
theoretically that it is possible to measure the THz time-domain waveform in the crossed polarizer
geometry [25].

The key point in measuring THz waveforms in this geometry is that the crossed polarizers cannot
eliminate the background light perfectly. The major contributor of the background light is the probe beam
since the polarization of the linear polarized probe beam is a bit rotated due to the residue birefringence
in ZnTe by the probe beam itself such that the polarization of the probe beam through ZnTe has become
slightly elliptically polarized (i.e. imperfectly linear polarized). Here, the residue birefringence, or called
as the optical bias, means birefringence by the higher order terms of optical susceptibilities y than y*)
of ZnTe induced by the probe beam [26]. Thus, the higher order term ) means x(? or x(3) of ZnTe
induced by the probe beam [20].

For this reason, the analyzer cannot completely get rid of the polarization component of the trans-
mitted probe beam. Suppose that 7 is the contribution by the scattering light in ZnTe and I'y; is the
optical bias in ZnTe induced by the imperfectly linear polarized probe beam (shortly called as “back-
ground light”). Then the total phase retardation in ZnTe by the probe beam and THz waves can be

represented as the Jones matrix given by

1 0 1 0 9165
0 el'rHz - 0 ei(FobJrFTHz) ’ ( )

From Eq. (2.161) and the substitution I'ry, — Tpp + I'r, all the detection processes in this geometry
can be written as [25]
=1, [n + sin? (Fob n FTHZﬂ , (2.166)

where the phase term of 7 is neglected since the scattering has a random phase and two phase retardations
are twice for sake of simplicity.

The optical bias induced by the probe beam is sufficiently larger than the phase retardation induced
by THz waves, however, the optical bias is much smaller than 1 since ZnTe has no intrinsic birefringence

except the optical bias. Therefore, Eq. (2.166) for I'rp, < Iop is calculated as?!
I=1I,\n+T% +2Ty Dru,|. (2.168)

According to Eq. (2.168) and I'rp, o« BTy, the intensity measured by a photodiode attached to a lock-
in amplifier is proportional to THz waves since the optical bias induced by the probe beam is nearly
constant. Thus, THz waves can consequently be measured to have nearly the same THz signal waveform

measured by the method described in section 2.5.6.

2lFor I'rhy < Doy, let’s a = Typ and b = I'ry,. Then

sin (Fob—&—I‘THZ):sinZX:(X—);—!S—i- )(X—)g—j-i- )
- a(l + Z) ’ ~ a2 (1 + %) = a?+2ab=T2, +2 Loy Drrpy. (2.167)
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We considered the scattering contribution 7 and the optical bias I',, to explain EO detection in
the crossed polarizers geometry. It is again needed to take into account the EO detection method in

section 2.5.6 by considering the two terms, n and I',,. This part is discussed in section A.7.

2.6 Spectral components from time-domain THz waveform

(a) E(t) A
i:
— »
0 T Time (t)
(b) A(v) A
1
z:
—t—t—t—t —
o 0 1 Frequency (v)
2t 2t

Figure 2.16: Simple schematic representation by Fourier transformation.

Let’s consider that sub-cycle THz waveform E (t) measured by the EO sampling is recorded within
a T time window with a time step ¢t. Corresponding to Eq. (2.6), the spectral amplitude and phase
information from the THz signal can be obtained by applying the Fourier transform to the time-domain

THz signal given by
o0
E(w) = / dt E(t) et = A(w) @), (2.169)
— o0
where the spectral amplitude and phase are denoted as A and ¢, respectively.
At the same time, we should take into account the frequency-domain axis corresponding to the
measured time window as in Fig. 2.16(a). By the definition of the Fourier transform, the corresponding

frequency range is from — 2 to =

5; to 5; with a frequency resolution of 1/T" as shown in Fig. 2.16(b). In Matlab,

we can easily define the frequency domain as follows.

% Let the matrix of time—domain be time. Then
f=fft (signal); % Apply the Fourier transform to data.
freg=transpose( (1/ (time(2)—time(l)) ) * ( O:length(f)—1 ) / length(f) ); % Frequency axis!

o

% freq number of matrix = (n/2—1-0)+1=n/2

If length(time) is even number, then frequency axis is defined by

freg=(1/(time(2)—time(1)))* (—length(f)/2:1length (f)/2—1)/length (f);

oo oo

If length(time) is odd number, then frequency axis is defined by

freg=(1/(time(2)—time (1)))*( —(length(f)—1)/2 : (length(f)—1)/2 )/length(f);

o°  o°
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2.7 Summary

The generation and detection methods of THz waves were discussed in the previous sections. Fig-
ure 2.17 shows a THz-TDS setup in a linear configuration composed of 4 Teflon THz lenses whose focal
lengths are 100 mm. The THz waves are generated by PCA as shown in Fig. 2.17 and are then measured
by probe beams. The PCA is biased using a step function signal generated from a 65 kHz function
generator with dc voltages of 30 V (TOELLNER TOE 7704). In the detection processes, a THz pulse
and a probe laser pulse should be co-propagated and merged at (110) ZnTe having a thickness of 2 mm
[n-type, high-resistivity > 105 2/cm (un-doped)]. We used an indium tin oxide (ITO) coated glass with
thickness of 1 mm to co-propagate the two pulses. It is to note that an ITO glass reflects THz waves
and transmits the probe beam. A silicon (Si) wafer or a Pellicle beam splitter (PBS) can also be an
alternative to the ITO glass. Si and PBS, however, reflects the probe beam and transmits THz waves.

THz waves detected by the EO detection method are measured with a Lock-in amplifier, which is
further explained in section B.1. The Lock-in amplifier was used to record the photo currents from the
two photodiodes (or one photodiode). The reference signal of the Lock-in amplifier was locked to a step
function signal provided by a 65 kHz function generator.

Figure 2.18 shows the two constructed two THz-TDS setups. One is a THz-TDS in a linear con-
figuration composed of 4 Teflon lenses whose focal lengths are 100 mm. The other is a conventional
THz-TDS comprised of 4 off-axis parabolic mirrors. A pair of the parabolic mirrors with focal lengths
150 mm were used to focus THz waves at the focal plane. The whole THz-TDS setup is purged with

dry air to reduce the absorption by water vapor in the THz frequency range. The pressure of the dry air

fs laser

Lock-in JL }

ss  Amp

Pelticle
mirror ‘10cmi | Teflon
or Lens
Silicon
substrate =
N ™ Lock-in Function
Amp generator

N4

Figure 2.17: The THz-TDS setup of in a linear configuration. There are two ways to co-propagate the
THz waves and probe beam to ZnTe. One is to use an ITO wafer to reflect THz waves. The other is to
use a Pellicle beam splitter or silicon substrate to reflect the probe beam. The PCA is biased by using
a step function signal generated from a 65 kHz function generator with 30 V dc voltages (TOELLNER
TOE 7704). The Lock-in amplifier was used to record the photo currents from the two photodiodes (or
one photodiode). The reference signal of the Lock-in amplifier was locked to a step function signal
provided by the 65 kHz function generator.
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THz-TDS i : P b, i : ‘ focal plane

system 1
THz-TDS system 2

Figure 2.18: The constructed THz-TDS using (a) 4 Teflon lenses and (b) 4 parabolic mirrors, respectively.
(¢) The whole THz-TDS setup is purged with dry air to reduce the absorption by water vapor in the
THz frequency range. (d) Enlarged sample section of THz-TDS in a linear configuration. (e) THz-TDS
setup purged with acylic box.

was in a range between 3 MPa to 4 MPa.
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Chapter 3. Data analysis

3.1 Extraction of the complex refractive index

Let’s consider that a plane wave E;(w) with angular frequency of w propagates through the sample
in the z direction at normal incidence as shown in Fig. 3.1. A primary ray is partially transmitted and
partially reflected between the front side and the other side of the sample [27]. By multiple reflection,

the successive internally reflected and transmitted rays can be represented respectively as

E; tia, E; tia Fo1, B; tio 751, E; tia 75y, -+ (3.1)
and

E; 1o U1, E; tio 73y o1, B tig 75y o1, -+, (3.2)
where fij and 7;; are the Fresnel coeflicients from medium ¢ to medium j given by

N 2 I Ty
t. = LU = = — 3.3
P i) T Ry &

where 71; is the complex refractive index of the j-th medium defined by

nj(w) = n;(w) + ik (w). (3.4)

t12

== ) Et2 w
21 To1

: Py F(w)
o

Figure 3.1: The reflected rays are represented with the tilted angles for sake of clarity. E;, E,, and E, are
the initial wave, the successive transmitted waves, and the reference wave, respectively. By designating
medium 1 as air and medium 2 as the sample, the transmission and reflection Fresnel coefficients are
represented as t12 and ris, respectively. The transmission of transmitted waves through the sample is
determined at point P.
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In general, the refractive index is the real part of 7; and the extinction coefficient denoted by a can be

obtained from the imaginary part of n; (kK = k2 = k) given by '

2w
alw) = —k(w). (3.7)
c
The consequent phenomenon caused by the multiple reflection within the slab is called as the Fabry-Pérot
effect.
Designating subscripts for reference (air) and sample as 1 = a and 2 = s, respectively, the successive

transmitted rays Et are explicitly expressed in terms of the Fresnel coefficients and the phase term as

By, =ty to1 E; ™!

Ei eikn53l

ikii 5l (3:8)
)

_ -
E;, = t12 751 to1

~ s 4z
Etg = t12 To1 tgl Ez e

where the sequence [, 3, 5/, --- in the optical path length term of ng [ represents subsequent back and
forth reflection and k& = ¢/w. Then the total transmitted waves ES through a sample can be written by

the sum of the whole successive transmitted terms in the form
By =ty Ty By " 4115 73 o1 By €3 11y 75, Ty By 0 4

gy k7 52 ikms2l | 4 ikisd
_ t12 t21 Ei ezknsl 1+7“21 ezkns l+r21 ezkn‘ l_'_“.

(3.9)

- . L q2j
=t12 to1 E; €lkn5l{1 + Z [ For el ] }7
j=1
where 9§ is the number of Etalon waves. On the other hand, the reference wave passing through the
optical path of n,l is given by
E, = E; ¢tnal, (3.10)
Therefore the transmission, i.e. the theoretical transfer function H in the presence of a single sample, is

obtained as

~ E .
H(w) = E = t12 t21 etk (s — na)l{l + Z [ Fo1 ikl } }

r j=1

_ 4
_ e xfro-nl [ z
(ﬁs(w) + na)

1Consider that the plane wave propagates along the = direction through a medium with a complex refractive index 7
and thickness of d. If Eg(w) is the incident wave, the transmitted wave can be written as

Bw) = Bo(w) ¢!*D = Bo(w) e[ 27@1d] _ By () o= rd oi[$nd] | (3.5)
Then the transmission (T') is calculated in the form

Bw) |

— —end = e—a(wd (3.6)
Eo(w)

where « represents the extinction coefficient defined by Eq. (3.7).
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The transmission of the measured THz waves carried out by THz-TDS can be written in the form

~ B E;rxp(w) Ay(w) ei%s (W)

He,, — = — _ = iAP(w)
P B T Al am )

7 (3.12)

where p = Ag/A, is the transmission amplitude and A¢ = ¢, — ¢, is the spectral phase difference. By
comparing Eq. (3.11) and Eq. (3.12), we can extract the optical constants (the refractive index (n) and
the extinction coefficient («)) without using the Kramers-Kronig relationship. There are many ways to

calculate the optical constant from the theoretical transfer function.

3.1.1 Optical constants for an optically thick sample with low absorption

Provided that the investigated material which is optically thick has a low absorption in the THz
frequency range, x, is sufficiently small compared to ng (ks < ns) and the Fabry-Pérot interference
terms can be neglected due to the optically thick thickness. Then the transfer function Eq. (3.11) is
simplified in the form?

ﬁ(w) = —4ns(w)na 5 e~ e rst ei%(”‘*(w)_”“)l. (3.13)
(ns(w) + ng)

By comparing the measured transmission Eq. (3.12) and the theoretical transfer function Eq. (3.13),
the refractive index and the extinction coefficient of the sample can be extracted. The measured trans-
mission Eq. (3.12) for a thick sample (i.e. no Etalon signals) is physically equivalent to the theoretical

transfer function Eq. (3.13) given by

~ 4 s a w i (n.(w)—n i w
H(w) — % e Cns(w)l e 0( s( ) a)l = p(w) e Ad)( ), (314)
(ns(w) + ng)

where it shoud be noted that p = Ag5/A, and A¢ are the experimentally measured transmission amplitude
and the spectral phase difference, respectively. Then the optical constants can be obtained by comparing

the imaginary part as well as the real part of the both sides in Eq. (3.14) as follows:

Im ﬁ(w) = ei%("s(“’)f’“)l = emd’(‘”), (3.15)
which leads to
%(ns(w) —ng)l = Ag(w), (3.16)

so that we obtain the refractive index as

ny(w) = na + —A(w). (3.17)
Next,
~ Ang(w)ng @ (w)l
Re Hw) = ——————— ¢ <" = p(w), (3.18)
(ns(w) + ng)
2
fiw) = —2Pe@na_ i (ra@)-na)t o _Ans@)ta_ i (5 (@)= )1
(Rs(w) + na) (ns(w) + na)
_ Ans(w)ng o= Lrsl ei%(ns(u})—na)l.
)
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which implies that

Ks(w) = — In (W)M (3.19)
SETL Ang(w)ng '
Furthermore, the extinction coefficient is expressed as®
2
2w 2 (ns(w) + ng)
== =—21 ~ - |, 21
aw) = (@)=~ n lpw TR (321)

As a result, the refractive index and the extinction coefficient of the sample are obtained as Eqgs. (3.17)

and (3.21), respectively.

3.1.2 Optical constants of two identical samples with different thicknesses

The Fresnel coefficient term 4ngn,/(ns + ny)? in Eq. (3.11) can be eliminated provided that there
are two identical samples with different thicknesses (di, d2). When dsy is large compared to dy, the

successive transmitted electric fields at point P shown in Fig. 3.2 can be expressed as

By (W) = 1o To1 B ™ [ﬁsdﬁn“(drdl)]a (3.22)
Et2 (w) = 512 521 E; eikﬁst, (323)

where the interference terms caused by the Fabry-Pérot effect can be neglected in case of the optically
thick thickness. The phase term n,(ds — dy) is included in Etl in Eq. (3.22) since the transmitted wave
through a sample with thickness of d; is in phase at point P with respect to EtQ. From the transmitted

waves, the relative transfer function can be written as

_ B (W) _ ethnisdz i (a—na)(da—dr)
B (W) gik[Feditna(da—di)] (3.24)
—%K‘g(dz—dl)ei%(ns—’na)(dz—dl)

f_j—theory (UJ)

=€

1=air do — dy
2=sample i >
t12 lo1 E

S B ()
I :
Ei(w) '
l tl{‘ t{i

> Etz(w)

— dy —

Figure 3.2: The diagram of transmitted waves through two identical samples with different thickness.
The relative transmission of transmitted waves through two samples is determined at point P.

3

Mm%@w—%xcme
c c wl

(ns(w) 4+ 714)°

2
(ns(w) + na) } TR (3.20)

2
4dng(w)nag =7 |:p(w)

l
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which implies that N
exp 10, (W
ﬁthcory(w) _ ?tz (w) _ A, (W)6.¢ 2 ( ), (3.25)
B (@) | Ay (@)em®

where Ay, and ' are the spectral amplitude and phase corresponding to the experimentally measured
THz waveform E&Xp, respectively. We find by comparing the imaginary part as well as the real part of
the both sides in Eq (3.25) that

Im f_'[theory(w) — t%(ne—mna)(d2—d1) _ ei(¢t2*¢t1), (326)
~ v A
Re cheory(w) — e ths(dz—di) _ Tb’ (3.27)
t1
so that we obtain
c
. =ng+ —— A¢, 3.28
ng(w) n+w(d2—d1) ¢ (3.28)
C At
. | 2, 3.29
Fis (@) w(dy — dy) ! (Atl) 520

where A¢p = ¢, — ¢, is the spectral phase difference between the two sample THz signals. A reference

paper [28] would be a help to understand.

3.1.3 Numerical calculation: The fixed-point iteration method

The fixed-point iteration method is one of numerical methods to obtain the complex refractive index
in the THz frequency range [29,30]. In this section, we only consider the situation for a sample with an
optically thick thickness for sake of simplicity.

We now recall from Eq. (3.11) the expression for the transfer function with 6 = 0, yielding

Sy AnsWne e[ w)-na
) it ' (3.30)
(ﬁs(w) + na)

By taking the Fresnel coefficient to have the form

Ans(Wna g

=——"—— =re”, 3.31
= Galw) + n0)? (330
the transfer function becomes
ﬁ(w) = refeEhslgie(ns(wW)=na)l (3.32)
which implies that
H(w) = p(w)e™?«), (3.33)

where p = A;/A, is the transmission amplitude and A¢ = ¢5 — ¢, is the spectral phase difference
obtained by the measurement. We then find by comparing the real and imaginary parts of Eq. (3.33)
that

Ad(w) = %(ns(w) —n)l+0,  plw)=re Rl (3.34)

The Fresnel coefficient can be rigorously expressed by taking ny = ns + ik = r1€'* and ng + ng =
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Ng + Ny + iks = T9€'%2 ag
dngr el

p= = 4na%ei(¢1_2¢2). (3.35)

22
riei2o: r3

By comparing the real and imaginary parts of this equation, we obtain

arg ¢ = ¢1 — 209 = 0, (3.36)
ol = dnag =1, (3.37)
T2

which lead to

6 =tan~! (H‘S) —2tan~ ! ( s ) ) (3.38)
ns Ns + Ng
Adng/n2 + K2

=— > ° 3.39
L R N (3.39)
Therefore, we find by substituting Eqgs. (3.38) and (3.39) into Egs. (3.34) that the the complex refractive

index can be expressed as [31]

C
ng(w) = ng + "l

Ad(w) — tan™! <28> 4 2tan~! (71(’2)(1)71) 1 (3.40)

ks(w) = < [hlp(w) —1In <(4na M)

- = : 3.41
wi g +Na)? + K2 (3.41)

From these equations, we can see that ns and ks are strongly coupled to each other. Since ng and kg
generally cannot be expressed separately, the numerical method should be considered when we obtain
the complex refractive index.

When the Fresnel coefficient %vij is considered as 1, we find from Egs. (3.40) and (3.41) that the

complex refractive index becomes

ng(w) = no(w) = ng + iAd)(w), ks(w) = Kko(w) = 7& In p(w), (3.42)

where these parameters are considered as the initial values of this method. Note that Egs. (3.40) and

(3.41) can be expressed in terms of generating functions as

ns(w) = gl(nfh K:s); Hs(w) = gZ(nsa Hs)~ (343)

Using the initial values in Eq. (3.42), the complex refractive index denoted by n; and %1 can be obtained

for a fixed k¢ and ng, respectively, as follows: By succeeding iterations given by

g1(no, Ko) =ni, g2(no, ko) = K1,
g1(n1, Ko) = na, 92(no, K1) = kKo,
g1(n2, ko) = ns, g2(no, K2) = ks,
gl(nj7 ko) = ns(ko) = n/17 ga(no, va) = ks(no) = ’41, (3.44)

we obtain n} for a fixed kg and & for a fixed ng. Next, n}, for a fixed ] and &)} for a fixed n} can be
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obtained by the same iteration method. We thus obtain the final complex refractive index by repeating

the iteration. The fixed-point iteration method is described in more detail in Ref. [29, 30].

3.1.4 Examples: optical constants of dolomite stone and Teflon

T T T { T T T { T T T T T T { T T T
(a) a1 Reference

— nd
= At = Y — Sample x 5
= Earlier pulse i
<
Y A,
w

1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1

0 20 40 60 80 100
Time [ps]
T T T

£ g
> =
o) [0)
3 3
— <
9 o}
2 &
£ Er
< D

s I L e, s 1 s 1 s 1 s

0 0.5 1 15 2 0 0.5 1 15 2
Frequency [THZz] Frequency [THz]

Figure 3.3: (a) Measured time-domain THz waveforms with and without a sample. The THz waves
through a sample are time-delayed from the reference peak as much as At. Note that there is an
earlier pulse than the main THz signal near 55 ps, which comes from the reflected optical probe beam.
(b) Amplitude spectrums and (c) phase information of reference and sample THz signals after Fourier
transformation. Here the sample is dolomite stone with a thickness of 8.31 mm.

Figure 3.3(a) shows the measured time-domain THz waveforms with and without a sample. When
the sample is placed in the optical path, the total optical path becomes longer so that the THz waves
through the sample are time-delayed from the reference peak as much as*

_ And

A 4
t — (3.47)

where c is the speed of light, d is the thickness of the sample, and An = ng — n,. Note that there is an
earlier pulse than the main THz signal through the sample (red solid line) near 55 ps, which comes from
the reflected optical probe beam. This is described in section A.9 in detail.

By applying Fourier transformation to the reference and sample THz waveforms, the spectral am-

plitude s and phase information are simultaneously obtained as shown in Fig. 3.3(b) and (c). Here, the

4When t; is time at point P of a reference wave and to is time at point P of a transmitted wave through a sample as
shown in Fig. 3.1, the refractive index ns can be roughly obtained, giving

nsd = ¢ to
— ned = c t1 (3.45)
(ns — na)d=c(t2 — t1),

which implies that

ns = ng + g(tg —t), (3.46)

which leads to Eq. (3.47).
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Figure 3.4: The extracted refractive index (red solid line) and the extinction coefficient (black dotted
line) of (a) dolomite and (b) Teflon.

phase term at zero frequency measured by THz-TDS must be zero [32]. Using matlab, the unwrapped
phase can be corrected by the translational symmetry.
Figure 3.4 shows the refractive index and the extinction coefficient of dolomite and Teflon measured

by THz-TDS in a transmission configuration.

3.2 Dynamic range in TDS transmission spectroscopy

In principle, amax(w) at each frequency component can be obtained when the spectral amplitude in
the presence of a sample Ag(w) is attenuated to the noise level [33]. From Eq. (3.19), the expected maxi-

mum extinction coefficient amax(w) measured by THz-TDS in a transmission configuration becomes [33]

Ctma (W) = % In {DR(LU)M}, (3.48)

2
[ns (w) + na]
where the dynamic range DR(w) i.e. the measurable range is given as [33]

Ar(w)

DR(w) = Noise ’

(3.49)

Figure 3.5 shows the dynamic range of dolomite and Teflon measured by the transmission THz-
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Figure 3.5: The dynamic range of (a) dolomite and (b) Teflon measured by the transmission THz-
TDS. The gray and red shaded areas represent the apax(w) and a(w) of each sample, respectively. The
measurement ranges for (a) and (b) are valid for frequencies below 1 THz and 1.5 THz by comparing
the two curves, respectively.
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TDS. The gray and red shaded areas represent the aa.x(w) and a(w) of each sample, respectively.
Comparing the two curves, we can see from Fig. 3.5(b) that the measurement range by THz-TDS is valid

for frequencies below 1.5 THz.

3.3 Dielectric constant and complex refractive index

From the electromagnetic theory [7,12], the speed of light is defined as®

1
Vv €oHo ’

where v is the phase velocity and n is the index of refraction. Then the refractive index can be explicitly

cC=vn=

(3.50)

written by a complex variable in terms of the electric permittivity (¢) and the magnetic permeability (p)

given by
9 ~ ~
e (3.51)
v €oMo €0

where pu = g for a non-magnetic material. The term €/eg = 1+ x, where x is the electric susceptibility,
is called the dimensionless dielectric constant or the relative dielectric constant or the dielectric constant

for simplicity [7, 12]. The complex refractive index is generally represented by
n=n+Iik, (3.52)

where n and k are the real and imaginary parts of n. According to Eq. (3.51) and Eq. (3.52), the

dielectric constant can be obtained by

52:(n+i,€)2:(n2—1<;2)+i27m=5r+i8i=i, (3.53)
€0
where
€ €
er=Re|—|, & =Im [] . (3.54)
€0 €0

5The relation in Eq. (3.50) is detailed explained in Griffiths [13] pp. 375-376, and 382-383, Yariv [19] pp. 10-11.
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Chapter 4. THz spectroscopy of natural mineral compounds

4.1 THz spectroscopy of natural stones and its application

Terahertz (THz) time-domain spectroscopy probes the optical properties of the naturally occurring
solid aggregates of minerals, or stones, in THz frequency range. Refractive index and extinction coeffi-
cient measurement reveals that most natural stones including mudstone, sandstone, granite, tuff, gneiss,
diorite, slate, marble, and dolomite are fairly transparent in the THz frequency domain. Dolomite in
particular has nearly a uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1
THz. The high index of refraction allows flexibility in lens design with a shorter accessible focal length
or a thinner lens with a given focal length. Good agreement between the experiment and calculation in
the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the

possibility of using natural stones for THz optical elements.

4.1.1 Introduction

Science and technology on THz frequency waves has become one of the most active areas of research
during the past two decades [3]. The THz frequency waves are located in the frequency ranges from 0.1—
10 THz (30-3000 pm in wavelength) between microwave and far-infrared (FIR) electromagnetic waves.
Various research in the THz frequency range have become possible through the development of the gen-
eration and detection methods as well as spectroscopic methods with these waves. In contrast to the
measurements with other light sources such as X-ray or FIR waves, one of the important aspects of THz
waves used for material characterization application is the direct field amplitude measurement using THz
time-domain spectroscopy (THz-TDS). Both the spectral amplitude and phase information of a sample
can be obtained simultaneously through the THz-TDS, without resorting to a complex analysis [341]. Pre-
vious studies demonstrated the powerful spectroscopic capability of THz-TDS in characterizing many
materials including polymers [35], explosive materials [30], solid-state materials [37,38], chemical com-
pounds in liquid [39], ions [40], biomaterials [41], and even the material phase transitions [42].

Recently, there have been enormous efforts devoted to fabricate THz optical components [13-50].
Among the THz components, lenses and off-axis parabolic mirrors play a crucial role in THz-TDS
systems since they are the basic optical elements in focusing and collimating THz waves. For example,
planoconvex lenses are commonly used in a THz-TDS system of a linear configuration [43]. The lenses
operating in the THz frequency range are fabricated of various materials: high resistive silicon [44,

|, polytetrafluoroethylene (PTFE, Teflon) [35, 11-16], high-density polyethylene (HDPE) [35, 43, 16],
TPX [45], TOPAS [15,16], Zeonex [17], Picarin [18], micropowders [19], and polymeric compounds [50].
Special lenses such as the off-axis metallic diffractive lens [51], the diffractive paper lens [52], the variable-
focus lens using the medical white oil [53] and the THz Brewster lens [54] have been recently reported.

Here we demonstrate a THz lens made out of natural dolomite stone. For this, we first investigate
various natural stones using THz-TDS to determine their optical constants such as the refractive index
and the absorption coefficient. Despite the optical constants of a limited set of stones were previously
studied in the THz frequency range [55-57], most stones from nature yet needed to be studied. In this

study, we investigate mudstone, sandstone, tuff, diorite, marble, granite, gneiss, slate, and dolomite.
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While these stones are opaque in the optical frequency range, this study reveals that most of them are
mostly transparent in the frequency ranges from 0.2 to 1 THz. Some natural stones, in particular the
dolomite, exhibit a rather flat and high index of refraction throughout the measured THz frequency
range. Materials with a higher refractive index allow the lens fabrication with more flexibility in lens
fabrication suggesting that the dolomite can be considered as a material for THz lens fabrication.

The contents in this paper are listed as follows. After the THz transmission measurement of natural
stones in a conventional THz-TDS setup is described, the extraction process of the complex refractive
index from the investigated stones is explained. The fabrication procedure of a THz lens using dolomite
is then explained. Lastly, focused intensity profile measurements of the fabricated dolomite lens with

respect to selected frequencies are presented.

4.1.2 Measurement of optical constants of natural stones

4.1.2.1 Experimental procedure

To measure the refractive index and the extinction coefficient of various natural stones, a con-
ventional THz-TDS setup was used [38]. THz waves were generated from a large-area photoconductive
antenna (PCA) [58] illuminated by ultrafast optical pulses that were temporally 100 fs short, wavelength-
centered at 840 nm, and produced from a mode-locked Ti:sapphire laser oscillator operating at 80 MHz
repetition rate. When a THz pulse guided by four off-axis parabolic mirrors propagated through a sample
located at the focus, another ultrafast optical pulse splitted off before the PCA and time-delayed by a
linear translation stage probed the electric field profile of the THz wave as a function of the time delay
via optical gating [15]. The temporal THz signals with and without the sample were separately measured
via electro-optic (EO) sampling [21,59], where the polarization rotation of the probe pulse through a
(110)-oriented ZnTe EO crystal with thickness of 2 mm was mapped after a quarter-wave plate and a
Wollaston prism by a pair of balanced photodiodes. By varying the time-delay of the probe beam with
respect to the THz pulse, the temporal electric field waveform of the THz pulse was recorded. To obtain
accurate spectral information, we took a long-time window measurement of up to 200 ps which corre-
sponded to a spectral resolution of 5 GHz, with a temporal step size of 100 fs. The whole THz-TDS setup

was purged with dry air to reduce the absorption by water vapor in the THz frequency range [60,61].

4.1.2.2 Retrieval of the refractive index and extinction coefficient

Waveform measurement in THz-TDS allows one to obtain not only the spectral amplitude but also
the spectral phase information by simply applying the Fourier transformation to the time domain signal.
THz-TDS directly measures the electric field while conventional IR spectroscopy such as FT-IR (Fourier
transform IR spectroscopy) measures intensity [27]. The spectral phase information is thus obtained
without resorting to the Kramers-Kronig relationship. The transmitted THz electric field out from the
sample is given as a sum of successive transmitted and reflected electric fields at both sides of the
sample, which is often referred to as the Fabry-Pérot etalon signal. If air and the sample are denoted

by subscripts 1 and 2, respectively, the transmission f(w) of the sample with a thickness of [, which is
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separately measured in the experiment, is given by

~ o o 2j
T(w) = tortyp €' (Pe(@)mnal {1 + [7‘2162?”@(“})[} }
=1 (4.1)

= pw) ¢ 29 {FP()},

where s = ng + iks and n, are the complex indices of refraction of the sample and the air, respectively.
Here, ¢ is the number of echoes of a THz signal, p is the transmission amplitude and A¢ is the spectral
phase difference between THz signals with and without the sample. ¢;; and r;; are the Fresnel coefficients
given by t;; = 2n;/(n; +1;), rij = (*j —n;)/(7; +7,;) and FP(w) is the Fabry-Pérot term. By comparing
the real and imaginary parts of the right-hand side of Eq. (4.1), the full expression of the complex index
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Figure 4.1: Measured refractive indices and extinction coefficients of stones in the frequency range from
0.2 to 1.2 THz corresponds to wavelengths between 1500 um to 250 um. Solid lines and dashed lines
represent the extracted refractive indices and extinction coefficients of investigated stones, respectively.
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of refraction of the sample becomes

g :na—ki(Agﬁ—tanfl &—I—Q tan™! Fos )
wl Ns Ns + Ng

© (log e/ 12 (4.2)
(

s — —1 )
k N + 1g)? + K2 ogp

Tl

For the retrieval of refractive index and extinction coefficient, we used the fixed-point iteration
method [29,30], in which the initial values of the complex index of refraction was chosen in the fixed-
point iteration as t;; = 1, given by n, = n, + 5A¢, ks = —;logp. From the imaginary part of the

complex refractive index, we can obtain the extinction coefficient as

alw) = 2%,«;5 (w). (4.3)

The detailed derivation of the transfer function Eq. 4.1 and extraction of the complex refractive index is

explained in 3.1.

4.1.2.3 Optical constants of stones

The optical constants of nine different types of natural stones were measured: slate, gneiss, and
marble in metamorphic rocks, mudstone, sandstone, and dolomite in sedimentary rocks, and granite,
tuff and diorite in igneous rocks [62]. The samples were provided by the Korea Institute of Geoscience
and Mineral Resources (http://www.kigam.re.kr). Figure 4.1 shows the retrieved refractive indices
and the extinction coefficients of the investigated stones, respectively, extracted by the aforementioned
method in Sec. 4.1.2.2. Table 4.1 lists the typical values of the refractive indices n and the extinction
coefficients «, both measured at the frequency of 0.5 THz. The sample thickness that varied from 6.8
to 9.4 mm is also listed. The flat lateral sizes of the stone samples were about 2x2 cm?. All the stones

1

show rather flat refractive indices and low extinction coefficients of below 20 cm ™" over the measured

frequency range of 0.2-1.2 THz.

Materials n @ Thickness
Metamorphic rock

Slate 2.48(3) 10.8(2) 8.65
Gneiss 2.32(5) 6.(4) 9.40
Marble 2.87(6) 5.0(3) 6.81
Sedimentary rock

Mudstone 2.50(4) 13.(2) 8.62
Sandstone 1 2.27(2) 12.8(8) 8.95
Sandstone 2 2.24(1) 9.1(4) 9.22
Dolomite 2.70(5) 4.(1) 8.31
Igneous rock

Granite 2.34(5) 14.(2) 7.48
Tuff 2.30(6) 11.(2) 8.41
Diorite 2.58(2) 12.(2) 8.01

Table 4.1: Refractive indices n, extinction coefficients a (cm™!) and thicknesses (mm) of the investigated
natural stones at 0.5 THz.
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4.1.2.4 Verification of stones using its components

We conducted X-ray diffraction measurements to investigate the relationship between the THz opti-
cal constants and constituent minerals of the rocks whose results are listed in Table 4.2. The investigated
stones show correlation between the refractive index and constituents. The relation between refractive
index and quartz component ratio is clearly shown in Fig. 4.2-(a). The refractive index converges to
2.2 as the ratio of quartz component increases. Extinction coefficients with respect to refractive indices
are shown in Fig. 4.2-(b), where it can be seen that the height (the extinction coefficient) of dolomite
is much shorter than other rocks throughout the measured frequency range. Dolomite also exhibits a

rather flat and high index of refraction.
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Figure 4.2: a) Quartz weight % with respect to refractive index at 0.5 THz. (b) The extinction coefficient
with respect to the refractive index. Each dotted lines represents a guide to the particle sizes of the
rocks [62].

4.1.3 Lens fabrication using dolomite

Dolomite shows low absorption and nearly a uniform refractive index of 2.7 over the measured THz
frequency range. Compared with Teflon whish is widely used for THz lenses, dolomite has a higher index
of refraction (see Table 4.3). Note that a material with a high refractive index allows more flexibility in
designing lenses with shorter accessible focal lengths, or a thinner lens for a given focal length. The index
of refraction of dolomite is equivalent to that of commercial silicon that is used for semi-hemispherical
THz lenses.

A planoconvex lens with dolomite was designed using the lens maker’s formula [27]. When a colli-

mated incident wave is assumed, the radius of curvature is given by

R=(n-1) (4.4)
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(b)

Dolomite
Lens

Figure 4.3: (a) Specification of the fabricated dolomite lens. f = effective focal length, f, = back focal
length, ¢t. = center thickness, t, = edge thickness, R = radius curvature. (b) Photo of the fabricated
dolomite lens.

where R, n, and f indicate the radius of curvature, the refractive index of the lens material, and the
expected focal length of the lens, respectively. It is advantageous to use a material satisfying (n —1) > 1
in Eq. (4.4) since the focal length of the lens is shorter than the radius of curvature, as shown in Fig. 4.3
(a). A commercial polishing plate with a radius of curvature of R = 16.19 cm was used for the convex
surface, which gave an expected focal length of f = 95.2 mm for dolomite since the refractive index of
dolomite at 0.5 THz was n = 2.70.

Dolomite lens were fabricated using conventional lens making procedures which is described for
example in Ref. [63]. A brief description is given here. First, the bulk dolomite stone is cut into a

hexahedron with a size of 50.2x50.2x5 mm?

using a diamond wheel cutter. The dolomite block is
shaped into a cylindrical blank by cutting the sides with a grinding machine. Both faces are then
grounded into typical lens shapes, where one face is grounded to have a spherical curvature and the
other to have a flat surface. The dolomite blank is rubbed on a rotating polishing plate (a concave
polishing plate having a radius of curvature of 16.19 cm and a flat plate for each faces) covered with
silicon carbide (SiC) micro-powders (300 mesh number) compounded with water until the painted surface
vanished. SiC powders of 600 and 1200 mesh numbers were then sequentially used to smoothly grind
the surfaces. After the grinding process, a polishing film (3M 261X Imperial Lapping film, 3 pm grade)
doped with aluminium oxide (AlyO3) was employed to roughly polish the smoothed surface. Then, fine
polishing was done with a cerium oxide (CeOs) abrasive composed of 1 pm-size powder.

The expected surface quality of the dolomite lens in the THz frequency range was over A\/1000. The
radius of curvature of the dolomite lens was 16.19 cm which is the same as that of the polishing plate.
The thickness of the lens at the center, t., and at the edge, t., were measured to be 4.1 mm, and 2.1 mm,
respectively. The difference between t. and t. is the calculated value (1.958 mm) concerning the radius
of the lens. The expected focal length, f, is estimated to be 95.2 mm, as previously mentioned, and the

back focal length, fp, is 93.1 mm. All the parameters of the lens are graphically shown in Fig. 4.3—(a)

Materials n o Reference
Teflon (PTFE)  1.42 0178 [30, 11—10]
HDPE 1.534 2.172 [35,46]
Dolomite 2.70(5)  4.(1) This work
Silicon 3.41 0.46 [44,45)

Table 4.3: Refractive indices n and extinction coefficients a (cm~!) of dolomite and typical lens materials
at 0.5 THz.
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Figure 4.4: (a) Schematic of our linear configuration THz-TDS setup using two THz lenses; a Teflon
lens and the fabricated dolomite lens. Overall intensity profiles were measured by moving the lens with
an XY Z translation stage. (b) Image of the THz-TDS setup corresponding to the boxed area of (a).
The THz field was focused on to ZnTe by the fabricated dolomite lens. ITO playing a role as a dichroic
polarization beam splitter reflects the THz field and transmits the probe beam. (¢) A temporal THz
amplitude signal measured at the focal point and the corresponding amplitude spectrum after Fourier
transformation.

and the actual photo image of the fabricated lens in Fig. 4.3—(b).

4.1.4 Results and Discussion

The shape of the focused THz field was examined by field profile measurement with a THz-TDS
setup in a linear configuration as depicted in Fig. 4.4—(a). The image of the setup is shown in Fig. 4.4—(b).
In this configuration, the diverging THz wave generated from the PCA was collimated by a Teflon lens
with a focal length of 10 cm, and was focused by the dolomite lens. Then, the THz pulse and the probe
laser pulse were merged by an ITO wafer, and THz signal was detected by the ZnTe crystal. The focal
point of the dolomite lens was determined so that the measured THz signal is maximum by scanning the
spatial amplitude with an XY Z translation stage. The field profile of the dolomite lens was obtained
by scanning a two-dimensional (2D) area of 9 x 9 cm? with an interval of 300 um. At each point of
the measured 2D area, the temporal profile measurement over a 10 ps time window was carried out.

The maximum THz signal in the center pixel of the 2D area and the corresponding spectral amplitude
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obtained by the Fourier transform are shown in Figs. 4.4—(c).

The experimentally measured geometry of the beam profile shown in Fig. 4.5—(a) is theoretically
equivalent to a Fraunhofer diffraction pattern arising from a circular aperture. The dolomite lens and
Teflon lens had same diameters of 2 inches. The second lens, here the dolomite lens, has the size of the
aperture in the Fraunhofer diffraction. This lens crops the THz waves reaching the lens and only the
circular segment propagates through the lens and forms the diffraction pattern in the focal plane [11].
The THz pulse in our experimental condition has a broadband spectrum and therefore the performance
of the dolomite lens can be determinged by analyzing the beam profiles at various frequencies. The
amplitude profile E(r) is fitted the Bessel pattern [11] given by

2 J1 (kWoT/2f)

B =EO) [0 /a7

: (4.5)

where r is the radial distance on the focal plane and J; is the first kind Bessel function of order one.

Here, k is the wavenumber, f (95.2 mm) is the focal length of the lens and Wy is the diameter of the
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Figure 4.5: (a) Beam profile measurement geometry, where Wy in Eq. (5) is the diameter of the collimated
beam. (b) Extracted diameters (FWHM) of the focused THz field at various wavelengths obtained by
numerical fitting of the amplitude profile to the Bessel function. (c¢) Transmission amplitudes with respect
to frequency. All the amplitudes were divided by the amplitude of the THz signal measured without the
fabricated dolomite lens. The colorbar indicates the magnitude of the signal with respect to the THz
signal measured without the dolomite lens. The lines (solid line) fitted by the Bessel function plotted in
the horizontal and vertical directions across the THz amplitude profile (open circle) are indicated in the
figures (Normalized amplitude vs. position with respect to frequency).
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lens. The derivation of Eq. (4.5) is detailed in the section A.10.2 in detail.

Figure 4.5—(b) summarizes the extracted diameters (FWHM) of the focused THz field as a function
of wavelength obtained from the numerical fit of the amplitude profiles to the Bessel pattern in Eq. (4.5).
The measured THz beam amplitude profiles at various frequencies and the corresponding x-, and y-cross
sections of the profiles are shown in Fig. 4.5—(c). The amplitude profiles were scaled by the THz signal

amplitude without the dolomite lens. The corresponding ratio, N;;, is given by

Eij(wk)

Nt = | B (i)

(4.6)
where |E;;(wg)| and |Eno 1ens(wy)| are the amplitudes of THz signals with and without the fabricated
dolomite lens, respectively. The amplitude attenuation increases as a function of the frequency as shown
in Fig. 4.5—(c). Nevertheless, the experimental result agrees well with the calculation of the THz beam
profile. This result verifies that dolomite has high homogeneity as a lens material although dolomite has
more absorption than other lens materials.

As expected, the beam diameters show decreasing behavior as the frequency increases. They are
compared with a theoretical line calculated at a focal length of f = 95.2 mm and the lens diameter of
Wy = 50 mm (maximal f-number = 1.9). The theoretical line is calculated FWHM, W(}), from the
Bessel pattern in Eq. (4.5) as

437 (4.7)

W) = 5

Good agreement between the experiment and calculation confirms again that the fabricated lens made

out of dolomite shows good performance in the THz frequency range.

4.1.5 Conclusion

The use of natural stones as an optical elemental material in the THz frequency range is described.
We measured optical constants of various natural stones using THz-TDS. Among the investigated stones,
dolomite in particular exhibited the flat refractive index and low absorption over the measured THz
frequency range. We fabricated a dolomite planoconvex lens using the manufacturing process of conven-
tional lenses. The measured focused beam profiles was well explained by far-field diffraction theory in
the THz frequency range. With the proof-of-principle demonstration of THz lens made out of dolomite,
we suggest the possibility of using natural stones as THz optical elements for scientific and economic

reasons.

4.1.6 Appendix

In the lens fabrication processes, chromatic aberration and the spherical aberration should be con-
sidered [27]. First, the chromatic aberration for a plano-convex lens having a focal length f can be

,27]

derived from the lens-maker’s formula as |

(4.8)

where n is the refractive index of the lens and R is the radius of curvature. The refractive index of

dolomite in the THz frequency range is shown in Fig. 4.1. From the measured data, the refractive index
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of dolomite is in the range of 2.689 (at 0.15 THz) to 2.723 (at 1 THz) so that the variation dn is 0.034.

The induced variation of the focal length can be obtained given by

1 1

1
o0f =R 2.689 — 1 _2.723—1)0(‘2.689—1 2723 -1

~ 0.012 ~ 1%. (4.9)

Therefore, chromatic aberration can be ignored since the refractive index of dolomite is nearly constant.
The spherical aberration, however, can not be ignored. From the paraxial-ray approximation, the

gaussian formula for a single spherical surface is [11,27]

ny o no — Ny
—_— == . 4.10
So + Sih R ( )
Provided the object point is located at infinity, Eq. (4.10) becomes
Tz T2 (4.11)

f R
where f is the focal length of the paraxial rays denoted by si, = f. According to ray optics [11,27,64], the

spherical aberration of a single surface can be described by the third-order expression of the first-order

theory as' )
n n Ng — N
?“ri: 2R 1+§Kh2 (4.12)
)
i A
[«
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Optical .
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Figure 4.6: (a) The spherical aberration formed by a single spherical surface [11,64]. (b) The spherical
aberration formed by a plano-convex lens. (¢) Reduction of aberration by turning the lens [11].

1See Hecht, Optics 4th edition [11], p. 154, 254. See also Jenkins, Fundamentals of optics [64], p. 152.
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with
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So R+SO +Sih R Sih ( )

2
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where no is the refractive index of the lens and n; is the refractive index of the surrounding medium.
The object distance, the image distance, the radius of curvature, and the distance from the optical axis
are denoted as s, si, R, and h, respectively?.

From Eq. (4.12) through the substitution of s, — 0o, the third-order expression is slightly modified

to
ny  ng—ny . h2n§ o . hQn% (4.19)
Sih R 2nofR2 ~ f  2nofR?’ '
and is further reduced as .
) _
’
sm=f=f|1+55—"%5| > (4.20)
2n1ensR
where Njens = N2, N1 = 1 in air, and f is the focus for the paraxial rays.
2By the paraxial approximation and the substitution s, — oo, Eq. (4.12) can be written as
Moy e Mz _nem (4.15)
So  Sih Sih f R
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From this relation, we obtain
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The longitudinal spherical aberration A formed by a single spherical surface shown in Fig. 4.6(a)
can therefore be obtained by the difference between the paraxial focus f and the focal length f’ for rays

with a distance i from the optical axis given by
A=If—fl. (4.21)

The plano-convex lens is approximately the same optical system as a single spherical surface since
one of the two radii of curvatures is infinity. For the fabricated THz dolomite lens, the parameters are
Nlens=2.7, h=25 mm (half of the 2 inch lens) and R=161.9 cm. By Eq. (4.20), the focal length for rays
with a distance h from the optical axis is

252 mm? -

/= 95.2 1 ~ 95.045 mm. 422
f S 72 % 161.9% mm? i (4.22)

Hence, we obtain the aberration A ~ 0.155 mm.
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4.2 Lattice vibrations of natural seraphinite gemstone

Here we report the first observations in terahertz frequency lattice vibrations in naturally occurring
seraphinite gemstones. Seraphinite is a particular form of clinochlore minerals in the chlorite group,
where the THz frequency response of any chlorite minerals has been unknown. Based on our THz time-
domain spectroscopic measurements, we show that there are three absorption modes at 0.8, 0.96 and
1.2 THz. The 0.96 THz mode is, in particular, strong and narrow (Q=8) which is comparable to the
previously reported 0.53 THz mode in a-lactose monohydrate. A polarization-dependent study reveals
the A, (2')-symmetry in the 0.8 and 1.2 THz modes and the B, (z',y’)-symmetry in the 0.96 THz mode.
The anisotropy in the phonon-polariton dispersions shows an excellent agreement with the theoretical

analysis based on Kurosawa’s formula.

4.2.1 Introduction

Science and technology related to terahertz (THz) frequency electromagnetic waves [3] have tremen-
dously progressed during the past decades, providing an intellectual and technological bridge between
traditional studies in optics and microwave electronics [2]. In particular, THz time-domain spectroscopy
(THz-TDS) [65] has played a crucial role in investigating new properties and phenomena of materials.
Many materials have spectral fingerprints in the THz frequency range, where the spectroscopic capability
of utilizing ultra-broadband THz frequency waves has opened a rich variety of potential applications.
These include polymorph material classification [66], hazardous material detection, functional study of
bio-medical materials [67], high-speed in-door communications, high-altitude telecommunications, qual-
ity control, process monitoring and etc [3].

THz-TDS directly measures electric-field responses of materials. Spectral phase information can
thus be obtained without resorting to the Kramers-Kronig relationship [21]. When a THz pulse passes
through a sample having a thickness of d, the transmission amplitude spectrum p(w) and the transmission

phase spectrum ¢(w) can be obtained by

T(w) = = p(w) €@ F(w), (4.23)

where Es(w) and Er(w) are the transmitted electric-fields with and without the sample, respectively,
and F (w) is the Fabry-Pérot effect caused by internal reflections in the sample. The complex refractive
index of the sample defined by = n + ik can be obtained by the fixed point iteration method [30] as

following:

n(w) = no + — (W), K(w) = —— logp(w), (4.24)

where n, is the refractive index of air and c is the speed of light. The extinction coefficient is also
obtained by
2w
alw) = — k(w). (4.25)
c
Dielectric properties of various materials have been studied including crystal dielectrics, semiconduc-
tors [65], plastics [35], explosives [68], liquids [39], biomaterials [41], metamaterials [69], silicate glasses [70]
and natural mineral compounds [31,71] and etc. Furthermore, advanced optical properties such as
birefringence [37], anisotropic single crystal measurement [72—74], optical activity [75], magneto/electro-

optical effects [76] and electromagnons [77] in the THz frequency range are also under active investigation.
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In this paper, the first observations of strong absorption modes in naturally occurring seraphinite
in the THz frequency range are reported. Seraphinite is the special name for a particular form of a
clinochlore mineral having gem-grade quality, which exhibits a green feather-like uneven color distribution
of chatoyant fibers. Its name is based on its appearance, where the Greek word “seraphim” means the
wings of a celestial being is used. Clinochlore, often referred to as chlorite jade (although it is not
a real jade [78]), is a member of the chlorite group [79]. Seraphinite contains Mg and has a chemical
formula [30] of (Mg, Fe?)5A1(Si3A1)O10(OH)s. Figure 4.7 shows the atomic structure of seraphinite [31].
It has a monoclinic layered structure in the space group C2/m at room temperature [32]. As shown in
Fig. 4.7, seraphinite has a substructure consisting of two different layers: a talc-like layer and a brucite-
like layer [83]. Both layers are mainly octahedra in which magnesium (or aluminum) atoms are centered
around oxygen atoms. The talc-like layer has additional SiO4 tetrahedras at the top and the bottom of
each octahedra. Since the layers are electrically charged (the talc-like layer is negative and the brucite-
like layer is positive), pseudo random piling in clinochore could induce polariton behaviors upon light
illumination. We show that the absorptions at 0.8, 1.2 and 0.96 THz frequencies (each corresponding to
26.64, 39.96 and 31.97 cm ™! in wave numbers, respectively) are the phonon-polariton coupled modes [34]

for infrared (IR)-active optic phonons having A, (z’) and B, (z’, y’)-symmetries [385-87].

Brucite
> -like
layer

Talc-like
> layer

Brucite
> -like
layer

c

b

Figure 4.7: Atomic structure of seraphinite. The atomic position parameters are from Ref. [81]. The
unit cell parameters are a = 5.350(3), b = 9.267(5), ¢ = 14.27(1), and v (£(a, c))= 96.35(5)°.
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4.2.2 Experimental procedure

All experiments were performed using a conventional THz-TDS setup [31]. Ultrafast laser pulses
whose wavelengths are centered at 840 nm were produced by a Ti:sapphire mode-locked laser oscillator
operating at a repetition rate of 80 MHz. They were used to generate THz pulses from a photo-conductive
antenna (PCA). Upon illumination of each laser pulse having a 120-fs-short pulse duration, a THz pulse
having less than a picosecond pulse duration was produced. The electric-field of the THz pulse was
measured by electro-optic sampling by using another optical pulse (the probe pulse) split off from the
first laser pulse.

When directed through a (110)-oriented ZnTe crystal with a thickness of 1 mm, the polarization of
the optical probe pulse was rotated with an angle linearly proportional to the electric-field amplitude
of the co-propagating THz pulse via the Pockels effect. The whole setup was covered by an acrylic box
purged with dry air to eliminate water vapor absorptions.

Samples were prepared with two different cuts with respect to the feather-like pattern: parallel (||)-
cut and perpendicular (L)-cut as shown in Fig. 4.8. The sample thickness was d = 0.96 mm for the 1 -cut

2. Sample rotation was done by

and 0.8 mm for the |-cut, where the sample area was over 5 X 5 mm
using a motorized rotation mount. The sample was attached on an aluminum metal holder with a hole
diameter of 5 mm, which is sufficiently large compared to the Rayleigh diffraction limit corresponding

to the measured THz frequency range.

===

7/
| —cut i ]

Figure 4.8: (a) Schematic representation of bulk seraphinite. The L-cut and ||-cut seraphinite samples
are prepared as illustrated in (a). We assumed that the sample plane of each seraphinite is approximately
corresponding to crystal axes as shown in (b)

4.2.3 Results

When the THz-TDS recorded the time-domain electric-field amplitude of THz pulses transmitted
through the sample, the typical measurements are as shown in Fig. 4.9(a). The transmitted THz pulses
through the L-cut and |-cut samples (blue solid and red dash-dot lines, respectively) are time-delayed
from the reference peak (black dotted line). The time delay is given by At = (ny — ng)d/c, where ng is
the group index of the sample. By varying the azimuthal angle of the samples, the THz waveforms were
measured as shown in Fig. 4.9(b). The periodical delay of the peak position is due to the birefringence
of the seraphinite.

When the time-domain data is converted to the frequency-domain data through Fourier transfor-
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Figure 4.9: (a) Measured electric-field amplitudes of a THz pulse at the azimuthal angle of 120 ° trans-
mitted through the L-cut (blue solid line) and ||-cut (red dash-dot line) seraphinite sample, respectively,
compared with the reference signal (black dotted line). The time delay At between the main peaks of the
two signals corresponds to the differential index An between the sample (n, = 3.0) and air (n, = 1) times
the the thickness (d = 0.96 mm) divided by c. (b) Polarization-dependent THz waveforms measured
by varying the azimuthal angle of the L-cut and ||-cut seraphinites with respect to linearly-polarized
incident THz waves. The THz waveforms are normalized for the sake of comparison.

mation, the index of refraction n(w) and the extinction coefficient a(w) are obtained respectively by
comparing the spectral responses with and without the sample. Both the real and imaginary parts of
the electric susceptibility (or the index of refraction and absorption of the sample) are obtained from
Egs. (4.24) and (4.25) through the fixed point iteration method [30]. Figure 4.10 shows the experimen-
tal result. The index of refraction n(w, ) and the extinction coefficient a(w, ) of the L-cut and |-cut
seraphinites are shown as a function of the azimuthal angle (0) with respect to the THz polarization
direction in Fig. 4.10(a)-(d).

4.2.3.1 The strong absorption mode at 0.96 THz

When the extinction coefficient of the L-cut seraphinite at § = 120° in Fig. 4.10(b) is fitted with
two Lorentzian line-shapes [7], the 0.96 THz (v) strong absorption exhibits a full width at half maximum
(FWHM) of Av = 0.12 THz as shown in Fig. 4.10(e). The corresponding @ factor (v/Av) of 8.14
is extremely high comparable to the well-known THz absorption peak at 0.53 THz of the a-lactose
monohydrate [38]. Since the @ factor characterizes the resonance narrowness, materials with a large Q,
in particular of a solid-state material, can be useful for making devices such as band-pass filters, frequency
standards and etc. For the 0.96 THz mode at § = 120° of L-cut seraphinite, the oscillator strength [39]
defined by f = 8m20maxAw/w?, where o = w Im[é(w)]/47 is the conductivity, equals f = 0.072. The
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Figure 4.10: (a, ¢) The index of refraction n(w, §) for 6 € {0,--- ,360} and (b, d) the extinction coefficient
a(w,d) for 8 € {0,---,360} of L-cut and ||-cut seraphinites measured as a function of the azimuthal
angle (#) with respect to the THz polarization direction, respectively; (a) n (w,120°) and n (w, 300°),
(b) a1 (w,120°) and a1 (w,300°). The strong absorption mode is measured at 0.96 THz. (c, d) n|(w, )
and o (w,#) at § = 20°, 60°, and 120°. (e) The strong absorption mode of L-cut seraphinite. When the
extinction coefficient at azimuthal angle of § = 120° of L-cut seraphinite was fitted to two Lorentzian
functions, the 0.96 THz absorption peak has a linewidth of 0.12 THz (FWHM).
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Table 4.4: The characteristics of the strong absorption line of L-cut seraphinite at 0.96 THz.

Materials Fitting v Ay  Q-factor Oscillator Technique References
function  [THz] [THz] (v/Av) strength f

Seraphinite Lorentzian 0.960 0.120 8.14 0.072 THz-TDS  This work

a-Lactose  Lorentzian  0.525  0.069 7.60 0.016 THz-TDS  Ref. [88]

retrieved parameters for the 0.96 THz absorption peak are summarized in Table 4.4.

4.2.3.2 The dielectric tensor for a monoclinic structure

The crystalline structure of seraphinite belongs to the space group of C2/m. The factor group
analysis [90] predicts that the dipole momenta of A, and B, modes are inclined along the z’-axis
and placed on the ab-plane, respectively, where a, b and ¢ denote monoclinic crystal axes and z’, 7/,
and 2’ denote the principal coordinates. The principle coordinates of this crystal is related to the
crystallographic coordinates (a, b, ¢) as follows: 2'||a, ¥||b, and Z(a, c)= 96.35(5)° [31].

To understand the polarization dependence of the extinction coefficients in Figs. 4.10(c) and (d), we

consider the (relative) dielectric tensor €(w) represented with the principal coordinates (2, y’, )

gx/x/ (w) gz/y/ (w) 0
€w) = |Ewy (W) Eyy(w) 0 : (4.26)
0 0 € o (W)

The non-zero components of the dielectric tensor in Eq. (4.26) are described by the generalized Drude-

Lorentz model [91,92] as follows

Siw) =g+ > Su(wIpTy (4.27)
n€{Ay, By}

fori,j € {z',y', 2"}, where &7 denotes the high frequency contribution and the angle dependence factors
are given by

Iy = sinby, cos ¢, I'y, = sinb, sin gy, 17, = cosb,. (4.28)

The complex oscillator term S, is defined by

~ w
g, = pn , 4.29
Wh = W2 — iYW (4.29)

where wp n, wo,n, ¥ are the plasma frequency, the transverse frequency, and the damping coeflicient of
the n-th mode that belong to the A, modes and B, modes, respectively. 6, and ¢, denote the polar

angle and the azimuthal angle between the n-th dipole moment and the z’-axis as shown in Fig. 4.11(a).

4.2.3.3 The relation between the polarizability and the susceptibility

From electromagnetic theory [12], the polarizability P and the complex refractive index n of a

material are given in terms of the effective susceptibility xog [7] by

P(w,0) = eoXet(w, 0)E, (4.30)

(w,0) = /14 Xerr(w,0), (4.31)
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where 6 is the polarization angle. According to the complex refractive index defined by n = n + ik, the

effective susceptibility in Eq. (4.31) can be obtained throughout the measured THz frequency range as
_ 2
Xt (w, 0) = |n(w,0) + ir(w, 0)} —1. (4.32)

Therefore, the angle dependence of the polarizability P is the same as that of the susceptibility Yes

obtained from the complex refractive index n [12].

4.2.3.4 The isotropic excitation behavior in the |-cut seraphinite

In a monoclinic crystal, the dipole moments of A,(z’) modes are aligned with the z’-axis and
Bu(2',3') modes are placed on the ab-plane. Therefore, when the incident wave propagating along
the 2’ direction transmits through the L-cut crystal (the crystal surface is the z'y’-plane) as shown

in Fig. 4.11(b), A, modes are not excited and only B, modes are excited. In this case, the dielectric

(@) 3 (c) Z

Principal
coordinates
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Q
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I
o
I~
~
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Figure 4.11: (Color online) (a) The principle coordinates. (b) The sample coordinates of the L-cut
sample. (c) The sample coordinates of the the ||-cut sample. (d) The lab-frame coordinates are trans-
formed from the principle or sample coordinates via M, where 6; and ¢; represent the polar angle and
the azimuthal angle between the j-th dipole moment (red arrow) and the z’-axis. The crystal surface is
represented by dark gray color in each figure.
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function is given by 3

Si=ey+ D Sali(@n)T;(on) (437)

ne{B,}

fori,j € {z',y'}, where 'y (¢p,) = cos ¢, Ty (ép) = sin ¢y, and 6,, = 7/2 for B, (z', y') modes. However,
when the two dipole moments B, ; and B, 2 are orthogonal with each other (i.e., ¢o = ¢1 + 7/2), the
dielectric tensor elements in Egs. (4.37) becomes ¢,-independent since £,/,0 = €59, + §B“, Exry =
Eqiyrs Eyty’ = Egryr T §Bu when §Bu,1 = §Bu,2 is assumed.? Therefore, the isotropic behavior (no angle
dependence) of the 0.96 THz mode excitation in the L-cut seraphinite in Fig. 4.10(b) can be understood
by the fact that there exist two B, modes being orthogonal with each other and of the same resonant
frequency at 0.96 THz.

4.2.3.5 The anisotropic excitation behavior in the ||-cut seraphinite

To understand the [|-cut measurement in Fig. 4.10(d), we assume that the sample was cut slightly
tilted from the principal ¢z’ plane so that the dipole moments of the A, modes are slightly tilted from the
sample z’-axis. So, the (2/,y,2") coordinates now represent the sample coordinate system, as depicted
in Fig. 4.11(b). Then, the incident electric-field E;,y,z/ in the sample coordinates is represented through
a coordinate transformation from the lab-frame measurements E,,. in Fig. 4.11(d), or

E,/

x'y’ 2

» = |R}*(¢) Ry*°(0)| Eyy. = M(0, ) Eyy», (4.41)

where each rotation operation R7*°(f) represents the coordinate rotation by a counter-clockwise angle 6
about the j-axis.’
The induced polarizability Igé,y , in the sample coordinates is given, in terms of the linear electric

'z

3For l-cut, the dipole moments of A, modes are aligned with z’-axis and B, modes are aligned with ab-plane shown
in Fig. 4.11(a), which can be reduced by using Eq (4.27) in the forms

Epta) = €ty + Z §j cos? ¢; (4.33)
J€{Bu}

Exryl = a;?y, + Z §j cos ¢ sin ¢; (4.34)
j€{Bu}

Sy =iy + >, Sjsin®g; (4.35)
JE€{Bu}

Eow =X+ Y. S (4.36)
je{Au}

4Provided the related two identical dipole moments By,1 and By 2 are orthogonal, the dielectric tensor elements from
Eq. (4.33) to E q. (4.36) are reduced given by

Eqlat = Eqrpr + §Bu [0052 ¢p + cos? (o + 7r/2)]

=%,/ + 5B, (4.38)
Exryl = E;?y, + gBu [COS dp Sin ¢y

+ cos(op +m/2) sin(py, + 7/2)] = €37, (4.39)
Eyy =0, + S, [sin® ¢y + sin (¢ + 7/2)]

= ey + By (4.40)

where §Bu and ¢ are the oscillator term and the azimuthal angle of By, 1, respectively. ¢, + 7/2 is the azimuthal angle
of By,2 mode. This implies that si‘,’ , should be small and 62‘,’1, has to be the same as £°9 ,. It is concluded that the

related two identical dipole moments for B, modes are orthogonal, which makes it possible to observe isotropic behavior
from L-cut in Fig. 4.10(b). Therefore, dielectric tensor elements for L-cut are defined by Egs. (4.36), (4.38), (4.39) and
(4.40) from which it can be explained that the By, mode at 0.96 THz is constantly measured in sample rotation.

5M represents the extrinsic rotation matrix. Then M can be written as

M = RI*“(¢) Ry™(=0") Ry*(0). (4.42)
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susceptibility tensor X(")(w) = &(w) — I and the electric-field E’ by

z'y’ 2"

~(1 ~(1
Rowr Xy 0

lel,ylzl = €0 5\6;1; 5(«;1/;/ 0 E;/y/z/. (443)
R

The polarizability ISxyz in the lab-frame coordinates is then given by

Poy. =M(0,6)"" Pl,.. (4.44)
When the incident electric wave is linearly-polarized along the z-axis, the angular dependence of the
polarizability can be obtained from the z-component of IBWZ as a function of 6 as

(1)

z'z!

P.(0) = EOX; 26, sin? 0 4 egX ;. cos> 0, (4.45)

where ¢ = 0 is chosen in M for simplicity.® Then, the 7 periodicity of the polarization angle for the B,
mode at 0.96 THz in Fig. 4.10(d) can be simply explained by the 6 dependence in Eq. (4.45).

However, the A, modes at 0.8 THz and 1.2 THz have a period of 7/2, which needs to be accounted
for higher-order polarizabilities. The monoclinic crystal in the space group of C2/m is centro-symmetric,
so the next non-vanishing contribution is from the third-order susceptibility Y®) given in the sample
coordinates (a',y’, z’) by

o) = > Su(w)Iprimpry. (4.49)

ne{Ay, By}

The z-component of 151532 is given by

P =3¢y MR (W) Ej (W) B (~w) Ei(w)
ijkl

= 3¢ Z gn sin? 0, sin? ¢,, sin* @ + cos* 6,, cos* O + 6 cos? 6, sin 0, sin? ¢,, cos® fsin’ 6| .
ne{Au7 Bu}
(4.50)

Figure 4.12 shows the measured Im[Yeg| numerically fitted to Eq. (4.45) for 0.96 THz and to Eq. (4.71)
for 0.80 THz and 1.20 THz, respectively. The tilting angles of the A, modes, with respect to the 2’-axis,

In our case, R‘f“(fO’) is neglected and RY°° means the rotation matrix that rotates a given vector about the global j-axis

(extrinsic rotation case). Further explanation about the rotation matrix is described in section C.
6Since the absorption behavior comes from the imaginary part of polarization, the imaginary part of Eq. (4.45) has to
be obtained by

P.(0)/e0 = X( ) , sin 9+X( ), cos? 6, (4.46)

where the imaginary terms are denoted as Im[P ] = P; and Im[)?(l)] = Xij W for i, j € {2, vy, Z’}. It is noted that the

electric susceptibility x(1) is the same as e = = Im[€]. From this relation, we obtain the imaginary terms from Eq. (4.27)
given by

XJ@= > Li@rirs, (4.47)
ke{Ay, Bu}

where the Lorentzian Ly, is the imaginary part of the complex oscillator term S, defined by

Wp k Tk W
2 2)2 2,27
(Wo,k —w?)? + VW

Ly = (4.48)

The By mode at 0.96 THz for the ||-cut in Fig. 4.10(d) has a period of 7 in the frequency-domain, which can be explained

by Eq. (4.46) by substituting Egs. (4.47) into XE?. However, the fact that the Ay modes at 0.8 THz and 1.2 THz have a
period of w/2 in the frequency-domain cannot be described by Eq. (4.46).
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are obtained as 0; = 228°, ¢ = —120° for 0.8 THz and 0 = —139°, ¢po = —117° for 1.20 THz. The last
equation is fully explained in the appendix 4.2.6.1.

4.2.4 Discussion

We now turn our attention to the origin of the observed THz absorptions. First, the possibility of

1 is excluded by the subsequent temperature

water vapor absorption [93], which occurs at 26 and 58 cm™
dependence of the mode frequency at elevated temperatures. To our knowledge, scientific literatures
regarding seraphinite, or even including most hydrous/anhydrous layered silicates, are very limited and
theoretical prediction is not available for phonon modes. Therefore, we can only compare it with indirect
information from chlorite, which has similar local bonding networks of Si-O and Mg-O in their block-
layered structures. In a chlorite mineral, far infrared absorptions are observed [94] at 120, 140, and
220 cm~!. In addition, inelastic neutron scattering (INS) of chlorite reveals that there is only acoustic

phonon branch below 1.5 THz [95], which can be Raman-active at ~50 cm™?.

The phonon modes of
chlorite can be inferred from the theoretical and experimental results on a magnesium-olivine, forsterite
(Mg2SiOy4). Forsterite is composed of isolated silicate tetrahedra but shares the same local bonding of
Si-O and Mg-O with chlorite. The zone boundary acoustic mode is calculated at 100 cm™! [96] and the
optic modes are calculated at 130, 180 and 250 cm ™! [97]. Therefore, we explain the absorption peak

at 0.96 THz of seraphinite phenomenologically in the context of the phonon-polariton coupled mode. It

0.80 THz
[ )

I T T T T T L—
- 11-cut ,0 0.96 THz -

Effective susceptibility, Im [Yef]

0 90 180 270 360
Angle [°]

Figure 4.12: (Color online) The effective susceptibility y.s of the ||-cut seraphinite is extracted by
Eq. (4.32). x(0.96 THz) for B, mode (blue) is fitted to Eq. (4.45). X (0.8 THz) and xeg(1.20 THz)
corresponding to A, modes (red) are fitted to Eq. (4.71) represented by the red solid line.
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can be understood that the infrared (IR)-active phonon modes orginates from its monoclinic crystalline
structure with the space group of C2/m [35-87].
The dispersion relation can be obtained by considering the relative dielectric function & which is

defined for an applied electric-field E and the induced polarizability P as [98]

!

T (4.51)
When the dielectric function € of Eq. (4.51) is written in terms of the longitudinal and transverse modes

(LO and TO), Eq. (4.51) is reduced to a factorized form of its poles and zeros given by [99]

Sw) = e ﬁ Q%O —w? - ZWFLO (4.52)
N —w? —iwlro,’ '

where € is the high frequency dielectric constant, Qro; (Qro;) and I'ro; (Iroj) are the resonant

frequency and the damping constant of the j-th TO (LO) mode, respectively. By substituting zero for

the angular frequency w of Eq. (4.52) [100], the zero frequency dielectric constant is obtained as
N (2
Q
2(0) = £ = (4.53)
which is the Lyddane-Sachs-Teller (LST) relation [101]. When we assume zero damping in Eq. (4.52),
the Kurosawa formula [102] is obtained as

w) = OOHQLO — (4.54)

QTO - w2
So, the phonon-polariton dispersion is obtained using either Eq. (4.52) or Eq. (4.54) given by

AR W) -

—2 = n?(w) = &(w), (4.55)

where 7 is the complex index of refraction defined in Eq. (4.24) and k(w) is the complex wave vector.
However, since the measured range of frequency is limited to 2 THz, Eq. (4.55) needs correction [84].

When we apply the parameter eqx, defined by

Eexp = € (456)
to the measured data, the modified phonon-polariton dispersion for a single mode is given by
1/2
~ o, % —w? —iwl
(W) = 2 |eaep —1, =% T L0 (4.57)
(&

2 .
QTQ1 - UJ2 — ZWFTOl

The fitting parameter ey, is a dielectric constant measured at the highest frequency throughout a
frequency range from 0.2 to 2 THz.

Figure 4.13 shows the phonon-polariton dispersion curve [w vs. k(w)] (closed circles) retrieved from
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Figure 4.13: (Color online) The Phonon-polariton dispersion of the experimental results of L-cut seraphi-
nite measured at an azimuthal angle of 120 °. The dispersion relation and the experimental data are
indicated with a red solid line and closed circles, respectively. The dispersion relation and the measured
data are plotted with respect to the real parts of Eq. (4.57) and Eq. (4.59), respectively. The Kurosawa
formula is represented with a blue dotted line, which is also computed using the real part of Eq. (4.57)
in the case of no damping.

the measurement of the -cut sample at § = 120°. The real part of %(w) is”

Re[k(w)] = < /n2(w) + k2(w), (4.59)

c

which is shown in comparison with the theoretical guide (red solid line) calculated from the real part of
Eq. (4.57). The Kurosawa formula (blue dotted line) is also computed using the real part of Eq. (4.57)
in the case of no damping. It is noted that (Eexp)l/ 2 can be extracted by \/m ‘w%w‘x’ in
Eq. (4.59), where w™ represents the highest frequency component. In the unit of cm™!, the fitting
parameters are estimated from the measurement as Qro, = 32.5 em™!, Qro, = 32.6 cm™!, I'ro, =
2.74 cm™!, T'o, = 2.67 cm™!, and (geyp)'/? = 2.44 for the L-cut seraphinite. The splitting (0.1 cm™!
= 3 GHz) is about three times smaller than the spectral resolution (10 GHz=1/T and T=100 ps) in our
THz-TDS. Thus, the Qro, and 1,0, extracted through numerical fitting for the resonance at 0.96 THz
should be understood as Qro, = 32.5 £0.17 cm™!, Qpo, = 32.6 £0.17 cm~!. It is noted that Qro, is
bigger than Qro, (Lo, > Qr0,) since € is in general smaller than £(0) by the LST relation for all
the optical phonon modes [23,101,102]. Provided that 1/w is substituted by &, the factorized dielectric

Re[k(w)] = k(w) = %Re[ E(w)] - %,/rﬂ(w) + K2(w). (4.58)
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function of Eq. (4.52) can be expanded for £ — 0 in the form [09]*

Ew) ~e>]] [1 +il'Lo;€ + 0(52)}

j=1
x [1 = iTro,6 +0(¢?)] (4.62)
£—0
By further calculation, Eq. (4.62) is equivalent to”
N
Ew) ~e™ |1+ Z(FLOJ' - FTOj)f} , (4.64)
Jj=1 £—=0

which is the generalized form of Lowndes condition for all IR-active branches induced by Schubert [99,

]. Equation (4.64) for Im[e(w)] > 0 shows that there are the optical phonons with conditions for
T'vo < I'ro as well as I'yo > I'ro satisfying Zj-vzl(FLoj —I'ro;)¢ > 0 [99]. The resonance mode at
0.96 THz of l-cut is expected as one of the optical modes when I';o < I'tg. Therefore, the above
theoretical interpretation based on Kurosawa’s formula with and without the damping terms shows an

excellent agreement with the observed dispersion anisotropy in the THz frequency range.

4.2.5 Conclusion

In summary, we have reported a spectral fingerprint of crystaline seraphinite, a type of gemstone, in
the THz frequency range. In our measurements conducted with THz-TDS, the strong IR-active modes
at 0.80, 0.96 and 1.20 THz in seraphinite have been founded in seraphinite. In particular, the 0.96 THz
mode has exhibited a strong and narrow (Q=8) absorption, comparable to that of the previously reported
0.53 THz mode in the a-lactose monohydrate. The polarization-dependent THz-TDS measurements have

furthermore revealed the birefringence of the investigated crystal which originated from its crystalline

8By replacing 1/w with &, the factorized dielectric function of Eq. (4.52) becomes

N 02 2 . N 2o, I'Lo;
QLO- —w 77'“)1—‘LOJ~ 2'] —1—1 2
= __ .00 pl __ .00 I | w w
8(0.)) =€ Q2 2 il =& —92
II — w2 — ] ] I'ro.
j=1 o, —w? —iwl'To; Jale} T20] _ 1 ;Emo;
w

LA Q€ —1-iToE N 1-03 2 +ilLo;

- ° ]1;[1 00,62~ 1— i1 c JEII 1= 020 & F ilro,€ (4.60)
When w — oo, i.e., £ — 0, this equation can be evaluated as
N —1
Sw) == [T [1 - 930, + iTroy€] [1 - 940,62 + iProyé]
JNl
~e= ] [1 +ilLo € — 920, 52] [1 — o€ + Do, 52] , (4.61)
j=1

which leads to Eq. (4.62).
9The higher order terms than £2 can be neglected since the higher terms than £2 are too small. The dielectric function
of Eq. (4.62) can then be reduced as

E(w) =€~ [1 +i(TLoy — FT01)£] [1 +i(TLo, — FT02)£] X

0
=% [1 +i(l'o; —I'roy )€ +i(T'Lo, — I'ro,)€ + iQM X
= [1+4i(TLo, — Do, )é +i(TLo, — To,)é +iTLos — Trog)é + -+, (4.63)

which leads to Eq. (4.64).

76



monoclinic structure with the space group C2/m, A, (z')-symmetry of the 0.80 and 1.20 THz modes and
the B, (z',y)-symmetry of the 0.96 THz mode. Theoretical interpretation based on Kurosawa’s formula
has shown an excellent agreement with the observed phonon-polariton dispersion anisotropy.

THz absorption lines in solid-state materials are rare. There have been no known spectral lines for
gemstones in the THz frequency range. Gems are often optically superior materials and thus optical
gemology that utilizes visible, near-infrared, UV, and even X-rays light sources, has been established to
study and characterize gems. However, to the best of our knowledge, THz waves have never been used
so far for that purpose. It is hoped that THz spectroscopy may become useful for identification and

characterization of various gemstones.

4.2.6 Appendix

4.2.6.1 The 3rd-order polarization

Since the monoclinic crystal in the space group of C2/m is a centrosymmetric material, the higher
term that follows the linear susceptibility is y(®). The third-order polarization for broadband waves is

represented by [7]

PO W) = e / duw, / din 37 57X (@) By wq) Bi(wn) Bu(w — wy — wa), (4.65)

jkl ngq

where fg’lll(w) = 525331)@1(“” Wq, Wn, W, ) is the third-order susceptibility. Provided that the incident wave is

a monochromatic wave with a single frequency w for sake of simplicity, the i-th component of a possible

nonlinear polarization can be expressed in the form [7]

= 3¢ ZXUM (W) By (—w)Ei(w), (4.66)

gkl

where )Zg’l)d( ) = Xg’,)d(w;w, —w,w) is one of four-wave-mixing processes. The third-order susceptibility

)Zgl)d for space group of C2/m can be expressed as a reduced form with )ZS’,; defined by [104]

Xxit 0 Xi3 0 X5 Xie X1z xis O 0
52(3) = O XQQ O %24 O O O 0 5(/29 %20 . (467)
X311 0 X33 0 Xas X3 X3z Xz O 0

The subscripts m corresponds to the three Cartesian components listed in Table 4.5 [104]. If the third-
(3)

m?

order susceptibility is given by x. /. the applied electric field components in Eq. (4.66) are written as [104]

jkl  xxx yyy zzz yzz Yyyz X2z XXZ Xyy XXy XYZ

m 1 2 3 4 ) 6 7 8 9 0

Table 4.5: Cartesian components corresponding to subscript m [104].

7



Fw:vw
Fyyy
Fzzz
Fyy2+Fy2y+FZyy
szz+ancz+Fzzx
Fzzz+szx+Fzmm
nyz+szy+waz+Fyza:+szy+Fzy;c

; (4.68)

where Fji represents F,, = E;(w)Ey(—w)E)(w).
By using Eqgs. (4.67) and (4.68), the third-order polarization of Eq. (4.66) becomes

Pi(w) =3e0 Y Xeo (@) Fn. (4.69)

By the same analogy described in section 4.2.3.5, the i-th polarization component in the principal co-
ordinates can be obtained by simply substituting m in Eq. (4.69) for j, k, I € {a', ¢/, 2}, where the
(3)

electric field components in F), are given by Eq. (4.41). The imaginary part of x;7;, in the principal

coordinates is a function of #; and ¢; due to inclination to the z’-axis given by

= > L.rirtrir (4.70)
ne{A., Bu}

According to Eq. (4.44), we obtain the z-component of ngi)z denoted as Pz(s) given by

PP /3¢y = Z L;| sin* 0, sin* ¢; sin® 0 + cos® 0 cos* 6 4 6 cos? 0, sin? 0; sin” ¢; cos? O sin? 4 |,
J€{Au, Bu}
(4.71)

where ¢ is zero for the sake of simplicity.
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Chapter 5. THz spectroscopy of the polarization dependence
of the resonant material confined in a sub-wavelength slit

We have used terahertz time-domain spectroscopy to probe the polarization dependence of a-lactose
in the near-field vicinity of a sub-wavelength-scale metal slit. The experimental result shows that the
0.53-THz absorption of this material has an abnormal polarization dependence strongly coupled to the
slit orientation. In particular, the waves polarized with a parallelly-oriented slit do not electrically
interact with the material within a slit extremely narrow compared to the wavelength, which results in
complete vanishing of the otherwise resonant absorption. This phenomenon can be understood in the
context of Bethe’s sub-wavelength diffraction: the far-field wave diffracted from a sub-wavelength-scale
aperture orginates from the magnetic near field and not from the electric near field; thus the measured

E-field in the far-field has no origin from the near-field E-field component.

5.1 Introduction

Recent advances in science and technology involved with terahertz (THz = 102 Hz) frequency waves
have made a broad impact to a variety of research fields including physics, chemistry, material science,
and electric engineering [2,3]. Many applications with THz waves have been also developed in areas
including material characterization, stand-off detection, noninvasive diagnostics, and biomedical sensing.
Biomedical sensing applications are particularly promising because of the unique spectral nature of THz
waves in bio-organic materials [1]. However, acquiring spectral information of biological materials re-
quires micrometer-size spatial resolution which is not simple to achieve due the large wavelength of THz
waves (A = 300 um for 1 THz). To overcome the spatial resolution limited by Abbe’s diffraction of the
freely propagating large-wavelength waves, several methods have been considered: for example, near-
field emission and/or detection [105-107], or sub-wavelength-size material platforms [108-111]. Many of
these methods often use some form of metallic structures in sub-wavelength dimension to confine, focus,
guide or bend the THz wave in the vicinity of the material which could strongly alter the wave prop-
erties of the interacting THz-wave in terms of polarization, spectral phase, and amplitude. So, a priori
understanding of THz-wave interaction with these structures is required for applying THz spectroscopy
to sub-wavelength-scale materials.

As it is well known, the wave diffraction through a sub-wavelength-size metal hole, for example, is
completely different from a case of with a large hole mainly because of the interplay between the cavity
field and edge currents of the aperture [112—115]. At the limit of extreme sub-wavelength-sized aperture
transmission, the diffracted electric field results from effective magnetic dipole radiation [116,117]. Other
examples of sub-wavelength optical phenomena manifesting the vectorial nature of electromagnetic wave
around metal structures include extraordinary light transmission [118,119], strong electric field enhance-
ment [120, 121], diffraction phase shift [122] and anomalous Young’s double slit experiment [123], all of
which are found in the diffraction from a slit or a slit system with sub-wavelength dimensions.

In this paper, we report THz polarization spectroscopy of an organic material kept in a sub-
wavelength-size metal slit. Using a-lactose monohydrate which has strong absorption line at 0.53
THz [38, 124], we investigated the temporal and spectral amplitude changes of the transmitted THz

wave within a slit with respect to the slit width. Experimental results reveal that the spectral response
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of the material is strongly coupled with the polarization state of the THz wave and that the material

does not interact with the THz wave when an extreme sub-wavelength-sized slit is used.

5.2 Experimental description

The experiment was performed using conventional THz time-domain spectroscopy (THz-TDS) [31]
as shown in Fig. 5.1(a). THz pulses were produced from a commercial photo-conductive antenna (BATOP
optoelectronics) pumped by femtosecond near-infrared pulses from a Ti:sapphire mode-locked laser os-
cillator. Measurements were made by laser-gated electro-optical sampling with a 2-mm-thick (110) ZnTe
crystal [21]. The temporal amplitude profile of the THz pulse was recorded to compute the THz spec-
trum [31, 122, 123]. The fabricated slit was placed at the focus of the propagating THz waves in a
one-dimensional 4-f geometry THz beam delivery system comprised of two teflon lenses whose focal
lengths were f = 100 mm.

The sub-wavelength slit with a wedge shape shown in Fig. 5.1(b) was manufactured at the National
Nanofab Center (Korea) to conduct systematic experiments by mechanical actuators with travel length
of 25 mm without a change of a sample. Figure 5.1(b) shows a schematic structure of the fabricated
wedge-shaped slits. A 500 nm copper film was deposited on a 525 um thick silicon wafer of high
resistivity (20,000 Q-cm). Each slit is comprised of 20 mm length with a wedge top of 6 pum length and a
wedge bottom of 60 um length. To put a-lactose (Sigma Aldrich) into the slit, a compound of a-lactose
dissolved in the ionized water was prepared. Candle wax, a kind of hydrophobic material, was used to
confine the compound into an area of 24 mm x 21 mm. Ionized water was evaporated for 12 hours to

completely eliminate the water content. By this method, we could obtain a reference slit and a sample

(a)

Polarizer

g
Subwavelength t I 24 bo
slit Teflon B 00000 C--------2- : .
— lens I 20 mm
Ti : 20 nm—/|<->|
500 nm

(C) Sample slit Lactose

z, o/, E — field

Reference slit

Figure 5.1: (a) Schematic experimental setup. The sub-wavelength-scale slits were located at the focus of
the THz wave. Inset shows the polarization angle defined with respect to the slit direction. The wedge-
shaped slits are consists of identical single slits with a width of d and a length of L. The polarization of
the electric field and magnetic field are parallel to the slit direction for § = 0 and 6 = 7/2, respectively,
where the slit direction is along the slit length of L. (b) The geometry of the fabricated wedge-shaped
pair of slits in the side and front views. The slits are fabricated in copper film deposited on a silicon
substrate. (c) A reference slit and a sample slit obtained by using a compound of a-lactose and water.
A rectangular hole with 10 mm x 20 mm was used to estimate the thickness of spread lactose.
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slit as depicted in Fig. 5.1(c). A rectangular hole with 10 mm x 20 mm in Fig. 5.1(c) was used to
estimate the thickness (ds) of lactose on the slit. The estimated thickness ds is about 200 ym which
was obtained by ds = cAt/(ns — nair), where c is the speed of light, At is the delayed time between the
maximums of the reference and sample signals in the time-domain, ng is the refractive index of lactose
and n,;, is the refractive index of air [125].

From recent research [120-123], it is found that the source of the diffracted electric field through a
sub-wavelength sized slit is related to the slit direction defined by the orientation (L) of the slit’s length
L as shown in Fig. 5.1(a), which is described in detail section 5.3. With the same analogy, we carried
out experiments with slits in both orthogonal (§ = 7/2, E L L) and parallel (§ =0, E || L) directions
of the slits with respect to the THz polarization (E). All the experiments was purged with dry air to

remove water vapor in the THz frequency range [120].

5.3 Theoretical background

5.3.1 Boundary conditions by Bethe

Let us assume that a linearly polarized electromagnetic wave with a wavelength of A for z < 0
propagates along the z-direction toward a metallic slit with a width of d and a length of L located at
z = 0. Then the diffracted field through the slit can be explained by Kirchhoff’s diffraction theory
providing that the width d of the slit is large enough compared with the wavelength A (d > \) [12,27].

We consider a metallic sub-wavelength slit with a width of d and a length of L assuming that d is
sufficiently small compared to L and A (d < L, A). Although the Kirchhoff’s theory fails in the sub-
wavelength region, we can extrapolate the behavior of the diffracted electric field (E field) corresponding
to the slit direction according to the waveguide theory [12,116,122,123]. The waveguide theory predicts
that the E field perpendicular to the slit direction for § = 7/2 can propagate into the slit because the
cutoff frequency is proportional to 1/L. However, the electric field parallel to the slit direction for § = 0
is difficult to propagate by the same analogy [12].! In contrast to the E field, the magnetic field (H field)
perpendicular or parallel to the slit direction is always considered as constant over the slit due to the
boundary condition [116,122,123], which is described in detail below.

Corresponding to the electromagnetic wave theory [12,13], the boundary conditions between two

1Let us assume that a linearly polarized electromagnetic wave with a wavelength of A for z < 0 propagates along
the z-direction through a metallic slit with a width of d and a length of L (d < L) located at z = 0. According to the
electromagnetic theory [12] (in p. 361), TE modes in a rectangular waveguide with inner dimensions L and d are then
induced by the z component of the H field given by

_ mnrx nry
H.(z,y) = Ho cos ( T ) cos <—d ) , (5.1)
which leads to E fields in the direction of x and y given by [12,13] (Jackson pp. 360-362, Griffiths pp. 366-367)
iwp O iwp 0
= ———H, E,=———_—H 5.2
Tt oy T YT 4o T 6-2)
with
2 = pew? — k2. (5.3)
By the boundary condition, the cutoff frequency wmn is then obtained, giving [12,13] (same pages)
2 2
Ymn ™ m n
Wmn = = — + = 5.4
T e Jpme\ L2 d2 (5-4)
The lowest cutoff frequency that occurs at (m, n) = (1, 0) becomes
T 1
wig = ——, (d<K L), 5.5
0="=7 ( ) (5.5)
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Figure 5.2: (a), (b) Red dotted rectangular boxes represent the boundary section for the boundary
condition. Tangential and normal components are in the direction of x and z, respectively.

different media are obtained in terms of their normal and tangential components given by

Tangential components (t): i x (Ey — Ey) =0, A X (Hy — Hy) = K, (5.7)
Normal components (n): - (Dy — Dq) =0, - (Bs — By) =0, (5.8)

where o, K, n are the surface charge density, the surface current and a normal unit vector pointing from
medium 1 to medium 2, respectively.

Let Hy and Ey be the initial H field and E field for z < 0 on the left-hand side of the perfect
conductor screen at z = 0 if there is no hole as shown in Fig. 5.2(a). Provided E¢ and H¢ denote the E
field and H field in the conductor, there are no E field and H field in the perfect conductor, which leads

to the boundary conditions between the conductor and free space as

n X C —0 Eo) = 0, (59&)
(Hc — Ho) -7 =0, (5.9b)

so that
Ey =0, Hy, =0. (5.10)

We therefore obtain the initial electromagnetic field Hy and Eq fields which can be reduced as only

having tangential and normal components, respectively, with respect to the plane of incidence given by

Ey = Eo,, Hy= H. (5.11)

which leads to the conclusion that there is only an E field polarized in the y direction (Ey in Eq. (5.2)) since H, =
Hg cos(mz/L) gives rise to OH,/dy = 0. In other words, the incident E field perpendicular to the slit orientation can well
propagate through the slit due to the lowest cutoff frequency. Note that the lowest cutoff frequency in free space for d < L

is expressed as
T 1 c c
—=7T—x —. (5.6)
Jio L LTI
However, since H, = Hgcos(ny/d) for (m, n) = (0, 1) leads 0H./0x = 0, there is only E field polarized in the x
direction (Fz in Eq. (5.2)), which implies that the E field parallel to the slit orientation is difficult to propagate through
the slit due to the cutoff frequency wo1 = 7/(d\/i€) that is much higher than wio.

wio =
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5.3.1.1 Bethe’s zero-order approximation

As described in the earlier section, the E and H fields for z > 0 become zero if there is no hole
in the screen?, where the field for z > 0 in this case is called as “the zero-order field,” or “the zero
approximation” or “the zero-order approximation” by other researchers [116,117]. We therefore see that
the zero-order approximation satisfies the boundary conditions everywhere on the screen (z = 0) [116].

Let us now assume that there is a small hole with radius of a on the screen as described in Fig. 5.2(b).
Note that the radius of a that is sufficiently small compared to A of the incident field and the thickness
of the screen is sufficiently thick compared to the skin-depth of the incident field.® Since the hole is
very small compared to A of the incident field, the zero-order approximation can be considered as trial
solutions of the E and H fields for z > 0. By Egs. (5.7) and (5.8), we find that boundary conditions in
the hole are given by

left-side of the screen

(5.12)

’
right-side of the screen

left-side of the screen

(5.13)

n n| . X .
right-side of the screen

It should be noted that the field components on the right-side of the screen have to vanish according to
the zero-order approximation, in which leads to inconsistent results such that the field components on
the left-side of the screen in Egs. (5.12) and (5.13) become zero. In other words, there are non-zero fields

at z < 0 and zero fields at z > 0; this gives us discontinuous boundary conditions at z = 0 [116].

5.3.1.2 Bethe’s first-order approximation

In order to eliminate the discontinuity in the hole that occurs from the zero-order approximation,
Bethe added the scattered field (E;, H;) on the left-hand side of the screen and the diffracted field
(E2, Hs) on the right-hand side of the screen [116, 117]. If we treat (E;, Hy) as the scattered field
propagating in the —z direction and (E5, Hs) as the diffracted field propagating in the +z direction
both of which are originating from the origin z = 0 for the sake of understanding [117], we can imagine
that Hy, E; and H,, E5 are induced from the left-hand side and the right-hand side of the screen,

respectively, as described in Fig. 5.3. This assumption by Bethe’s intuition is called as “Bethe’s first-

order approximation” [117]. So, the actual field can be then expressed as
Hy+ H, f <0, Ey+ E; f <0,
H— o+ Hyp forz B o+ £y forz (5.14)
H, for z > 0, E, for z > 0.
From Eq. (5.7), the boundary condition in the hole becomes
i x | By — (Eo+ El)} —0, (5.15)
which leads to 0
By = Egi + B, (5.16)
so that
Es = Eq¢ (in the hole, at z = 0). (5.17)

2The electromagnetic field through the screen becomes zero because of the skin depth.
3See Griffiths pp. 347-348 [13].

83



At z = 0 outside the hole, we also find from Eq. (5.7) that

. (5.18)
= x (BEy — Bc),
which implies that
0
Eoy = Egi + Ey, Eay =0, (5.19)
so that
Es = Ey1; = 0 (outside the hole, at z = 0). (5.20)

screen screen

/7
k?g/

screen

Figure 5.3: Schematic representations for the scattered field (E;, H;) and the diffracted field (Eq, H>)
propagating in (a) the normal direction, (b) the inclined direction and (c) the overall direction (upper
half-plane) from the origin z = 0.
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We then find from Egs. (5.17) and (5.20) that the tangential components of E fields for the trial solution

for Vz > 0, Vz and y can be written as [110]
El:v(xa Y, _Z) = Ezg;(l‘, Y, Z) (5'21)

noting that this equation is even in z and satisfied correspondingly for the y component.
In a similar fashion, the boundary conditions for the normal components in the hole as well as at

z = 0 outside the hole are obtained as follows: In the hole, we see by Eq. (5.8) that

A - {Bg —(Bo + Bl)} —0, (5.22)
which implies that
0
Hy, = Hgy + Hy, = Hy, (in the hole, at z = 0), (5.23)

where B; = p;H; and the relation p11 = ps = 10 in the hole is used.” Furthermore, at z = 0 outside the
hole, we find by Eq. (5.8) that

- [»36'—0(30-5-31)} =0,

0 (5.24)
=n-(By— Bg¢)
which becomes 0
Boy = Bon+ Bin, Bon =0, (5.25)
so that
H,,, = Hyy = 0 (outside the hole, at z = 0), (5.26)

where B = pjH; with 11 = po = po. By analogy with Eq. (5.21), we find by Eqgs. (5.23) and (5.26) that
the normal components of the H fields for the trial solution for Vz > 0, and Vz and y can be written in
the form [116]

Hi,(x, y,—2) = Ho.(x, y, 2). (5.27)

Since we treat (Ei, Hj) as the scattered field propagating in the —z direction and (E,, Hs) as
the diffracted field propagating in the +z direction with respect to the origin z = 0, the trial solution
Eq. (5.21) will make® [116]

Hy,(x, y,—2) = —Ha(x, y, z) for Vz > 0, and Va, y (5.28)
and Eq. (5.27) will further make [116]
Ei.(z, y,—2) = —Fa2.(z, y, 2) for Vz > 0, and Vz, g, (5.29)

where these results is easily seen if E; and FEs are symmetrical and H; and Hy are anti-symmetrical

with respect to the xy plane perpendicular to the z axis [117].

41 = po means that the material is a non-magnetic material.

5Tf we treat (E1, H1) as the scattered field propagating toward the —z direction and (E2, Hz) as the diffracted field
propagating toward the 4z direction from the origin (z = 0) for the sake of understanding, we can see by the boundary
condition of in Griffiths [13] pp. 343-344 (or Griffiths 3rd edition p. 389) that the scattered and the diffracted E fields are
in phase as described in Fig. 5.3.
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According to Bethe’s first-order approximation [116], all the boundary conditions for E; and H; are
satisfied if Fy satisfies the boundary condition Eq. (5.20) and if we put the trial solutions with relations
in Egs. (5.21), (5.27), (5.28), and (5.29) for z > 0. Note that (E;, H;) and (E2, H>) are utilized
to eliminate the discontinuity in the boundary conditions occurring at the edge of the hole [116,117].
Since the boundary conditions should be continuous in the hole (i.e. at z = 0), we need to consider the
boundary conditions for the tangential components of the H fields and the normal components of the E
fields in the hole. By comparing the tangential components of H fields in the hole, we get

i x [Hs — (Ho + Hl)} :Kfo (5.30)

which leads to
Hy, = Hy + Hyt (in the hole, at z = 0). (5.31)

By comparing the normal components of E fields in the hole, we also find that

A [Dg — (Do + Dl)] — " (5.32)

which becomes
Es5, = Egn + Eqy, (in the hole, at z = 0), (5.33)

where D; = ¢;E; and the relation €; = €3 = ¢g is used.
We therefore find by substituting Eq. (5.28) into Eq. (5.31) that® [116]

Hoy = Hoy + Hyy = Hoy — Hayg, (5.34)

which implies that .
Hgt - éHOt. (535)

We also find by substituting Eq. (5.29) into Eq. (5.33) that [110]

E2n = EOn + Eln = EOn - E2n7 (536)
so that .
Pan = 5 Fou. (5.37)

Since Egs. (5.35) and (5.37) are regardless of the shape and size of the hole, so we can apply this condition
to the case of a single slit as well as a hole. For this reason, the constant H field is regardless of the
slit direction when the incident field is a transverse field [116,122,123]. Tt is noted that Hy and Ey are

considered as constants over the hole since the radius of the hole is small enough compared to A [110].

5.3.2 Bethe’s diffraction theory by a small hole

5.3.2.1 Maxwell’s equations by Stratton

When the incident H field Hj is perpendicular to the slit direction, the diffracted E field can be

understood by the radiation occurring from the magnetic dipole moment at the far field zone [12,116]. In

6Note that Eqgs. (5.21), (5.27), (5.28), and (5.29) are defined for z > 0. However, since the boundary conditions z = 0
should be continuous in the hole, the relations for z > 0 and z = 0 obtained by the boundary conditions should coincide
at z = 0.
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order to explain the the magnetic dipole radiation, Bethe used concepts of the magnetic charge density as
well as the magnetic current density from J. A. Stratton’s paper [116,127]. According to Stratton [127],

Maxwell’s equations can be written in the forms [116,127]

B
v.E="2 VXE:—{vaLa], (5.38)
€ ot
Pm oD
.Hzi H: _— .
v o V x T+ 5 (5.39)

where p and J are the electric volume charge density and the electric volume current density. Note that
pm and Jy, represent the magnetic volume charge density and the magnetic volume current density.

If there are no electric current and no electric charge, Maxwell’s equations become

OB
VEZO, VXE:—|:Jm+at:|, (540)
D
v.H-" vxm-22 (5.41)
7 ot
According to electromagnetic theory [12,13], the B field and E field can be expressed in terms of the
electric vector potential (A) and the scalar potential (®) as
0
B=VxA E=-Vo— oA (5.42)

In a similar fashion, the D field can be written by introducing the magnetic vector potential (Fy,)
as [110]
D =V x Fy, (5.43)

which automatically satisfies
V-D=V-(VxF,)=0, (5.44)

so that V- E =0 in Eq. (5.40). By substituting Eq. (5.43) into the H field in Eq. (5.41), we obtain

0
VxH= a(v X Fu), (5.45)
which implies that
0
Vx|H—-—F,|=0. 5.46
SLer (5.46)
By introducing the magnetic scalar potential (®,,) in analogy to the electric potential, we then ob-
tain” [110]
H—QF =-Vo H=-Vo +9F (5.47)
o~ " B oo™ '

Noting that the magnetic scalar potential or the magnetic vector potential satisfies the wave equation

in analogy with the electric case [12,127], we find by substituting E into D/e, B into pH, and multiplying

"See Jackson [12] p. 239.
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the resulting equation by € in the curl-E in Eq. (5.40) that®
0

By substituting Eqs. (5.43) and (5.47) into Eq. (5.48), we obtain

0 0
F,)=—eJy —pe— |-V, + —F,|, A4
V x (V x Fy) € ueat[v +(‘3t } (5.49)
which implies that
7] o?
cFy) — 2Fm = =Pm| — =5 Fm — m> .
V(V )—V \Y {ueat } Heom eJ, (5.50)
so that
V2F,, — 68—2F =eJn+V|V-F, - Do (5.51)
m 1% atg m — m m 1% 8t m| - .
We therefore find by considering the Lorentz condition that © [12]
2
V2F,(x, t) f,ueme(a:, t) = eJm(z, 1), (5.52)
where 5
- F, — ue=—®,, =0. 5.53
v pes (5.53)

We also find by substituting Egs. (5.47) and (5.53) into the divergence-H in Eq. (5.41) that

Pm 0
- = T (I)m 7Fm
A LN

0 0?
= - 2(I)m v : Fm = - Qq)m 7(I)m .54
V28 + (V- F) = =V’ + i€ B, (5.54)
which leads to the result
0 pm (T, t)
2 _ m 9

Provided the charge density and the current density given by pm(z/, ¥) = pm(2’)e” ! and
T (@', 1) = T (x")e ™ [12] (Jackson p. 407) varies sinusoidally with time, the retarded solutions for

Egs. (5.52) and (5.55) can be written through the use of the Green function as (detailed in section A.5)

Do (@, ) = %/di”x’—[”m(w/’;)/"]“’t, (5.56)
Fu(@,t) = i / deL_e*’m(;'vt’)het’ (5.57)

VX E= [J + 8B}
N T
D 1o}
& VX —=—|J —H]|,
€ [ " +u8t ]
which implies that Eq. (5.48).
9See Jackson [12] p. 240.
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which further makes

1 m ! ! re
bt = 1L [ lnle

o 5.58
_ 1 /d3x/pm($,)e_Wt sly — t—E ( )
" dwp R v /)]’
. a1
€ T
F - _ = 3 7 m 9 ret
"0 /d ) i (5.59)
__t / @)™ T, (R |
 Arw R v /|’
so that
O (x, t) = ! /d3x’ pm () ﬁe_w (5.60)
m bl [47_[_#] m R bl .
iwd
__[£ 3,/ n €Y wt
Fo(z, t) = [M} da! T (@) e, (5.61)

where R = |R| = |z — |, = is the field point, @’ is the source point and pe = 1/v%. Note that [ ] is
presented only in SI units. If the magnetic current and charge density exist only on the surface, we find
by replacing Jy, with the magnetic surface current density K,, and p, by the magnetic surface charge

density 7y, that [110]

O, (x, t) = /dzx’ N () ﬂeﬂ‘“’t (5.62)
m b) [471_/11} m R ) *
Fu t){e}/dQ'K(’)eikRm (5.63)
m w? - 47'[' x m T R & b *
which lead to the results
1
Bul@) = / o’ (@) $(@, @), (5.64)
Fulz) =~ [ ] / P Ko@) oz, o) (5.65)
I8
with R
e’L
o(@, @) = —-, (5.66)

where k = w/v.
By using these results, the explicit expressions for the magnetic and electric fields can be obtained.
We then find from Eq. (5.47) that

H(z,t) = -V, + 8F

—uutv d2 / I i d2 /K eikR 8 —iwt
/“”7‘“ R47r/x ()R'[ate}

—zwt eikR )
V/de’ N (T R —&-sz d’z’ Kn(z') et

1

R
1 .
47T d2 ! {uv[nm(ml) (b(wam,)] + iwe Ky, ¢(:13,:B/)} et (567)
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Noting that the gradients V are taken with respect to the field point x, we find that the integrand in

this equation becomes [116]

V(@) é(@.2)] = (@) Vo(x.2'), (5.68)

which leads to the H field, yielding

H(z,t) = % /dzx' {—inm(m’) Vo(z,x') +iwe Ky, qb(:c,:c’)} et (5.69)

so that we obtain the explicit expression for the H field, giving [110]

H(z) = ﬁ /d2£E/ {iw[e] K, ¢(z,z’) - ﬁnm(a:’) ng(m,a:’)}, (5.70)

where the integral is to be performed over the area of the hole.
In addition to the H field, we also find from Eq. (5.43) that

D(x,t) =V x Fy,

— iv X d2 / K ( I) eikR —twt

T T in T BmlE ) TR

= 74i /dzx/ V x [Kn(x') ¢(x,x’)] e, (5.71)
T

Noting that the gradients V are taken with respect to the field point , we find that the integrand in

this equation becomes [116]

0
V x [Kn(z') ¢(@,2")] = Vo(z, ") x Kun(2') + ¢(,2") V x K (@)
= —Kpn(@') x Vo(z,z'), (5.72)
which leads to the D field, giving
D(z, t) = f/d%’ K (2') x Vo(z, 2" )e " (5.73)
T
which implies that
D(x) = 4i /d%’ K, (z') x Vo(x,x'). (5.74)
T

Furthermore, we find by substituting eE into D that the explicit expression for the E field is given

by [116]

1

B(e) = / P Ko@) x Vo(a, '), (5.75)
T

where the integral is to be performed over the area of the hole.

Hereafter,  and r represent an any position vector on (z, y, z) and (x, y), respectively, or

x = (z, y, 2),

r=(r y)=(x y, 2=0).
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5.3.2.2 Continuity equation

The continuity equation can be obtained by taking the divergence of V x F in Eq. (5.38), giving

V- (VxE)=-V- [Jmﬂ(gﬂ
Pm
- VJ, QM (5.76)
ot
)
==V du = o

Noting that V-(V x E) = 0 is the identical equation, we find from Eq. (5.76) that the continuity equation
is given by [110]
0
V- JIm(x, t)+ apm(w, t) =0, (5.77)

which implies that!'®

V- I () = iwpm (), (5.79)

where Jy,(z, t) = Ju(x)e ™! and pn(x, t) = pm(z)e . Analogous to Eq. (5.79), the continuity
equation for the case when the magnetic current and charge density are located on a surface can be
written as

V- Kp(x) = iwny (x). (5.80)

5.3.2.3 Magnetic surface charge density 7,

We now recall from Eq. (5.70) the expression for H field, giving

1

H@) = - [’ {ioe K of@a’) = Lnn(e) Volaa') | (5.81)

which can be rewritten in free space as

2
Hiz) = ZTT P’ {Z-‘*CJEO % oz, x’) — ﬁnm(:c') V¢(a:,ac')} (5.82)

_ % /d%’ {z‘ko KC (@, 2") — (@) Vo(a, w')} ,
where € = ¢ in free space, kg = w/c and pu = g for the non-magnetic materials. Here, since the radius a
of the hole is sufficiently small compared to the wavelength \ of the incident wave, the phase difference
between x on the screen at z > 0 and «’ in the hole induced by the phase retardation e**f
very small, so the retardation (e?*f) can be neglected.'! We find from Eq. (5.80) that K is of the order

wna, since it is easily seen that if K, = 2K, then V- K,(x) = V - 2K leads to B%K = WMy, such that

in ¢ may be

K = iw [ nmdz, where the integral is integrated over the boundary of the hole. Furthermore, we find

10

V-Jm(x, t)+ %pm(w, t) =V - Jm(x)e” @t 4 pm(w)%e_i“t

= e WV - I () — iwpm(z)] = 0, (5.78)

which implies that Eq. (5.79).
11Tet us assume that &1 is the phase difference between x1 on the screen at z > 0 and a:'l in the hole. Similarly, let d2
be the phase difference between @1 on the screen at z > 0 and @/ in the hole. Since the radius a of the hole is sufficiently

small compared to the wavelength X of the incident wave, @] is nearly the same as @}, which leads to the same phase
retardation. In other words, the phase retardation can be neglected.
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from Eq. (5.82) that

K, wna
[kocﬁﬁl = ko%(b = k%nasb, [ﬁmv¢] = 77%7 (5.83)
order order
which implies that the first term of Eq. (5.82) is of the order of (koa)? times the second term of
Eq. (5.82) [116]. The first term of Eq. (5.82) can thus be also neglected. We therefore find that Eqs. (5.64)
and (5.81) then reduce to'? [116]

1 2,/ / 1
Py () = 477# d”z’ mm () W7 (5.84)
2,/ ’ 1
H@) =~ [ @) V() = - Va) (5.85)

Since the tangential component of H should be constant over the hole according to the boundary

condition in Eq. (5.35), Eq. (5.85) can be written in the form

1
5 Ho. (5.86)

(Hz =) Hy(x) =
where Hj is a constant vector tangential to the hole.!® If ®, () is given by [110]

1

1. N . N .
—§($H0w+yH0y) @Tr+gy+zz)

1
= —i(HoM + Hoyy), (5.87)

where Hy, and Hy, are constants with a relation /HZ, + Hgy = Hy, we then see from Eq. (5.85) that

17,0 0 0
Do(@) = — = |2 4 22 (Hg; H, )
Ven(@) 2 [xax Ty ”aJ 02+ Howy
1
= 2 (JZHQI + yHoy) = 51—?[07 (588)
which leads to Eq. (5.86) 4
1
H(x) = -V, (x) = §H0. (5.89)
Using this result, we therefore find from Eq. (5.84) that
O (x) = 1 d*z’ nm(x’) oz, x’) = —EHO T (5.90)
dTp ’ 2 ’

which tells us that ®,, as well as H can be obtained when we know the magnetic charge density ny,.
Since ®,,, V®,, and H; are tangential to the hole, the results given by Egs. (5.87), (5.88), (5.89), and

12H field may be considered as the magneto-static field by the charge density nm [116].

13See below Eq. (5.37).

MFrom Eq. (5.85), the tangential component of the H field is the tangential component of the gradient of ®,. Since
Hy is only composed of tangential components, the gradient of &, becomes a vector with tangential components only.
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(5.90) can be rewritten as

1
(Hz =) Hy(r) = §H07 (5.91)
1 1

(I)m(’l") = —§H0 r = —i(HQxﬂj‘ + Hoyy), (592)

1 1
Vn(r) = _i(iHOx + yHoy) = —§H0, (5.93)

1
Hi(r) = —-V®,(r) = §H0, (5.94)
_ 1 2,/ ’ AN _}

Dy, (1) = o /d ' mm(r’) o(r,r’) = 2H0 r, (5.95)

where &’ = r’ is the source point over the hole and & — 7 represents the field point on the zy plane.'?

A constant H field in the hole can be produced by an ellipsoidal magnetic dipole distribution having
the same direction of the magnetic field [116]. The magnetic charge distribution on an ellipsoid having a
height of h along the z-axis as in Fig. 5.4(a) will be identical to the surface charge distribution provided
that h is sufficiently small [116]. The cross section of the ellipsoid in the xy plane will be a hole with a
radius of a. We then find that the equation for the ellipsoid with h < a is given by

S S (5.96)

which implies that the ordinate of the ellipsoid in Fig. 5.4(a) can be expressed as

12 12 h
2 =h 1—96—2—y—2:fxm2—(x’2+y’2), (5.97)

a a a

where (2, y’ ,z’) represents a source point. By taking the divergence of both sides of Eq. (5.97), we

obtain
V' = %V' [aQ (2 + 1/2)}1/2
~a a0 o)
= gr’% [ — 2]/ (—2)r = —f’Z\/azrl_im, (5.98)
where 72 = 22 + 32 and the cylinderical coordinates are used. We thereby find from Eq. (5.98) that

the gradient of z’ make a vector in the direction of #/, 7.e. the normal direction to the surface of the
ellipsoid. Since the electric surface charge density ¢ = P - 7 is proportional to E - 7,'S we thus deduce

that 7y, is proportional to the equation given by [116]

H() -’

@) o Ho - V'Va? =% = — 21, (5.99)
where ' = #'r/. The magnetic charge density can then be obtained by determining a proportional
constant C, to yield
HO -’

, _— —_—
M (1) = Cm'

(5.100)

15These results come from Eq. (5.92) because Eq. (5.92) is satisfied through the substitution & — = due to the tangential
Hy field comprised of two dimensional components.
16See Jackson [12] p. 153 and Griffiths [13] p. 153 (Griffiths 3rd edition pp. 167-168).
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(a) / (b)

Surface
charge density

Figure 5.4: (a) The magnetic surface charge density 7y, over the hole. (b) Representation for the integral
in Eq. (5.101).
By substituting Eq. (5.100) into Eq. (5.95), we find that

1 Hy v’ 1 1
Int =C— [ d*2’ =-
. 47m/ v L/aQ—r’Q} |r =7 2

where &’ = 7’ is the source point over the hole. By introducing p = |r — r

Hy-r (5.101)
| = |7’ — 7| and the angle 3

between two vectors r’ — r and 7, we obtain [110]
H, p=H,-(r' —7)= Hypcos(a — f3), (5.102)

where « is the angle between & and Hy. All the parameters are illustrated in Fig. 5.4(b). Through the
use of a change of variables, the area element in Eq. (5.101) can be expressed in terms of p and 5 as
follows: d?z’ — dj dp p. We then find by a change of variables and substituting Eq. (5.102) into the
left-hand side of Eq. (5.101) that [116]

HO r’ 1
Int = d*x’

oL /27r i /p(B Hy - r + Hopcos(a— ) 1
Aty a? =’ ’

m P(B) Hy-r Hypcos(a — B3)
—c— [ 4 d 0 0P . 1
047{"“/ B/O P |:‘/CL2 — 2 + Va2 — 2 (5 03)

Let us now consider in detail the situation in Fig. 5.4(b). The two integrals in Eq. (5.103) can be
solved by integration along a whole chord such as RS [116]. We find from Fig. 5.4(b) that [116]

2

a2 — 2 :azi(onQJrﬁ?) :(a27®2)7ﬁ
=05’ -QT =+ - &,
QT =¢=QP +PT =rcosB+|r' —r|=rcosfB+p, (5.105)

(5.104)
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where s = QS is the half the length of the chord and & = QT goes from —s to s. By using a change of
variables in Eqgs. (5.104) and (5.105), we obtain

[ Hy-r _’_Hopcos(a—ﬂ)]

1
s 1 T
C’m [/ dg Hy-r /Sd§*_£2+HO/O dg cos(afﬂ)[sdf *52],

where fO% dB [y dp — [y dB [°, dE. Here the first integral with respect to ¢ can be solved by taking
& = ssint such that d¢ = scost dt, which gives t = —7/2 for £ = —s and t = 7/2 for £ = s. This leads

(5.106)

to the result

1
scost dt

/ \/752 /_W/z m

w/2
= / cost dt / ges’fdt —_—
—7/2 1 — gin?

™ (=m) _
R (5.107)

In a similar fashion, the second integral with respect to & can be solved by taking t = s? — €2 such that
—2¢ d§ = dt — £ d¢ = —(1/2)dt, which gives t =0 for £ = —s and t = 0 for £ = s. We thus find from
Eq. (5.105) that

¢ p (" &—rcosp
V- ST =g
S é‘ 1
:/_sdf T—Q_TCOSﬁ _Sdgi_gz
0
=— | —dt — —rcosf d¢ LZ—FTCOSB. (5.108)

Vi Ve

The integral in Eq. (5.106) can therefore be solved to obtain

_i T . # i _ ° L
Int—47w _/0 dpg Hy r{/_6d§ \/ﬁ}—’—HO/o df cos(a 5){/_sd§ 52—52}1

:% -77/0 ag Ho-r—ﬂ'Hor/O dg cos(a—ﬁ)cosﬂ}
= % _Ho.r/o ag —HOT/O dp cos(a — B) cosﬂ} , (5.109)

where the last integral is evaluated as'”

/7r df cos(a — B)cos B = -/7T dg {(cosacosﬁ + sin asin ) cosﬁ]
0 0

:/ dg {cosac0525+sinasinﬂcosﬁ]
0
0

= cosa/ dg coszﬂ+sinal/d@m: gcosoz, (5.110)
0

17See Egs. (C.70d) and (C.70f) in section C.
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yielding

C T C
Int:—7T Ho-r/ dﬁ—EHorcosa Zi{ﬂHo-T—IHQTCOSOé
aTp 0 2 dTp 2
o o a2 (5.111)
- T [ﬂ'Hor cosa — IHor cos oz} = 77T—Hor Cos .
dmp 2 [Amp) 2
We hence find from Eq. (5.101) through Eq. (5.111) that
C 1
Int = W%Hm’ cosa = §HOT cos «, (5.112)
yielding
[47pu]
C="3, (5.113)
so that we find from Eq. (5.100) that the magnetic surface charge density nm is given by
’ [rp] Ho-r'
N (r") = — e (5.114)

7'('2 A /a2 _ 7'/2 :
5.3.2.4 Magnetic surface current density K,

Let us recall from Eq. (5.80) that the expression for the continuity equation induced by the magnetic

current and charge density can be written as
V- Kn(x) = iwnm (x). (5.115)

Since the magnetic current and charge densities are confined in the region of the hole, Eq. (5.115) can
be explicitly expressed through the substitution @ — r’/ as V - Ky, (7") = iwnm(r’). We then find that
the both sides of Eq. (5.115) become

0 0
V . Km('l",) = i‘lf + :l)li . (.i'/Kw/ + :&/Kyl)
Ox oy’
(5.116)
B A
iw (,’,l) - —iw [47T:U’] (HOI’ + HOy’) ) (‘%/l./ + g,y/)
T o 2 a2 — 172
i oo ol (5.117)
— iw WU] 0z'T 0y’'Y
72 Va2 —r2 Vaz—r2]|’
which implies that'®
0 . [Amp] Hogra!
— Ky = — _— 5.118
&L" xT 1w 71_2 W’ ( )
9 _ . [mu] Hoyy'
@Ky/ = —1 71'2 W (5119)

18The reason for obtaining Eqgs. (5.118) and (5.119) from Egs. (5.116) and (5.117) is as follows: If f(z’, y’) is defined
as

f(xlv yl) = a? — 2’2 — y/2v

we then find that ,

—x 0 —1
S f(@, y) = 4

a2 —z2 —y2 Oy

!

8 / /
%f(way)* 7{12_9:,2_2/2-
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Integrating both sides of Eq. (5.118), we get

’
dx’ - r
/a2 _ x/2 _ y/2’

where Hy,s and Hy, are constants. By taking a? — 2> — y’> = ¢ such that —2z'd2’ = dt, the integral is

4
KI/(;U/, yl) = —zwi[ 7:7:/1‘] H()m’

. (5.120)

evaluated as'

4
K, (1‘/, y/) _ iw[ '/Tﬂ] Hoy \/m7 (5'121)

T2

and correspondingly for the y' component in Eq. (5.119). We thus find that the magnetic surface current

density is given by [110]

Kin(r') = #' Ky + § Ky
. [4rpy] . N
= i o =2 = 72 (i How + ' Hoy)
4
il wzu] Va2 =72 H,. (5.122)

™

5.3.2.5 Additional magnetic surface current density K,

We recall the expression for the electric field in Eq. (5.75), giving

E(z) = % /d2x' K, (r') x Vo(z,r’), (5.123)

where @’ = r’ is the source point over the hole. Since K, in Eq. (5.122) is of the order waHy, V¢ is of
the order 1/a? (¢ ~ 1/r so that %¢ ~ —1/r?), and the integral Eq. (5.123) goes over an area of order
a?, one may find that the resultant order obtained by substituting K, in Eq. (5.122) into Eq. (5.123) is
[waHg) x [1/a?] x [a?] = waHy, which is inconsistent with the order of the E field since the E field is of
the same order as Hy [116]. For this reason, Bethe added an additional magnetic surface current density
K, that satisfies the boundary condition in Eq. (5.37) and does not contribute to the magnetic charge

density ny,. This can be mathematically expressed as [110]
V.- K.(z) =0, (5.124)

where this equation can be further expressed as V - Kq(r’) = 0 through the substitution & — 7’ since
K, should be tangential with respect to the hole [116].

Since the normal component of E should be constant over the hole by the boundary condition in
Eq. (5.37), Eq. (5.123) can then be written as

(Ban =) Balw) = 5 Bo = 5 (:Bo), (5.125)

where Ej is considered as a constant, yielding the constant Ey. Since the position vector is defined as

19

4 1 1
Ko (!, ) = —iw T /dt =1
s

4 Hy, 1 4
:iw[ T 02!~ =3+l :iw[ 7I—'UJ}Hosc’ a? —x'2 — y'2

w2 2 1 w2
2
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x = (z, y, 2), we obtain?’

1 1
V x |:4E0 X iL’:| = §E0 = En(iL') (5126)
We then find from Eq. (5.43) that the the vector potential is in the form?*

Fo(z) = EEO X . (5.128)

Here, the right-hand side of Eq. (5.128) can be evaluated as

Eoxx=|0 0 Eo| =(-1D""2(~Eoy)+ (=)' 2g(=Eox) + (=1)"3.0 = - Eoy + ¢ Eoz, (5.129)
r Yy =z

which implies that the vector potential Fy, lies within the xy plane perpendicular to the z axis; in other

words, the vector potential Fy, is tangential to the hole. Note that the following equation is evaluated

as
Ty 2

Eyxr =10 0 Eo=(-1)""2(=Eoy)+(-=1)"**§(=Eoz) + (1) -0 = =2 Eoy +§ Eox, (5.130)
z y 0

which gives the same result as in Eq. (5.129). For this reason, Eq. (5.128) is expressed through the
substitution * — r as
F,(r)= %Eo X 7. (5.131)

From Eq. (5.65), the vector potential Fy, induced by the magnetic current density K, can be written as

Fu(r) =~ [ ] / Py’ Ko(r') —— (5.132)

lr— 7’|’
where the retardation term e %
then find by substituting Eq. (5.131) into Eq. (5.132) that

is neglected due to the same reason described in section 5.3.2.3. We

1 1
=-FEyxr, (5.133)

1
Int = —— [ &?2 K.(r') ——
. / . e(r)|r—r| 4

[47]

where K, can be decomposed into its x and y components as K. = 2K? + §KY by noting that K,
is tangential to the hole. Using Eq. (5.129) and comparing both sides of Eq. (5.133), the integral in

201f Ey = 2Ej is a constant vector in the z direction and = = (z, vy, z), we obtain

V x (Ep x @) = Eo(V - x) — M’ﬁWfO(EO V)

E[(Aa—i_)\a—i_/\a) (A +A+A)} {AE (A6+A8+Aa)}w
= T— — 4+ 22— |- (zz 22)| — |2Eo - | 2— — + 22—
0 ox Y 0z vy 0 ox yay 0z
0
=FEo(1+1+1) ona—(:i:a:Jrg}eréz) =3Eg — Epz2 =2 2Ey
z
which implies that
1 1
V x |=Eg x = —Ey.
{4 0 w} 2"
21We find from Eq. (5.43) that
Fy,
E=Vx—. (5.127)
€

By comparing this equation with Eq. (5.126), we obtain Eq. (5.128).
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Eq. (5.133) is decomposed into its vector components as

1 / 1
- d2 / K:c I
[47] / T Be |r — 7’|

1 , 1
—— | d?¢ KV —
[47r]/ R e—

The following equations can then be obtained by multiplying both sides of above equations by a factor

E

1
7 Eoy, (5.134)
1 X
Z 0Ly

(5.135)

of 2, yielding

1 272 / 1 1
— [P | =— K| —— =_F, 5.136
o [ g 5 | = o
1 272 , 1 1

|| KY| — =_F 5.137
[ (G |y = o (5.137)

where each equation is familiar to Eq. (5.101). Recall that the magnetic scalar potential induced by 7,

has been represented as

1 [, [ Ho-v' 1 1
O, (r) = ﬁ/d x [m Ir— | = §H0~7'. (5.138)

Assuming H is tangential to the x axis in Fig. 5.4(a), Eq. (5.138) becomes

1 Hox' 1 1
— [ &?2 = - Hyz. 5.139
—~ [ } e = oo (5.139)

By analogy with Eq. (5.139), the vector components of K, in Egs. (5.136) and (5.137) can be written

as [110]

272 / Eoy’
— K = —— 5.140
[47_(_] e /7042 2 ) ( )
27T2 ’ E()LL'I
_ KY = —— 5.141
[477] e /7(12 — 7‘/2 ( )
which implies that
o _ Ar]  Eoy
Ke —_ ﬁﬁ, (5.142)
’ [47('] E(].'I/J
KY = o U (5.143)

We therefore find by combining Eqgs. (5.142) and (5.143) that the additional magnetic surface current
density K, is given by

K. (r')=#K" + yKY
[47] 1

- ﬁm(i’&)y’ — i/ Eoa'). (5.144)
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We thus find by introducing Eq. (5.130) into Eq. (5.144) that??

[47] 1
Ke(’r,) = ﬁ\/ﬁ'r, X EO. (5.145)

5.3.2.6 Total magnetic surface current density K,

The total magnetic surface current density can be obtained by combining Eqs. (5.122) and Eq. (5.145)
yielding
Ktotal =K. +K

e T
=W 2 a® —r' HOJF?WT x FEy.

(5.146)

5.3.2.7 Diffracted E field by a small hole

We recall from Eq. (5.75) that the E field induced by the magnetic surface current density can be
obtained by replacing K, with K%! giving

1
Bla) = o [ @ Ky lo') x Vola, ). (5.147)
T
where .
oz, r') = %, (5.148)

r’ is the source point over the hole, R = | — 7’| and k¥ = w/v. In the far-field zone (i.e. || < |z|), we
find from Eq. (A.82) that R in the integrands of Eq. (5.123) can be expanded as®*
x-r 1 1 =z

R=|lz—7r|~r— — = — 5.149
@ —r|=r r R 7"+ r3 ( )

where || = r and |7'| = r’. The Green function ¢ is then evaluated as

ikR 1 Lt 1 . !
oz, ') = ¢ ~exp {zk <r _rr ﬂ =~ exp [zkm r ]
r r r

12

R r
~ %e“” {1 + (—ikx ;ﬂ’“'> ¥ } = ¢o(r) [1 ik #- r'] (5.150)
with
o(r) = %e“”, (5.151)

where # = x/r is the unit vector in the direction of @. If R is the unit vector in the direction of the

vector (xz — 7’) defined by R = (x — r’)/|z — 7’|, V¢ in Eq. (5.147) becomes

ettt kR 1 1 ikR wrp O (1 L~ 0 (ikr
— ot - — ) — ot R— [ = —R— )
\% e V<R>—|—RV(6 )=e 8R<R)+R 8R(€ )
L -1 i L .
=R R — ik zReZkR%:Rikqﬁw, r), 5.152
R? R R

22Ey x r = —#Egy + §Fox, which implies that » x Eg = £Eoy — §Foz.
23Eq. (A.82) is described in section A.5.
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where the unit vector R can be reduced by Eq. (5.149). Noting that ' < x leads to  — v’ ~ x yields

. z—7r r
so that
Vo(z, v') =7 ik oz, ') =7 ik do(r) [1 ik # r']. (5.154)

We then find from Eqgs. (5.150) through (5.154) that Eq. (5.147) reduces to [116]

E(z) = [4171'] /d2 PKRR Y ik ¢(x, ) = —[i];] /de’ 7 x Kl () gz, )
T‘i X/d2l‘/ Ktotal )Qb(ma ,’,/)
L ik 2 1 petotaly, s oAt
——rmx/dx K (r)qbo(r)[l—zkr-r] (5.155)

By substituting Eq. (5.146) into this equation, we obtain

4 1
O e A SR

[
fi /d2 ’l 47;“ Va2 —1r?2 Hy ¢o(r) —k [d] %T' X (- 7") o (r) Eo

[4] 272 a2 — '

E(x) =

_ Z{g‘g\/ﬁr x Eo ¢o(r) + ku [‘ff] VaZ — 172 (f. r')qso(r)HoH,

(5.156)

where we only treat the real part of this equation to calculate the E field since the real part of the E

field is the only physically meaningful quantity. For this reason, we obtain

Re E(zx )anw[ ) x Ho /d2 WaZ = i l d%’\/(’;'%/)/zr'xEO], (5.157)

where Hy and E are constant vectors and ¢q is a function of r = |x|.
By taking a® — r'2 = ¢ such that —2r/dr’ = dt, the first integral in this equation can be evaluated in

terms of the polar coordinates as

27 a
Int 1 = /dzx’\/ a? —r'2 = / dQ’/ dr' ' /a2 — 1?2
0 0

2
=T (5.158)

0 (_1) o 1/2 1 i1
=21 [ ~dtVt=n dt t'? = ;——t>
a 2 0 0 3

2 54’1

By using a change of variables, the second integral in Eq. (5.157) is evaluated as

~ 27 a ~ ’
_ 2 ./ (T ) rl) ’ _ / /aw; (T T ) ’
Int 2 = d°x ﬁ'f X EO = / do /0 dr’ r 2776/27’ X EO

2m
/drﬁ/ do' (7 -v') r' x By = /drﬁ/ do' (7-#) # x Eo, (5.159)
—r —

where v’ = #'r’. Figure 5.5 shows the representation of the integral with respect to ¢’ in Eq. (5.159).
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Figure 5.5: Representation of integration in Eq. (5.159). « is an angle defined as Z(#, £”) and ¢ is an
angle defined as Z(#',#").

We find from Fig. 5.5 that vectors # and #' can be described in terms of the Cartesian coordinates

(2", ", 2") as
7 = 3" cos§ + ¢’ (—sin ), (5.160a)
7 =2"sina + 2" cos a, (5.160Db)

yielding
77 =cosd sina. (5.161)

From Egs. (5.160a) through (5.161), the integral with respect to 6" in Eq. (5.159) becomes?*

27 27
IntS:/ da'(f-f-/)f’xEoz—on/ do’ (7 -+')
0 0

2T

= —Fy x dd§ cosd sina (2" cosd — 9" sind)
0
2 27 0
= —FEy xsina|z” ds cos?6 — " ' €08 0 sin §
0
=—Fy x &'m sina, (5.162a)

which can be expressed in terms of # by noting that Ey = 2Ey = 2" Ej is in the 2" direction, giving
Int 3= —72"Ey x (2" sina+ 2" cosa) = —nEq x 7, (5.162b)

where 2”7 x 2’ = 0. We thereby find from Eq. (5.162b) that Eq. (5.159) is evaluated as

a 13 a 3
_ / T N o ’ T
Int 2=—-nm ) dr W‘EO Xr= 7TEO xXr ) dr —a2 = 7'/27 (5163)

24The Cartesian coordinates (z'/, y”, 2'") can be obtained by rotating the original coordinates (z’, v/, 2’) such that &
in (z”, y”, 2'") has the same meaning as ¢’ in (z’, y’, 2’), which can be described by the Jacobian.
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where the integral in this equation can be obtained by taking r’ = asint such that dr’ = acost dt, to
obtain?®

z a3 sin® t
s =0 dt cost—2
—-r 0 a? —a’sin“t

3 adsin’®t z z 1 — cos2t
dt aeost——— :a3/ dt sin3t:a3/ dt sint | ————
/0 aeost 0 0 2

a3 z z a3 z 1 12
= — / dt sint—/ sintcos2t| = — / dt Sint—*/ (Sin?)t—sint)
2 0 0 2 0 2 Jo

s % 1 3 3 3 oy H
= % l2/0 dt sint — 5/0 dt sin3t] = % —§cost +§§c0s3t
0 0
a® 3 1 a4 2 .
= — [ =Z(=1)+=(=1)) = —= = =% .164
2(2( )+ 5! )) 23 3¢ (5.164)

Hence, we find by substituting (5.164) into Eq. (5.163) that the second integral in Eq. (5.157) can be
solved to obtain

2
Int 2 = —§a3E0 X 7. (5.165)

Finally, we find by substituting Eqgs. (5.158) and (5.165) into Eq. (5.157) that the diffracted E field
obtained by Eq. (5.157) is written as [110]

Re E(x) = fkwg%] Bo(r) Ho%ﬁa?’ + f;j; Bo(r) x (2;@3130 X r)
3
- f%d)o(r) X [2w[u]H0 + k(E x f)}, (5.166)

which can be written in the unit of Gaussian units (CGS) by replacing w with w/v = k as [110]

k‘2 3
Re E(x) = 7 3::

do(r) x |2Hy + By x 7| (CGS). (5.167)

5.3.2.8 Diffracted H field by a small hole

We recall from Eq. (5.70) that the H field induced by the magnetic surface current density and
charge density can be obtained by replacing K,, with K'©%! giving

H(z)=HY(z) + H?(z), (5.168)

25Note that cos 2t = cos?t — sin®t = 1 — 2sin? ¢ such that sin? ¢t = 1=6082t,
Furthermore, we find by subtracting sin(a — b) from sin(a + b) that

sin(a + b)=sinacosb + sinbcosa
— sin(a — b)=sinacosb — sinbcosa
sin(a + b) — sin(a — b)=2sinbcosa

which implies that
sin(a + b) — sin(a — b)
5 .

cosasinb =
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where

HY(x) = [i} /de’ iw K% g(x, x'), (5.169a)
H(x) = [47;4 /de’ (") Vo(x, x'). (5.169b)

In the far-field zone (i.e. |r’| < |x|), we find by using the same method used in section 5.3.2.7 that

HO(2) = | ] /d%’ iw ( \/7’2H + —71 X EO) do(r) |1 — ik 1]

Arr 72 Va2 — 12

- [i} /d%’ [&M‘;"]W Hy ¢o(r) Hw[;;g\/cﬂl—iw?r/ x Eq ¢o(r)
vk T2 0 Hy o) b0 (r) + b % X Bq (7-7') ¢0(T)]

-] [ l_w@ﬁ o oo(r) + ko Bt By (7 07) ()

2712 /a2 —

+ i{kw2 [4772N] a2 —r2 Hy (7-1") ¢o(r) —&-w@%ﬂ x Ey q’)o(r)H ,
T T
(5.170a)

and

Hy - Ho -
ﬁ( )+“ﬁ ¢0( )/dzx/ h (5.170Db)

By taking the real part of H field, we obtain

. .
H(Q)(m):%/d%:’ Hoy-r fc;ﬁo(r)[lfikf-'r’]
m
2
2

=7 —¢o(r) [ d*a’

L
™

Re HY(z) = [i} /dzx' [—WQ@WHO do(r)

(5.171a)
[47] 1 , .
+ kw 27‘(2WT XEo(T'T)¢0(T),
k2 Hy-r
Re H? (z) = 7 p%(?n) &P ﬁ(r 7). (5.171b)

Here the first and second integrals in Eq. (5.171a) corresponds to Egs. (5.158) and (5.159) (— (5.165)),

respectively. So, the expression for Re H") becomes [116]

Re HY (z) = [w] 2 Hy oo /d2 "Va ’2+k:w )/de' Mr' x Ey

= _M2a3w2 ¢o(r) Ho — Hagkw bo(r)Eo x 7

=221 60lr) (200 Ho + kEo x 7). (5.172)

104



Figure 5.6: Representations for integration in (a) Eq. (5.171b) and (b) Eq. (5.182b). « is an angle defined
as Z(#, 2”) and § is an angle defined as Z(#', Hp). A unit vector 7 is parallel to the constant H field
vector Hy.

Eq. (5.171b) can be rewritten in terms of the polar coordinates as

R “ r . .
Re H® () =7 F‘lso(r)/o dr’ VaZ _ 2 /0 do" Hy - #' (7 - '), (5.173)

where v/ = #'r/. The integral in Eq. (5.173) cannot be handled before, but can now be solved by using
the similar method as in section 5.3.2.7 to calculate the second integration in Eq. (5.157). Figure 5.6(a)
shows the schematic representation of the integral with respect to ¢ in Eq. (5.173). By analogy with
Eq. (5.162a), we find that the integral with respect to 8" in Eq. (5.173) is evaluated as

2m 2
Int 5 = 9’ Hy-#(7-+#)=Hyp- do’ #'(f-#)=Hy-3"wsina, (5.174a)
0 0

which can be expressed in terms of # by noting that Hy = mh.Hj is in the "y plane as

Int 5 = mmHy - (2" sina+ 2" cosa) = 7Hy - 7, (5.174b)

where i - 2 = 0. By substituting this equation into Eq. (5.173), we obtain

Re HO (@) =+ = g0(r) (1, -7 /0 ar e - = (5.175)

We therefore find from Eq. (5.164) that
Re H? (z) =7 2];?3 bo(r) (Hy - 7). (5.176)

Through use of the following relation®°
7 x (Hyg x 7#) = (- 7#)Hy — 7 (7 - Hp), (5.177)

26Note that @ x (b x ¢) = b(a-c) — c(a-b) .
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the expression for Re H?) becomes

B 2k2q3
3

Re H (z) o (r) (HO — 7 x (Hp % f)). (5.178)

By combining Egs. (5.172) and (5.178), we find that the diffracted H field can be expressed as

Re H(x) — _%‘:'[e] o (r) (ZM[N]HO + kE, x r) + 2’?;“3 o (r) (HO — 7 x (Hy % f))
2wia? kwa?®
- €] ¢o(r) Ho —

(€] do(r) Eo x 7

3 3m
2]6203 ( ) 2k2a3 ( ) A 5 ( % A) ( )
+ (73 r) Hy — ¢o(r) T H r
3 0 0 3 0 0 ’

which can be written in the Gaussian units (CGS) by replacing w with w/v =k as [110]

2k2a3 k2q3 2k%23 2k2a3 R ~
Re H(z) = — 3 ¢o(r) Ho — ¢o(r) Eg x 7+ ¢o(r) Ho — ¢o(r) 7 x (Ho x 1)
T 3T 3T 3T
k2a3 o 2k%a3 . .
=3, do(r) Eg X 7 — . odo(r) 7 x (Hog X 7)
k2a® R R N k2a® N . .
=3 oo(r) (21“><(H0><7’)+E0><7’>f73ﬂ_ ¢o(r) (ZT‘X(H()XT)*TXE())
k2 3
_ 37‘: do(r) 7 x (2H0 7 — EO) (CGS). (5.180)

5.3.2.9 Magnetic dipole moment

Analogous to the electric case, the magnetic dipole moment M can be written in terms of its

magnetic charge density as [116]
m = /d2x’nm(r') r’ (5.181)

From Eq. (5.114), the magnetic dipole moment in the hole can be written as

. 7
m= —[47T2M] /dzx’ (HO " ) r, (5.182a)

T aQ _ ,,1/2

which can be rewritten in terms of the polar coordinates as

[47”” /27r ’ ¢ , , Hy- r’ ’
m=— do dr' r'——=1r
2 0 o /a2 — 2

m
[471-:[1’} “ / T/ o / ’ !
2 ; dr Tr— A do" Hy-r' r
[471-/”1’} ¢ / TIB o / Al Al
- 2 o dr \/ﬁ o df HO T, (5182b)

where ’ = 7/, The last integral with respect to ' can be solved by using the similar method used in
section 5.3.2.7 to calculate the second integration in Eq. (5.157). Figure 5.6 shows the representation
of the integral with respect to 8’ in Eq. (5.182b). Using a notation similar to that of Eqs. (5.160a) and
(5.160b), we find from Fig. 5.6 that

A~/

7 = 3" cosd + §"(—sind), (5.183a)
2", (5.183b)

m
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which yield
Hy - # = Hyin - 7' = Hod" - (55” cosd + ¢ (— sin 5)) = Hycosd. (5.184)

From this equation, the integral with respect to €’ is evaluated as

2m 2m
Int 6 = / do’ Hy-# # = / d§ Hgcosd (:%” cosd + 9" (—sin 6))
0 0

27 0

2m
= H, i:”/ dd cos?* 6 — g s0sind | = Ho#"'m = mHy. (5.185)
0 0

By substituting Eq. (5.185) into Eq. (5.182b), we thus find from Eq. (5.164) that the magnetic dipole

moment is expressed as [ 10]

g [0, " 7 P R S R
71'2 o dr \/ﬁﬂ'Ho—— . H() o dr \/ﬁ——[llﬂ'ﬂ}giﬂ_Hoa . (5186)

m = —

5.3.2.10 Electric dipole moment
By introducing Eq. (5.186) into Eq. (5.167), the E field can be expressed as
Re E(x) = —#k%¢o(r) x {—2H0a3} + 7k ¢o(r) x (1E0a3 X r)
3m 3T
= —7E2po(r) x m + 7k2 o (r) x (;Eoﬁ X r) (CGS). (5.187)

The electric surface dipole moment is defined as [12]

p= /d%x’o(r’)r’, (5.188)
where o is the electric surface charge density defined as
oc=P-n, (5.189)

where P is the polarization defined as P = xE (CGS). We then can easily see from Eq. (5.188) through
(5.189) that the electric dipole moment is of the order Ega3. We hence conclude from Eq. (5.187) that

the electric dipole moment in our case can be deduced as [110]

1

3 Eyad®. (5.190)
Y

p

The electric dipole moment in Eq. (5.190) is also obtained by expressing Eq. (5.166) in the SI units

yielding the same result.

5.3.2.11 Relation between diffracted H field and diffracted E field

The expressions for the H field and E field are

Re H(x) = —k;f do(r) 7 x (2H0 X — EO)(CGS), (5.191)
ka3
Re E(@) = -~ —6o(r) x (QHO + Ey x r) (CGS). (5.192)
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Here it is easily seen that
x (7 x Hy) = (f-Hy) 7 — (¢-7) Hy=17+ (f- Hy) — Hop. (5.193)
Using this equation, we obtain

P x [fx(foo)]:fx[f(f-Ho)}—foO

— (7 Ho) #x7 f x Hy = —# x Ho, (5.194a)
which implies that
P x [r x (Hy x f)} = x H. (5.194b)
Similarly, it is also easily seen that
P x (7 x Bo) = (7 - Ey) — E. (5.195)
This equation further make
P x [r x (7 % EO)] — —F x By, (5.196a)
which implies that
P x [r x (Ep x f)} = x E,. (5.196b)

From Egs. (5.193) through (5.196b), the expression for the H field in Eq. (5.191) becomes [116]

k‘2 3
7 x Re H(x) =

do(r) 7 (Qfx(Hoxf)—fxE(J)

_ k23¢0()[%X(fx(Hofo—fx(fxEo)}
k,23
- ¢o()[2fo0—fx(fxEo)}

- _f"’; do(r) x [2Ho+ By x 7| = —Re E(x) (CGS). (5.197)

Similarly, we can obtain the expression for the E field in Eq. (5.192) as [110]

k'2 3
 x Re B(®) = 5go(r)i x |27 x Ho +7 x (Eo x 7)]
= k;cf do(r) {272 x (7 x Ho) + 7 x (f x (Eo x f))}
- k;f do(r) [% X (7 x Hy) + 7 x B
k? 3

- [27’  Hy + EO}
k2 3

[ 2H, x 7 + EO] — Re H(z) (CGS). (5.198)

We therefore find that Eqgs. (5.197) and (5.198) satisfy Maxwell’s equations for plane waves [116].

108



5.3.2.12 Diffracted waves in the radiation zone

When the incident waves are transverse, the normal component of the E field is zero, which leads to
Ey = 0. For this reason, the expressions for H and E fields in the far-field zone are given in accordance
to Egs. (5.191) and (5.192) by

2k%a? . R
Re H(x) = — 3 do(r) # x (Hg x 7) (CGS), (5.199)
T
2k2a3
Re E(x) =7 3 ¢o(r) x Hy (CGS), (5.200)
T
which can be rewritten in the SI units as
92 2.3
Re H(z) = — ]; © bo(r) 7 x (Ho x 7), (5.201)
T
2ka®
Re E(x) =7 3 ¢o(r) x wlu]Hy. (5.202)
T

Furthermore, E and H fields are expressed in terms of the magnetic dipole moment as?”

k? 2
Re H(x) = ——¢o(r) 7 X [ —[drp]—— Hpa® | x f]
[47T2u] < 3m ) (5.203)
= [4]:1_#] 7 X (m X f) (bO(r)a

vk w

ko (o)

Re E(x) = —
(5.204)

= 7@ X m ¢0(T).

5.3.3 Diffraction by a sub-wavelength slit

According to Bethe [116], Egs. (5.35) and (5.37) obtained by the boundary conditions are regardless
of shape and size of the hole. We can thus apply this condition to the case of a single slit as well as a
hole. For this reason, the constant H field is regardless to the slit direction [116, ,123]. Recall that
we can deduce from the waveguide theory that the electric field perpendicular to the slit direction can
propagate through the slit due to the low cutoff frequency. However, the electric field parallel to the slit
direction is difficult to propagate according to the same analogy. The E field inside the slit thus exhibits
a strong polarization dependence. Therefore, each case of the slit direction perpendicular to either the
H field or E field is physically interpreted as E field reducing case [116,123,128] or the E field enhancing
case [111, , ,128]. The normal component of the E field in the hole is neglected when the incident

field is a transverse field [110].

5.3.3.1 E field parallel to the slit direction: |-case

When the incident H field Hj is perpendicular to the slit direction (H L L), the diffracted E field

can be thought of as the radiation originating from the magnetic dipole moment at the far field zone as

27Compare these expressions with equations in Jackson [12] p. 411.
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a function of wavenumber k = w/c = 2w/ given as [12,110]

2 .
H(r)= 47?#0 n X (m X mn) 7exp£zkr)’ (
5.205)
2 .
E(r) = —Zi A x m Lpff]”),
7

where m and n are the magnetic dipole moment and a unit vector in the direction of the field point 7,

respectively. The magnitude of the field point and the speed of light are denoted as r and ¢, respectively.

5.3.3.1.1 Magnetic surface charge density in a sub-wavelength slit

A constant H field in the slit can be produced by an ellipsoidal magnetic dipole distribution having
the same direction of the magnetic field [116]. The magnetic charge distribution from an ellipsoid with
a height of h along the z’-axis will be identical to the surface charge distribution provided that h is
sufficiently small [116]. The cross section of the ellipsoid in the z’y’ plane becomes approximately a
rectangular slit with width d on the z’-axis and length L on the y'-axis as shown in Fig. 5.7. Analogous

to Eq. (5.96), we find that the equation for the ellipsoid with d < L is given by

.%'/2 y/2 Z/2 _
@22 T weE T e

which implies that the ordinate of the ellipsoid in Fig. 5.7 can be expressed as

1, (5.206)

h /2 y'? L \/ 2 42
= 21— - =SSy 5.207
: 2\/ @22 (@22 dVa TV (5207)
so that
h [d?
LY 2
o\ (5.208)
So, we find from this equation that the ordinate (z-axis) of the ellipsoid for d < L is proportional to
Vd?/4 — 2’2 [123]. In a similar fashion to Eq. (5.99), the magnetic surface charge density n can then be
x, x’

/
Z, 2

Magnetic surface
Charge density

Figure 5.7: The magnetic surface charge density n over the slit.
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expressed as?®

n(z', y')=CHy -V’

iz Hy o'
JE —a2 | =m0 22 (5.211)
4 a2 2
4

where C' is a proportional coefficient and Hy = #'H, since we assumed that the initial H field is
perpendicular to the slit direction [12,116,123]. The coefficient was obtained by the following two steps.
First, it is need to calculate the infinitesimal H field 0 H induced from the magnetic volume charge

density p at the infinitesimal displacement 2’ located at (z — z’) as in Fig. 5.8, giving
v.oH = 2 (5.212)

where p(x) = p(a’)é(x—a’). After applying Gauss’s law to Eq. (5.212) assuming that the slit is wrapped
by a Gaussian cylinder (V) with a closed surface (S) whose a radius is  — 2’ along the y-axis as shown

in Fig. 5.8, we obtain

. 3x:i 32 oz
/Vv SH d [MO]/d px), (5.213)

which becomes

/SéH -f da = [Tlo] /d3x' p(z’), (5.214)

Figure 5.8: The Gaussian cylinder in the slit.

28By taking the divergence of both sides of Eq. (5.208), we obtain

d? o 0 0 d?
’ IR | I P N o 9 a” e
V|: 4 v ] [1833’+y8y’+z0z’] 4 v

1 [ d2 - Sl
=2 -(Z —2?) (-2)=-——nZ (5.209)
2 4 % _ g2

[N

Since Hj is a constant vector perpendicular to the slit direction, i.e., H 1 L, we find that H = 2’ Hy, which leads to

d2 -y H, /
n(z', y') o« Ho - V' || — — a2 | =2"Ho - (&) ___Foo (5.210)
4 \/§ o \/%2 a2
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where p(x) = p(2’)é(x — x’). The volume integral can then be evaluated over the closed surface given
by

/5H-f7,da— / dy/ dx’ n(z',y), (5.215)
S 3 E

where the volmue charge density was defined as p(x’) = n(z’,y’) 6(2'). n is a constant in dz’ and the
infinitesimal area (7t da) over the Gaussian surface is nda = # r d¢ de = #(x — ') d¢ dx in which ¢ is

the azimuthal angle of the Gaussian surface. Using this relation, Eq. (5.215) is calculated as®’
!/ 1 /
0H(zx —a') 2r L=— L 6z’ n. (5.218)
Ho

Second, the H field induced from the magnetic charge density over the whole z’ range is obtained. The
H field in the Gaussian surface can be retrieved by integrating Eq. (5.218) over the z’ from —d/2 to d/2
given by [123]

C s , Hy o'

H=—— dx , 5.219
QW[/LQ] -4 (SC — ) % — 2 ( )

where H is 1/2 Hj since the H field in the slit is half of the initial H field described in Eq. (5.35).
When calculating Eq. (5.219), we conducted integration over the optical axis (xz = 0) for the sake of

simplicity [123]. After some integration, a constant C' was determined as g as follows®’
HO '
’oo
(' y') = ol - (5.224)
a2 _ 2
4
29The left-hand side of Eq. (5.215) becomes
27
/5H nda—/réH Py — y)dd)d:r—(xfx)éH/ dd)/ dr = (z — ') 6H 27 L. (5.216)
Furthermore, the right-hand side of Eq. (5.215) becomes
L sz’ L sz’
1 2 2 1 2 2 1
—/2 dy'/ : , dz’' n(z',y) = —n /2 dy'/ : , dz’ = —nLéx’. (5.217)
[po] J-L s (o] * J-L — sz’ (0]
30
1 c [ Hy o/
H=-Hy= —7/ o (5.220)
2 2m[po] -4 (z —a') dTZ g2
which implies that
d
1 C 2 T
= dy! ——— (5.221)
2 2m[po] /¢ (w—w’)\/%—za
where Hy is a constant. For the optical axis (z = 0), this equation becomes
d d
1 c /5 , ! c s, 1
- =— T = de! —. (5.222)
2 2m _d 0 2w /,4 a2
[to] J—d (e 2y L o] J-d [ _ pr

By taking z’ = %sint such that dz’ = gcost dt, we find that t = /2 for ' = d/2 and t = —7/2 for 2’ = —d/2. The
integral in Eq. (5.222) can then be evaluated as

d
cost dt ———

d = x

2 1 2 d 1 2
/2 dx’ T :/2 - / —cost dt —— :/2 dt = . (5.223)
-4 y/dj—m’g z2 \/ 2 gin2¢ _%2 7COSt -z

Therefore, we find by comparing both sides of Eq. (5.222) that the constant C' equals [uo].
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5.3.3.1.2 Magnetic dipole moment in a sub-wavelength slit

We derived the surface magnetic charge density n from the ellipsoidal magnetic dipole distribution.

From 7, the magnetic dipole moment m can be calculated as | 13t

)

m:/dx’ dy' n(z',y') 2’
S

L d

2 2 Hy z"? T

= (o] /L dy | do’ dzo == [go] d*L Hy, (5.226)
-3 -3 T

where the magnetic dipole was interpreted in the direction of the z’-axis since we assumed that 7 is a
function of ' with no y’-dependence. We find that the dipole moment m is antiparallel to the initial H
field Hy as expected by Bethe [116].

5.3.3.1.3 Diffracted E field by a sub-wavelength slit when E; || L

Therefore, the diffracted E field with harmonic time dependence exp (—iwt) by a small slit is*?

2 rdN2 i(kz — wt
E(z, )= E = 1( ) Zo L 7 x Hy M, (5.227)
8 \\ z
where Zy = \/po/¢€o is the impedance of free space [12,116,123]. The diffracted E field is tangential to the

conducting screen. From Eq. (5.227), we concluded that the diffracted E field through a sub-wavelength
sized slit is proportional to (d/A)? [116,123], which is different with the case when the slit direction is

perpendicular to the E field.

5.3.3.2 E field perpendicular to the slit direction: |-case

When the incident E field Ey is perpendicular to the slit direction, the E field diffracted by a small
slit can be thought of as the radiation from the electric dipole moment and by the ordinary diffraction

explained by Kirchhoff’s diffraction theory [12,123].

5.3.3.2.1 Diffracted E field by a electric dipole moment

The E field from the radiation by an electric dipole moment is equal to the H field of a magnetic
dipole m in Eq. (5.205) with the substitution m — p and py — €y given by
k2 exp (tkr)

E(r) = Tmeg n X (p X n) — (5.228)

31The integral with respect to 2’ can be solved by taking ' = % sint such that dx’ = %cost dt, which gives t = 7 /2 for
2/ =d/2 and t = —7/2 for 2’ = —d/2. We thus find that

™ d g
d % 22 z 2 5 cost
2 % d? d?
= —/2 dt sin?t=2 T =T% (5.225)
4 J_ 4 2 8

where the relation in Eq. C.70e is used.

2
32Note that k = 27/X and cuo = 4/ 6::30 = ‘:—g = 7.
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where p and n are the electric dipole moment and a unit vector in the direction of the field point 7,

respectively [12,116]. The continuity equation is defined as
V- Ko(r') = dwne(r’), (5.229)

where K, and 7, are the electric current density and charge density, respectively, and ' = (2/, ') [12].

By multiplying " to both sides of Eq. (5.229), we obtain
! [V : Ke(r’)} = iwr'ne(r"). (5.230)

By integrating both sides of this equation with respect to the source points, Eq. (5.230) becomes

/r’ (V- K.) d*' =iwp, (5.231)
s
where
p= /r/nc(r’) d*r! (5.232)
s
is the electric dipole moment, S is the boundary surface and ' indicate and the source point [12]. Here

the left-hand side of Eq. (5.231) can be evaluated by integration by parts as®3

/r’ (V- K,) d*' = /Ke d*r’, (5.236)
S S

yielding
/ K, &' = —iwp. (5.237)
S

Therefore, in terms of the electric surface current K, , Eq. (5.228) is slightly changed to**

E(’l") _ k4i0 eXP Zk?" 3 [/K d27’, X n] (5238)

where Zy = \/€o/po is the impedance of free space and w = kc is used, which implies that the electric
field is induced by the current [12,122,123]. By the vector identity, the vector terms in Eq. (5.238)

R x l/K >’ xn] = (Aon) /SKe a*r' — [n/SK d%’], (5.239)

where K, is in the same direction of the incident E field. Within the spherical Gaussian surface at the

becomes

33 An integral can be evaluated by integration by parts as

[1d do=to- [ gz (5.233)

For example, if J is an one dimensional current density, we obtain

/J d %B/:c (%) dz, (5.234)

where the first term should be zero due to the physical reality. Similarly, if J is a three dimensional current density, we
find that

/J d3x = f/z(V -J)d3x. (5.235)

34Note that k = w/c and —— EOC /52# = 60 = Zo.
0
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Figure 5.9: Schematic geometry including a Gaussian sphere with a Gaussian surface (S) on the edge of
the slit when Ey L L.

edge of the slit as in Fig. 5.9, K and the initial E field Ey have a relation induced by Gauss’s law, giving

]{E - h da = 9, (5.240)
S 0

€

which leads to

A= 9 (5.241)
€0

where @ is the total electric charge in the closed Gaussian surface (S=A). With harmonic time dependence
e~ the E field can be expressed as Eg(x, t) = Eo(x)e~ ™. By differentiating Eq. (5.241) with respect

to time ¢, we then obtain

0Fy 10Q
A— = —— 5.242
ot e Ot’ ( )
which further makes OF X
t : o
7(’;3:’ ) _ —iwEy(z)e ™" = P (5.243)
where 190
K. =-=-—2> 5.244
A Ot ( )
is the surface current density. So, the surface current density K, is obtained, yielding
K.(x, t) = —iwegEo(x)e ™", (5.245)
which implies that
K.(x) = —iweg Ey(x), (5.246)
Therefore, K, and the initial E field Ey have a relation
K —iweg B E
) _ —iwaokhle) __; Eo(@) (5.247)
[Ke(x)] | —iweo Eo()] | Eo(x)|

in accordance with Gauss’s law [122]. Provided the second term in Eq. (5.239) vanishes when 7 is normal

to the conducting screen®® (i.e. the optical axis), we find by substituting Eq. (5.247) into the first term

358ince 7 is normal to the screen and surface current by K is in the screen, we find that

n - surface current by K = 0.
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in Eq. (5.239) that the E field of Eq. (5.238) with harmonic time dependence exp (—iwt) can be written

as [122]
Bl Hamplitr =l [

K.(r")
Eo(’f',)

Eo(r"). (5.248)

By Ohm’s law, the magnitude of K, is also proportional to the induced E field E; (K. = cE;, 0 = ¢;
is the conductivity) since we assumed that the screen is a perfect conductor [12].°¢ The integral term
over the source area (S) can be simplified at the optical axis with substitution (z, y) = (0, 0) and
(', ¥') = (0, 0). Then the integral becomes just a surface integral over the source area. The E field in

the optical axis can be obtained, giving®”

E(z t)=

a1 Z (d)LeXp [i(kz — wt)] ‘g;((o

=0 (3 - 0)> ‘ Eo(0), (5.250)

A
where the origin was denoted as 0. It is known that the E field perpendicular to the slit direction is
strongly enhanced in the slit when the slit width d is small enough compared with the wavelength of A
of the incident E field [111, 112]. The relation between the incident E field Ey and the induced E field
E; was resulted by [111,112]

’go((g))’ oc g. (5.251)

Therefore, in the optical axis, the E field radiated by the electric dipole has no dependence with d/A,
yielding

E(z, t) = 8 L Eo(0) M, (5.252)

where § is a proportional coefficient [123].

5.3.3.2.2 Ordinary transmitted E field

Using the same parameters in Section 5.3.3.1, the E field diffracted by a slit at the far field zone
when FEy L L can be also explained by Kirchhoff’s diffraction theory as

. . _ ot
B, 1) = - M/d%' Eo(z', i, 2 =0) exp {ikr " } : (5.253)
T

2m r S

where the oblique factor is 1 and the theory is also described in section A.10 in detail.>® In the optical

axis, the integral term becomes a simple surface integral over the source area. The ordinary diffracted

36Here, the conductivity of the metal is considered as a nearly constant c1. See Jackson [12] p. 312.
37In the optical axis, the integral becomes

Z i(kr — wt Ke(r' Z i(kr — wt K,
E(r,t) = kZo exp [Z( r-w )] /dZT’/ o(r’) Eo(r') = kZo exp [Z( T-w )] e(O)’ Ey(0) / a2
4T r S Ey(r’) 47 r Ey(0) S
. a L
_ kZo exp [i(kr — wt)] ’ e(0)’ EO(O)/2 da’ / 2 ay
47 r Ey(0) -4 -z
kZ i(kr — wt 0
_ kZo exp [i(kr — wt)] ’ o )‘ Fo(0) d I, (5.249)
4 r Ey(0)
which leads to Eq. (5.250).
38See Jackson [12] p. 482 in which we find that the oblique factor becomes 1 when 6 or ' is zero (i.e. in the optical

axis).
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E field in the optical axis can then be obtained, yielding>®

exp [i(kz — wt)] .

E(z, t) = —i (é) L Ey(0)

5 (5.255)

From Eq. (5.255), the Kirchhoff’s solution gives the E field of the order proportional to (d/\).

5.3.3.2.3 Diffracted E field by a sub-wavelength slit when E, | L

Therefore, the total diffracted E field in the optical axis can be written by a summation of the terms
in Egs. (5.252) and (5.255) as

(5.256)

5.4 Results and discussion

The polarization dependence of the diffracted E field through a reference sub-wavelength slit can be
summarized in such a way that the amplitudes of the diffracted E fields in the |-case and 1-case have
dependence with (d/\)? and d/), respectively. However, the average field amplitude A in the slit with
respect to the slit width d should be considered in order to compare the amplitude behavior for both
cases. If the slit thickness is sufficiently small compared with the slit width d, through use of Egs. (5.227)

and (5.256), A for both cases can be represented as

d
] 2 for ||-case,
G EW)] o (5.257)

1/ d>
Sl & _
pi 52+ 2 for L-case,

where dl is the line element along the slit width d. Equation (5.257) is valid for our case since a slit

I
£
|

thickness of 500 nm is about ten times smaller than the minimum slit width of 6 um. Therefore, one
can may conclude that the amplitude of the diffracted E field through the reference slit shows different
tendencies as a function of the slit width d as below: ZH o d, A} o< 1/d for a given frequency and
B> 1.40

In the presence of a resonant material confined in a sub-wavelength slit, the E field parallel to the

slit orientation does not electrically interact with the resonant material within the slit, which is expected

39The integral in Eq. (5.253) can be evaluated in the optical axis ((z', ¥') = (z, y) = (0, 0)) as

’
ik ToT

/d2r' Eo(z', o, 2/ =0) e 7 :/d2r/ E(0) :ED(O)/d2r'
S S S

d L
= EO(O)/Zd da’ / 2L dy' = Eo(0) d L. (5.254)
-2 -2

40For | case,

2 2 1/2 2
52+i_é 1 ii :é 1 1 df
d 22 d 22 32 d 242 22
B, 1d pB
= =4+ —— ~ — { 1l and d < A, 5.258
it g lrf>ladd< (5-258)
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Figure 5.10: Average field amplitude of the measured transmitted THz waves at 0.53 THz through
the reference slit with respect to the relative slit thickness of d for |-case (black, closed circles) and
L-case (gray, closed rectangles). Inset shows average field amplitude in near-field zone for ||-case (black,
open circles) and L-case (gray, open rectangles) confirmed by the FDTD simulation. All the red and
black solid lines represent fitting curves described by Egs. (5.227) and (5.256), respectively. Note that
measured average field amplitudes are normalized by a factor with the limitation for the 1-case.

to result in complete vanishing of the otherwise resonant absorption since the H field does not interact
with an electrically resonant material. The theoretical model explained in section 5.3.3 describes the
behavior of the E field in the far-field zone using a sub-wavelength slit without a confined sample. In
order to understand the origin of this model, the near-field distribution of E field in the sub-wavelength
slit should be considered. To verify the field amplitude in the sub-wavelength slit,the numerical study
was carried out by two-dimensional finite-difference time-domain (FDTD) analysis over the simulation
area of 300 um x 1600 um of which the slit thickness was 500 nm and the slit width was in a range from
5 pm to 100 pm.

Figure 5.10 shows the average field amplitude A of the measured transmitted THz waves through
a reference slit at 0.53 THz as a function of the slit width d for ||-case (black, closed circles) and L-
case (gray, closed rectangles), where the relative slit width corresponds to an actual slit width ranging
from 6 pm to 60 pm. Inset shows the average field amplitude in the near-field zone as a function of the
silt width for the ||-case (black, open circles) and L-case (gray, open rectangles) computed by the FDTD
simulation. All the red and black solid lines in Fig. 5.10 are obtained by the theoretical model described
in Eq. (5.257). The measured average field amplitudes are normalized by a factor with the limitation
for the 1-case. With verification by the FDTD analysis, we find that the behavior of the computed field
amplitude illustrated in the inset of Fig. 5.10 is well in accordance with Eq. (5.257), which implies that
the diffracted E field through the sub-wavelength slit in the far-field zone comes from the near-field zone.

To verify our expectation for the |-case and L-case in the presence of a resonant material in the
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slit, the absorbance « is obtained via the measured transmission in the frequency range from 0.1 THz to

2.0 THz as _
Ey(w)

a(w)=—In Fore)

: (5.259)

where ES and Eref are the transmitted THz electric fields with and without a-lactose, respectively. The
extracted absorbances explained in Eq. (5.259) for the ||-case and L-case are plotted as a function of the
relative slit width in Figs. 5.11(a) and Fig. 5.11(c), respectively. It is noted that a-lactose monohydrate
have three distinct resonance points below 2 THz of which profiles are in accordance with Lorentzian
line shapes [88,124] given by

Sn

ow) = Imzn: o I —— + ¢, (5.260)

where S, wp,, and vy, are the oscillator strength, the center frequency and the linewidth for the n-th
modes, respectively. The fitting constant is denoted as ¢. Figure 5.11(b) shows the computed absorbances
for the ||-case obtained with the help of the parameters in Ref. [124]. The computed absorbance for the
L -case is also shown in Fig. 5.11(d).

The absorbances at 0.53 THz with a high Q-factor [38] are clearly shown in Figs. 5.11(e) and
Fig. 5.11(f) when d=16.5 mm and d=4 mm, respectively. Furthermore, absorbances at 1.2 THz and
1.37 THz are shown in Fig. 5.11(g) at d=16.5 mm and Fig. 5.11(h) at d=8 mm, respectively. All the
measured data are plotted as closed circles (black) for the ||-case and open rectangles (gray) for the

L-case. The fitting curves obtained by Eq. (5.260) are then represented as red solid lines for the ||-case
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Figure 5.11: The extracted absorbances calculated by Eq. (5.259) for (a) the ||-case and (c) the L-case
as a function of the relative slit width. Corresponding computed absorbances calculated by Eq. (5.260)
for (b) the ||-case (d) for the L-case. Absorbance at 0.53 THz (e) at d=16.5 mm or (f) at d=4 mm.
Absorbances at 1.2 THz and 1.37 THz (g) at d=16.5 mm and (h) at d=8 mm. All the measured data are
plotted with closed circles (black) for the ||-case and open rectangles (gray) for the L-case. The fitting
curves obtained by Eq. (5.260) are represented as red solid lines for the ||-case and black dashed lines for
the L-case.
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and black dashed lines for the 1-case.

5.5 Conclusion

We conducted polarization spectroscopy using the a-lactose monohydrate confined in a wedge-shaped
sub-wavelength metal slit using THz-TDS. By Bethe’s diffraction theory, the absorption behavior in the
far field measurement should vanish in the presence of an electrically resonant material restricted into
the sub-wavelength slit. The experimental results obtained by THz-TDS show that absorption vanishes

when the size of the aperture is of extreme sub-wavelength.
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Chapter 6. Conclusion

THz time-domain spectroscopy (THz-TDS) has played an important role in exploring new properties
and phenomena of materials in the THz frequency range. In particular, the direct field measurement
carried out by the electro-optic sampling allowed us to obtain simultaneously the phase information as
well as the amplitude of the transmitted or reflected waves from the material without resorting to the
Kramers-Kronig relationship.

In this dissertation, we studied and demonstrated the possibility of a THz lens using dolomite stone,
strong optical phonon observed in seraphinite gemstone and the polarization dependence of a-lactose
confined in a sub-wavelength metal slit. Firstly, we presented the possibility of applying natural stones
as an optical element material in the THz frequency range. We measured optical constants of various
natural stones using THz-TDS. Among the investigated stones, dolomite in particular exhibited a high
refractive index of 2.7 and low absorption over the measured THz frequency range. Using these properties,
a planoconvex lens was fabricated using dolomite stone by the conventional lens making processes. The
measured beam profiles using the 4-f geometry were well explained by Fraunhofer’s diffraction theory
in the THz frequency range. With the proof-of-principle demonstration of a THz lens made out of
dolomite, it was suggested that natural stones have the possibility as THz optical element materials for
both scientific and economic aspects.

Secondly, we have reported for the first time a spectral fingerprint of crystal seraphinite, a type of
gemstone, in the THz frequency range. It was found from our measurement that seraphinite has the
strong IR-active modes at 0.80, 0.96 and 1.20 THz. In particular, the 0.96 THz mode has exhibited a
strong and narrow absorption with a quality factor of 8, which is comparable to the well known reported
0.53 THz mode in a-lactose monohydrate. The polarization-dependent THz-TDS measurements with
varying the azimuthal angle of seraphinte show that seraphinite has the birefringence originated from
its crystalline monoclinic structure with the space group C2/m as well as the A, (z’)-symmetry of the
0.80 and 1.20 THz modes and the B, (z', y')-symmetry of the 0.96 THz mode. Theoretical interpretation
based on the Kurosawa formula has shown an excellent agreement with the observed phonon-polariton
dispersion anisotropy. Thus, we concluded that the strong absorption mode at 0.96 THz is expected as
an optical phonon mode. It is hoped from the experimental results measured with natural stones and
gemstones that THz spectroscopy may become useful for identification and characterization of various
mineral compounds.

Finally, we studied the polarization dependence of a-lactose monohydrate confined in a wedge-shaped
sub-wavelength metal slit using THz-TDS. The diffraction from an aperture is one of well known physical
phenomena. However, the diffraction by a sub-wavelength sized aperture shows anomalous behaviors that
can not be explained by classical Kirchhoff’s diffraction theory. When the aperture is replaced by a single
slit, the diffraction caused by the slit has two distinct situations in which corresponds to the polarization
of the incident waves with respect to the slit direction. Although the Kirchhoff’s theory fails in the
sub-wavelength region, it can be deduced from the waveguide theory that the electric field perpendicular
to the slit direction can propagate through the slit due to low cutoff frequency. However, it is difficult
for the electric field parallel to the slit direction to propagate through by the same analogy. In contrast
to the electric field, since the boundary conditions obtained by Bethe’s first-order approximation are

regardless of shape and size of the aperture, the magnetic field perpendicular or parallel to the slit
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direction is always considered as constant over the slit. Thus, the E field inside the slit exhibits a strong
polarization dependence. Using the a-lactose monohydrate with a strong absorption line at 0.53 THz, we
measured the temporal and spectral amplitude changes of the transmitted THz wave within a slit with
in the range from 6 pym to 60 pm. Experimental results carried out by THz-TDS reveal that the spectral
response of the material is strongly coupled with the polarization state of the THz waves, and that the
material does not interact at all with the THz waves in the limit of an extreme sub-wavelength-sized slit
when the polarization of the incident electric field is parallel to the slit direction. This study would be
helpful for research on polarization sensitive investigation using small amounts of materials confined in

a sub-wavelength sized slit or aperture using spectroscopic techniques.
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Chapter A. Supplements

A.1 The physical units in THz frequency range

A.1.1 The relation between distance and time

Provided the distance and time are denoted as s and ¢, then s = ¢ - ¢, where c is the speed of light

in vacuum. Then the time corresponding 1mm is as follows

1 mm=3x10%m/s xt

1x1073 1 1
= 3><><71088 = g X 10_11 s = g X 10_12 x 10 s = 3.3 ps. (Al)
According to the above equation, 10000 fs is derived as follows
1mm:33ps=3mm:X
< X =9.9 ps ~ 10 ps = 10000 fs. (A.2)
A.1.2 The relation between 1 THz and wavelength
The basic dispersion equation is
w 2 27
B 2= 20, =21 A.
AV W (A-3)

where )\ is the wavelength in vacuum, A, is the wavelength in material, and w = 27 f. In vacuum, n is

1, then
pow_2nf_2m
c c A
<:)f_ 1THz _1><10123_1_1
c 3x108m/s 3x1083m/s Ap,
S A =3x10""m=3x10"*x10"2 x 10> m
=3 x 102 ym = 300 pm. (A.4)
Therefore the wavelength is inversely proportional to the frequency.
A.1.3 The relation between 1 THz and wavenumber
In vacuum, the basic dispersion equation is
B Y 2nf  2m
e ¢ Am
1TH 1012 571 1
o ko LI o W0 T it ]
3 x 108 m/s 3 x 108 m/s 3
(A.5)

L 107 % 10_2} = X [1 1?;] ~ 21 X {33 cm_l]

=2 (5% Toa
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A.1.4 The relation between 1 THz and Energy

Energy corresponding to 1THz is as follows

h
E=hw=_—-2nf=h-f
21
~ (41 x 107" eV -5) x (1 x 10" s71)

=4.1x1073 eV = 4.1 meV. (A.6)

A.2 No Pockels effect in the centro-symmetric crystals

In section 2.5.2, we encountered that the linear electro-optic effect vanishes in centro-symmetric
crystals [7,19]. The reason is due to the spatial inversion of the crystal [19].! The linear electro-optic
coefficient 71, is defined by Eq. (2.108). For a centro-symmetric crystal, r;;; under the inversion operator

denoted as '™V becomes

. i 8771' i
va Tijk = Zan J

OFE}

_ O
OE

= —Tijk, (A7)
E=0

1 _ Onj
po) O=Ew)

E=0

where the inversion operator ™ represents a symmetry operation with respect to the center of symmetry
or center of inversion (i.e. a point) [19,85].? Since any tensor is invariant under the inversion operation

in a centro-symmetric system, ™" under the inversion operator can be evaluated as
-inv
U Tijk = Tijke (A.8)

Egs. (A.7) and (A.8) are satisfied only if r;;; = 0 [19]. Consequently, there is no Pockels effect in centro-
symmetric crystals. This fact can be also described using a potential curve of noncentro-symmetric or

centro-symmetric crystals, which is explained in Boyd pp. 22-33 [7].

A.3 Estimating the peak intensity of the laser beam

A.3.1 Beam radius at the focus

Suppose that a Gaussian beam with a wavelength of A propagates in the direction of z. The radius
of the beam spot w would be focused when the beam passes through a lens with focal length of f. At

the focus, the radius of the beam spot becomes wg. Then the beam parameter at the focus is defined as

Intensity  x
profile y

>

Figure A.1: The spot size w (blue) of a Gaussian beam as a function of propagation direction of z.

1See Yariv. [19] p. 223.
2See Cotton [85] pp. 22, 35.
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20 = mwin/\, where n is the refractive index of the space with the beam. Using this beam parameter,

the radius of the beam spot w can be written as a function of wg and zg, giving [19]

w?(z) = w? (1 + z;) (A.9)

Fig. A.1 shows a Gaussian beam is focused with a beam radius of wg, where the blue line represents w.
For large 2%, Eq. (A.9) becomes [19)]
z ZA

w(z) ~ wy— =

. A1l
20 TWwon ( )

Equation (A.11) is a well used formula to calculate the beam radius at the focus by substituting the
focal length f of the used optical component into z. So, if we know the spot radius wq of the incident

beam to the lens, then the beam radius at the focus can be estimated as

wy = JA x i (A.12)

Twn w

Provided D is the diameter at the lens position and d is the diameter at the focus, Eq. (A.12) can be
modified in terms of the beam diameter as*

4 \f Af
d=——— ~1.27 — A.14
7w Dn Dn’ ( )
where Eq. (A.14) is approximately the same with the diameter of an Airy disk induced by the Fraunhofer’s
diffraction theory: [11]
Af

~1.22 —. Al
d=122 (A.15)

Suppose that a laser beam with wavelength of 840 nm and beam radius 5 mm passes through a lens

with focal length 150 mm. Then the beam radius at the focus is computed as

SN 840 nm x 150 mm

= 8021 ~ . Al
Twn TXHmmx1 8021 nm = 8 pm ( 6)

Wy =

Therefore, the beam diameter of the spot is approximately 20 pm.

A.3.2 Peak intensity (power) at the focus

In this section, calculation of the peak intensity is described. Assume that a laser beam from a
mode-locked Ti:Sapphire oscillator with repetition rate of 80 MHz is focused to a beam radius of 5 pm.
The measured beam power is 2 W.

First, the energy per a pulse (Spuise) needs to be calculated. Since the beam has a repetition rate (R)

2
= (1 + Z—g) ~ wg% for large z. (A.10)
z 25

1.275%. (A.13)
n
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of 80 MHz, a single pulse energy can be calculated as

P 2w
R 80 MHz
_ 2J st

T80 x 106 s—1

Spulse =
(A.17)
—0.025 uJ = 25 0,

where P is intensity measured by a power meter.

Next, the peak intensity at the focus should be calculated. For the sake of simplicity, assume that
the pulse is a square pulse as shown in Fig. A.2 and the FWHM (full width at half maximum) of a pulse
is 160 fs. Then the peak intensity can be calculated by a pulse energy divided by FWHM. The beam

spot (beam diameter) is given by

1 1
160 fs X (5 um)

Ipeak = 25 nJ x 5 ~ 190 GW/cm?. (A.18)

A.3.3 Estimating the electric field strength and the peak intensity

If a square pulse is replaced by a Gaussian pulse, more accurate peak intensity can be obtained.

The electric field with a slowly varying field amplitude in the direction of z-axis can be expressed as
E(zx, t) = Eo(x, t)e!**=t L cc., (A.19)

where w is the carrier frequency and k is the linear part of the wavevector at w [7]. The slowly varying

amplitude Fjy is generally written in terms of the spectral profile F' and the phase ® as
EO(:B7 t) = AoF($, y)A(zat)eicp(Z’t)v (AQO)

where F'(z, y) has a Gaussian distribution with respect to z and y and Ay is in the units of [V/m].
For sake of simplicity, F' is assumed to be unity (1) (i.e. The distribution on the zy plane is uniform.).
Then, Eq. (A.19) at @ = 0 becomes

E(x, t) = AgA(z,t)e’®Deikz=wt) ¢ (A.21)

|E‘ — Gaussian pulse
— Square pulse

FWHM — |\ a—
Al

FWHM

Y

0 t

Figure A.2: A Gaussian pulse and a square pulse as a function of time . FWHM of the Gaussian pulse
|E(t)| and square pulse are represented by blue letter and red letters, respectively.
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which implies that?

|E(0, 1) = Ag exp {(taioq (A.23)
with )
A(0,t) = exp [—O&;io)} ) (A.24)

where the deviation o is defined by o = FWHM/(2v/In2).° In order to obtain the field strength Ag, the
energy flow described by the Poynting vector of S should be considered. For the infinite plane wave,
Eq. (A.19) becomes

E(x, t) = Epe!®* 4 cc., (A.30)

where Ey is the magnitude of the electric field or just simply the electric field strength. In the case of
the electric field defined by Eq. (A.30), the time-averaged Poynting vector (S) is [7]”

(S) = (E x H) =k 2n,| L |Eo|? = k 2neoc| Eo[?. (A.31)
Ho

The magnitude of the time-averaged Poynting vector is called as the intensity I ([W/m?]) given by [12,27]®

€ € 2n
I=|(S)| = z\f |Eol? = 2n, /= |Eo|? = 2neoc| Eo|? = ==|Eol?, (A.33)
1% Ho Zy

where Zg = \//T/eo = 376.7 (2 is the impedance of free space and n is assumed to be unity. Although
the electric field in the system is a pulse, the intensity can be approximately obtained from Eq. (A.33).
Equation (A.33) is valid for the electric field described in Eq. (A.30). The conventional description
of the electric field is defined by E(x, t) = 1/2 x (Ege'®**=“% 4 c.c.). In this case, the intensity is

(S) = (1/2)\/e/u|Eo|> = (1/2)n\/eo/1o|Eo|? = (1/2)neoc|Eo|? = (n/2Z0)|Eo|?>. The unit of the

5

|E(z, t)| = |Ag A(z,t) @0 ¢ilkz=wt) 4 o) — A9 A(z,t)| ‘(e@w) cilkz—wt) +c.c.)‘ — By |A(z,t).  (A.22)

6A function f(z) with Gaussian distribution N(u = 0, o) is given by

22
f(z) = agexp {——2] . (A.25)
o
Then f(z) has half maximum value at some position denoted by zp, which can be obtained by
2
ao Ty
a0 _ _p A.26
3 ap exp |: 02] ( )
x? a2 5 5
@111(1/2):—7’2’@—1&:—;’2’ S22 =0"In2 (A.27)
S xp =0Vin2. (A.28)
Therefore the full width at the half maximum (FWHM) is
FWHM = 2z, = 20VIn2. (A.29)
"See Boyd [7] p.p. 592-593.
8From Eq. (3.51),
1/5:,/£:1/i1/6—0:n1/6—0:£ =n EOeoznsoc . (A.32)
Iz €0 €\ p Ho  Zo €010
See Jackson, Classical electrodynamics 8 rd edition [12], p. 298.
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intensity is W/m? as follows

VA AV _[AWV] _[C/sI/C) s W
22~ V][] m2 2 o Rl e 2 (A.34)

where the units of the impedance, the electric potential and the electric current are 2, V, and A (Am-
pere), respectively.
The electromagnetic power can be considered as the flux of the Poynting vector S over a specific

area given by [129]
P :/ (S) - nda, (A.35)
area
where da is the area element and 7 is the normal vector of the area. Since the power is proportional to

(S) (i.e. (S) o< |Ep|?), the power can be written as’

P(t) = Py exp { QtQ] , (A.37)

o2

where Py is in the units of [W=J/s] and ¢, is substituted by zero. A single pulse energy Spuise Obtained
by Eq. (A.17) can be written as

° o 2t2 I
Spulse = dt P(t) = Py exp | ——5 | = oPy 5 (A.38)

where Eq. (C.106) is used for the integration. Then, Py becomes

Py = SP‘\F (A.39)
g ™

Since the optical beam has a Gaussian distribution, the intensity in Eq. (A.33) can be considered

to have a spectral distribution given by

22 2
I = Ipeax €xp [—02} exp [—32] , (A.40)

z Y

where I,eax is the peak intensity in the units of [W/ m?]. Note that the power has a peak value of Py at
t = 0. By substituting Eq. (A.40) into Eq. (A.35), the peak power Py can be written by

o] 00 .%'2 y2
Py = / dgc/ dy Ipeax €Xp [—2} exp [—2}
o oo oz o

Yy
- 2 - 2 (A.41)
= Peak/ dz €exp |:_2:| / dy €xp |:_2:| = o-wayﬂ-lpeaky
so that P
Dyeare = ——. (A.42)
OgOyT

9Since E(z, t) can be expressed by separation variables, the power becomes

P:/ (S) -ﬁdacx/ d%z’ |Eo(a’,t))? =/ d%z’ |F(t) Eo(x')|? = |F(t)\2/ d%a’ |Eg(x’)|? o |F(t)|2.
area area area area

(A.36)
Therefore |F(t)| can be written given by |F(t)| = exp [(t — t0)?/0?] when |F(t)| has a Gaussian distribution in Eq. (A.24).
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A function f(z) with Gaussian distribution N(p = 0, o) has a value of 1/e x f(z = ¢).! Then the

deviations o; for j € {x, y} can be approximated as half of the beam radius given by

: (A.45)

O'jl’

N3

where r is the beam radius at the focus. By substituting Eq. (A.45) into Eq. (A.42), we obtain the peak

P P, 4 Souse [2
Ipeak: gro =4 - :pl\/;‘ (A46)

r 2 2
55T r r (2

intensity in the form

By Eq. (A.33), the field strength in the case of the Gaussian beam can be obtained by

Z Z P,
|EO|\/°1peak~ 20 oy 20

2n 2n ~ r?
(A.47)
= @ X i ~ Spulse\/iz 2(27‘.)71/4 @M’
2n ~ 7r? o T T n o

where the deviation o is defined by FWHM/(2v/1n 2). The unit of the electric field strength is of course

V/m as follows
Wl _ [vis_ [ o)
\/ 4 (] ‘\/ A ] \/ 2] [A 3

I O L0 R O O o 4 I O Iy B L e
_\/[mg] [C/S] [S] _\/[m2] [ ] \/[mg] [V] [V/ L

where the units of the impedance, the electric potential, and the electric current are 2, V', and A (Am-
pere), respectively. Note that the SI unit of the electric field is also N/C.

(A.48)

A.4 Estimating the THz electric field strength

By Eq. (2.160), the maximum THz field probed by the method decribed in section 2.5.6 can be
obtained for ¢ = m and a = 7/2 in the form (Equation (2.160) has maxima for ¢ = a + /2 [21].)

L
Al =1, wT n3r41 B, (A.49)

where the refractive index n of ZnTe at the optical frequency of 800 nm is 2.8 and the electro-optic
coefficient 741 of ZnTe is 4 pm/V [2,21]. w is the optical angular frequency of the probe beam and the
maximum THz field can be obtained by just varying the azimuthal angle of ZnTe.

The THz field strength can be roughly calculated by Eq. (A.49) provided that we know all the
terms of Al and I, in the same unit. However, this is an indifferent method since the THz waveform is

measured in the unit of voltage (V) by a Lock-in amplifier and the intensity of the probe beam I, has in

10A function f(z) with the Gaussian distribution N(u = 0, o) is given by

f(z) = exp {—x—z] . (A.43)
At x = o, f(z) becomes
2
f(o) = exp {— %} e l~04 (A.44)
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(b)

Polarizer
(Crossed)

Figure A.3: THz field strength measurement setup in case of probing (a) the elliptically polarized probe
beam and (b) the linearly polarized probe beam. The polarizer denoted by P has a slow axis oriented at
90° with respect to the former polarizer (not seen this figure). The experimental components should be
the same as THz-TDS except for applying not THz waves but AC bias voltage to the EO material using
function generator.

the units of W/m?. To obtain the THz electric field strength by Eq. (A.49), AI and I,, should be unified
into the same unit.

The better way to obtain the THz field strength rather than by using Eq. (A.49) is to directly
compare an applied biased voltage in the EO material via a Lock-in voltage signal from an elliptically
polarized probe beam through EO material induced by THz field [130-132]. This approach is the same
as using an EO light modulator [19]. Let’s consider that the EO material has a square shape of thickness
l and length d of one side and electrodes are attached on the top and bottom of the EO material across
the gap of d. An EO material such as ZnTe has to be mounted in a non-metal holder. Provided the
external voltage Vg from a function generator (FG) is biased in the EO material, the external electric
field Eoy is defined as

Vra

Eext == 7 (A50)

Figure A.3 shows the experimental setup for measuring the THz field strength, which is nearly
the same as the setups shown in Fig. 2.11. Since THz waves can be measured by two ways described in
section 2.5.6 and 2.5.7, THz field strength can also be measured by probing the elliptically polarized probe
beam (Fig. A.3(a)) or the linearly polarized probe beam (Fig. A.3(b)). The experimental components
should be the same as THz-TDS except for applying not THz waves but bias voltage to the EO material
using a function generator. Recall that the biased electric field is achieved by a step function signal from
a 65 kHz function generator with dc voltages of 30 V (TOELLNER TOE 7704). We applied DC bias
with step function signal of 65 kHz (AC bias) to EO material since the signal is measured by a Lock-in

amplifier to remove noise.
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EO responsiveness

THz

o

Frequency

Figure A.4: The described EO responsiveness measured frequency range.

THz field strength measurement described in Fig. A.3 must be accompanied by the assumption that
the EO responsivity is nearly the same in the measured frequency range in kHz by the function generator
and THz by the THz waves as shown in Fig. A.4. When the AC bias is applied to the EO material, the
intensity of the probe beam measured by two photodiodes in Fig. A.3(a) (or a photodiode in Fig. A.3(b))
is different from zero. Then the photocurrents from the photodiodes are measured by a Lock-in amplifier
in the units of voltage. Provided Eeyt is 30 V/cm from Vrg=30 V and d =1 cm from Eq. (A.50), the

measured voltage signal can be calibrated following the procedure by
30 V/cm = VLock—in, (A51)

where Viock.in is the Lock-in signal in the unit of valtage.

A.5 Radiated electric field by the nonlinear source in the far-
field

Assuming that the nonlinear crystal is assumed to be an isotropic dispersionless material, the non-
linear wave equation in the time domain is [7]

e 92 1 o2

2p_ 9% p - _~ Z pNL A.52
\Y (x, t) o 0 (z, t), (A.52)

c? Ot?
where the relative (dimensionless) dielectric constant is denoted as €!) = €/¢y and the electric field E
represents the radiated field induced by the nonlinear polarization PNF. The coefficient of the second
term can be written as

e e 1 € 1
R

o T T o5 = Mot = Ho€=
€0 v

e (A.53)

where v is the phase velocity. Recall that E and PNV in Eq. (A.52) were assumed to be quasi-
monochromatic in the beginning of section A.6.1. By Eq. (A.100), E and PNL can be written in

the form
E(z,t) = E(z)e ™!
’ ’ (A.54)
PNL(ZC, t) _ PNL(w)efzwt.
According to electromagnetic wave theory [12,127]'] the scalar potential or any component of an
See J. D. Jackson [12] pp. 243-246 and J. A. Stratton [127] pp. 424-248.
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electric field satisfies the wave equation given by
V- ] e 0= s 0 (A.55)

where g represents a source distribution. The Fourier transforms of ¥(x, ¢) and f(x, t) are defined by
the equations
1 _
U(x, t) = 2—/dw U(x, we !
177 (A.56)
fz, t) = %/dw fx, w)e ™,

The Green function G(x, x’, t, t') satisfies the inhomogeneous wave equation in Eq. (A.55), yield-
ing [133]"?
v? - } Gz, o', t, t')=—0(x—') 6(t — 1), (A.57)

which implies that the solution ¥ of Eq. (A.55) can be written as'®

W(w, 1) = / Bo' At Gz, o, t, ) f@, 1), (A.59)

where x and @’ represent the field (observation) point and the source point, respectively. Then the Green

function is calculated as'* [12]

7 /_L /_ _E
G(w,m,t,t)—47TR5t t »

) , (A.60)

where R = |R| = |& — 2’| and the retarded time is denoted by ¢’ =t — R/v. By using Eqgs. (A.59) and
(A.60), the explicit solution ¥ of Eq. (A.55) can be obtained by [12, 127]

U(w, 1) = / Bo' dt Gz, o, t, ) f@, 1)

IR W CAN0 Y
—47r/dxdt |
1

z—/d%’M

R
t_i
v

) (A.61)

where [f(x/, t')]ret = f(2/, t =t— R/v). Since the wave equation for each field component in Cartesian

47 R ’

coordinates can be written as Eq. (A.55), the solution E of Eq. (A.52) can be also obtained by [12]'°

E _ 1 d3 / l 82 PNL 1yl A
(:Ba t) - T R at/2 ($7 t) ’ ( 62)

- 2
4megc ret

12Gee M. L. Boas [133] pp. 670-674
13Since V and t are independent with respect to &’ and ¢/, Eq. (A.59) can be a solution of Eq. (A.55) given by

2 19 2 192 EPA ’ / rgr
V_*zﬁ Y(x, t)= V—U—Qw &z dt’' Gz, &', t, t') f(2', t)
v
= /d?’:c' dt’ [V2 — i8—2:| Gz, ', t, t') f(=', V') (A.58)
- ’1)2 8t2 I k) bl b

- _/d%/ dt' 8@ — ') 6(t—t') f(a, ) = —f(z, ©).

148ee Jackson [12] pp.243-245.
15See J. D. Jackson [12] p. 246.
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where the last term containing the time derivative in the integrands can be calculated as [12] 16

82 NL/,..7 ! 62 NL/,..7 / 8 NL/,..7 /
8t’2P (', t) :@[P (@', )], = @P (', ' =t — R/v). (A.69)

ret

By Fourier transformation, the nonlinear wave equation of Eq. (A.52) in the frequency domain

becomes )
w

V2E+ <1>E(a: w) = —— P (x, w), (A.70)
€pC

which can be written as a wave equation in the frequency domain as in Eq. (A.55) as'”

2

V2(z, W)+

o2 6(1)\11(‘73’ w) = 7f(mv w)a (A71)

where w?n?/c? = w?/v? and n? = ¢, Analogous to Eq. (A.57), the Green function G satisfying the

163ee R. W. Boyd [7] p. 381. Let A be a function of ¢ and z so that A(t, z). Since the retarded time ¢’ is defined
by t =t — z/v, the function A can be written as A(¢, z) = A(t/, z’) in the case when z = z’. The total differentials of
A(t', ') and A(t, z) become

0A 0A
dA(Z V) = —dz' + —dt’
(2,1) = —de + =5
0A 0A | ot’ ot
=5 % T o | et e % } (A.63)
A A ot A ot
= 6——‘,—8 ot dz/—i-a—a—td,
o' ot 8z ot ot
0A 0A 0A 0A
dA(z,t) = —dz + —dt = —dz’ + —dt. A.64
=5t =5 T (A.64)
By comparing Egs. (A.63) and (A.64), we obtain
dA 0A A DA  9A ot
dAY _(94) _ 04 _0A  oADl (A.65)
dz ) gi—o 0z/), 0z 0z Ot 07
/
(%) _ (%) 78A OA Ot (A.66)
dt ) g.1—o ot ), ot ot o’
which implies that
7] 7] 10
9_90 19 A.67
0z 0z wvot ( )
9_9 (A.68)
at ot
where 0t' /02" = —1/v and 8¢ /Ot = 1.
7By using Eq. (A.56),
1 92
2 —
VAU — 72@\1](% t)=—f(x, t)
1 ; 1062 1 ; 1 ;
& V2g/dw\ll(a:, w)e Tt U—Q%%/dwa(w, w)eth = —%/dwf(a:, w)e Wt

1 . ) 1 .
& —/deQ\II(w, w)e Wt /dw‘l! (z, w) 57“”5 = ——/dwf(w7 w)e Wt
27 v2 2 27

1 11 . 1 )
& ;/deQ\Il(m, w)e Wt 4 f—/dwllf(m, w)wQe_“"t = 72—/dwf(m, w)e Wt
T T

v2 2

1 2 w? —iwt
& — [ dw |V (x, w)+ S T(x, w)|e = -
2m v2

1 .
—/dwf(a:, w)e Wt
2m

& VU@, )+ L@ @) = [, w),
v

where w?/v? = w2n?/c? and n? = (). Eq. (A.52) is also transformed into Eq. (A.70) in the frequency domain by the
same analogy.
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inhomogeneous wave equation as in Eq. (A.71) can be written as'®

[VQ + 02226(1):| Gz, ', w) = -6z —z'),
which implies that the solution ¥ of Eq. (A.71) can be written as

U(x, w)= /d?’z/ Gz, ', w) f(z', w).
G(x, ', w) is the inverse Fourier transform of G(x, &', t, t') given by

Gz, ', w) :/dT Gz, ', 1) ™7,

where G(z, z’, t, t') = G(z, ', 7) with 7 = R/v =1t —t/, so that G(z, x’, w) becomes'’

;o 1 i
G(a:,x,w)—47TR exp |iw—— |,

where R = | — @’|. Therefore, the explicit solution ¥ of Eq. (A.71) is [12]

U(z, w) :/d3x’ Gz, ¢, w) f(z', w)

_ 4i A3 f@', w) plwR/v.
T

The solution E of Eq. (A.70) is

1 w? 3,/ PNL(SU,’ w) iwR/v
E(w,w):4ﬁeoc—2/dx —©r .

(A.73)

(A.74)

(A.75)

(A.77)

(A.78)

(A.79)

Now, we need to concentrate on finding the far-field solution of Eqgs. (A.62) and (A.79). In the

18 Analogous to Eq. (A.57),

2, W (1) ’ 2, w? (1) 3/ ’ ’
Vit —e \I!(m,:v,w):V—&-—Qe &’z Gz, ', w) f(x', w)
c c
— [ B |2 “ﬁ (1) ’ ’
= z |Vo+ —e Gz, ', w) f(z', w)
c

= 7/d3:p' §(x—x') f(x', w) = —f(x, w).

By Eq. (A.60) and 7 = R/v =t —t/,

Gz, /', w) = /dT Gz, ©', ) 7

:L dr 6|t —
AR

1 ) 1 .
:—/de(—T—I—E) QT = = giwy
47 R v 4R

134

R ; 1
t— — T — dr 6 | —[t—t+ =
v])e 47rR/ T ([ ]+v

(A.72)

(A.76)



far-field zone (i.e. |x’| < |z|), R in the integrands of Eqgs. (A.62) and (A.79) can be expanded as®’

z-xz 1 1 =z x
S A.82
Rer———, &~ t = (A.82)

where |z| = r and |2’| = ’. Then the far-field solutions?! for time domain and frequency domain become

-1 10? R
E@ )= — -2 [ @B PNV (o ¢ =t - 2 A.
(, ?) Admegc? r Ot2 / v T v )’ (A.83)
E(x, w)= ! M/d?’m’ PN (2 w) e —ik 2 (A.84)
’ T dwegc? r ’ P r |’ '

where w/v = wn/c = k. From Egs. (A.62) and (A.79), we can see that the electric field E can be
calculated provided that we know the nonlinear polarization PNF. If the nonlinear medium is spatially
homogeneous, or in other words, the nonlinear polarization is considered a constant with respect to
the source points (i.e. independent from the source position), the radiated electric field in the far-field

E(z, t) is approximately proportional to the nonlinear polarization as follows:

2

-1 107 , , 0
E(x, t) ~ — [PN()],., / d3x’ @PNL(t). (A.85)

T Amegc r Ot2

By the same analogy, the radiated field E(x, w) in the far-field becomes
E(z, w) o« w? PN (w). (A.86)

We can say that the radiated electric field in the frequency domain is proportional to the nonlinear
polarization.
There is a practical example described in Ref. [5,6]. For a linearly polarized field, the effective

polarization PN in the z-axis direction can be expressed by [5-7]
POz, t) = PP (x,wy)e 2!, (A.87)

with
P®(@,wy) = eox® A (@) Ag(@)e™>* = PR)eihe?, (A.88)
where ko = k3 — k; and x®) (w2; —wy,w3). With A;(x) and As(x) being constant, the nonlinear polar-

ization becomes
P (x,t) ~ pPgilkzz—wat) (A.89)

20Provided the angle between |z| = r and |z’| = r’ is v, R for #’ < x can be expressed by the law of cosines given
by [13]

R=|z—a'|=+r2+712—2rr' cosy =/r2 +12 — 2z - &’

1
2 1+r’% Qw-m' 2 " 2cc-w' 3 1 z -z z -z (A.80)
= |r — =r — ~r - =Tr—- 5
2 r2 r2 r2 r
which implies that

1 z -zt z-z’\17! 1 r-x 1 =z -z
E:{r_ r ] :[r(l— 2 )} :;[1+ 2 +”.]:;+ st (A.81)

21The term “far-field” is defined in J. D. Jackson, Classical electrodynamics 8 rd edition, p. 408 [12].
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The far-field solutions for the time domain and frequency domains in the case of Eq. (A.89) become?”

-1 102 x-x
E Z_p® — 3 ; r— A.92
(z, t) = IneoZ 1 O expli(kor — wat) /d x’ exp [zkzg (z " )} , (A.92)
1 !
E(z, w)= wfexp (kr) P(Z)/d3x’ exp |iks | 2 — re , (A.93)
4d7eq c? r r

where ko = wo /v.

A.6 Generation and detection behavior from zinc-blende crys-

tals with various cut orientation

A.6.1 THz generation via optical rectification

The rectified field radiated by the optical rectification described in section 2.4.1 is THz waves.
Assuming that the pump beams are quasi-monochromatic, the optical rectification is described by the
difference frequency generation which comes from 2nd-order nonlinear susceptibility in the nonlinear
crystal, giving

2 *
Pl-( () = 2¢0 Z ijk ;—w+Q, W) B (w— Q) Eg(w), (A.94)

where 2 and w represent a THz frequency and an optical frequency, respectively. In the optical rectifi-
cation, 2 is sufficiently smaller than w, which implies that Q can be considered as zero. Then Eq. (A.94)
becomes
PP(0) =260 > (05 —w, ) E} (w) Ep(w). (A.95)
jk
When the frequency of the probe beam is much smaller than the lowest resonance frequency of the

nonlinear crystal and the dispersion of the susceptibility for the nonlinear crystal is neglected®?, the

22

-1 182 R
Ble. 0= oy | #0 PO e [ {1a —n (1= T) )
(@, t) 4megc? r at2 / P 22 — w2 v

—1 1 2
= P® /d3z’ exp [ (ko2 70J2t)] exp {zwzf ( )}
4megc? r 8t2 (A.90)
= -1 1 o2 ~Z_p® exp(lk‘2r)/d3xl exp [i(k2z" — wat)] exp [flkzw } .
4megc? r Ot?
-1 102 -
_ (2) _ 3,./
= I 1 8t2p expli(kar — wat ]/d ' exp |:7,k2 ( )}
Bz, w) = ;&M/dsx/ PO oxp {i,@ (z/, x-® )]
4meg c2 r (A.91)

—~

<

, .
_ 1 ‘pr(z)/dsx/ exp |ikn Z/_m )
4dmeg c2

23Fach sentence has a meaning as follows [7].

v' The frequency of the probe beam is much smaller than the lowest resonance frequency of the nonlinear crystal.

= There is no resonance in the frequency range measured by the probe beam.
= The nonlinear material can be considered as a lossless material.

v' The dispersion of the susceptibility for the nonlinear crystal is neglected.

= The nonlinear susceptibility N is a constant in frequency domain.

= The response function R in time domain (t) responds instantaneously to the applied electric field.
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nonlinear polarization can be obtained by Kleinman’s symmetry condition [7]. Under this condition, the

®)

2nd-order susceptibility x; Sk ina relationship with d;;, given by

1
dijr = ixgj,l (A.96)

can be abbreviated to the 3 x 6 matrix d; with contracted indices ! [7]. In the case of a zinc-blende

crystal with the point group 43m, the contracted matrix d;; is simplified as

0 0 0 dig O 0
00 0 O 0 dig

The ZnTe crystal, a member of the point group 43m, is a widely used nonlinear crystal for generation
as well as detection of THz waves. Provided the polarization of the incident pump beam propagating in
the +z direction is given by

1
E=E|0 (A.98)
0

in the lab coordinates (z, y, z) as shown in Fig. A.5, the electric field E on the (110) or (100) plane
can be expressed as E’ in the crystallographic coordinates (z/, y’, 2’) by using the successive rotation
matrices. In crystallographic coordinates, the nonlinear polarization P’ induced by X(Z)(O; —w, w) can

be written in the form

Ey (w)Ey (w)
@) B (w) By (w)
PP (0) 00010 0 e (o))
P2 (0) | =4eodia [0 0 0 0 1 0 B ()E ( °)U+E°z B | (A.99)
P (0) 000001 y W) B W 2 \W) By (W
B2 () Bar () + B2 () B ()
By (w)Ey (w) + By (w) By (w)

where £ (w) = Ep (—w).
Now, it is time to take into account the amplitude terms E; in Eq. (A.99). The electric field for a

quasi-monochromatic wave is generally expressed as a function of amplitude and phase in the form?*

E(x,t) = EgRe [ei(’“'m—wﬂ} , (A.100)

< The response function R(t) can be expressed by a delta function 6(t) given by
R(t) = xNMs(1),

where X(NL) is a constant.

24Eq. (A.101) is explained in detail in Boys [7] pp. 18-19.
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which implies®®
E(z,t) = % [ei(k‘w—wt) n e—i(k~w—wt):|

_ |:‘E20€z(k:c)] efiwt + |:E20ez(k:1:):| eiwt (A]_O]_)

= B(w)e ™" + B(—w)e™",

where E(w) = A(w)e®®) and A(w) = Ey/2. Note that we are interested only in nonlinear behavior in
the time domain at a fixed position. So, we obtain A(w) = A(—w) = Ey/2 for the fixed position in the
case when x = 0, which implies that E(w) = F(—w) = E*(w). Then Eq. (A.99) is reduced as

E2
E2/(
E?,

8\
~—

w

<

P2(0)
PP(0) | = 4eodia
P (0)

©

S
NN

(A.102)

o O O
o O O
o O O
S O =
o = O
— o O

A.6.1.1 THz generation from (110) ZnTe crystal

The electric field on the (110) plane as shown in Fig. A.5(a) can be expressed in crystallographic

coordinates (a/, y', 2’) as

—% sin ¢
E =MMIE = E, 5 sind (A.103)
cos 0
with 3
SyS SyS SyS ™
M(110) — RY (47r) RYS(—0)RY (5)7 (A.104)

where the rotations R;y ® are defined by Eq. (C.15). 6 represents the angle between the polarization of
the optical pump beam and the z-axis as shown in Fig. A.5. By Eq. (A.102), we obtain the 2nd-order

polarization in crystallographic coordinates as [134]

% cos fsin 0

P’ = 8¢yd 14 E? — 5 cosfsing | . (A.105)

1
2

sin? @
According to Eq. (C.17), the inverse matrix of M (110 in Eq. (A.104) becomes

™

3 -1 7 3
—1 sys [ < RSYs RSYs = RSy R5YS RSYS — A
M) = {R@ (4”) o (ZO)R, (2)} v ( 2) = ()R < 4”)’ (4.106)

25 E(x,t) for a quasi-monochromatec wave can be also expressed as [7]

E(x,t) = E(w)e” ! + E(—w)e™*t = E(x)e ™t +c.c..
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(@) (110) ZnTe ~xIi (o1
(b) (100) ZnTe

x| (001)

Figure A.5: Lab coordinates and crystallographic coordinates in case of (a) (110) ZnTe (b) (100) ZnTe.

by which P’ can be transformed into lab coordinates as [134]

—% cos fsin’ 0

P = M(_lio)Pl = 8e0d14E§ cos26sinf — %sin3 0. (A.107)
0

In order to compute the radiated THz field induced by nonlinear polarization, we should go back
to the nonlinear wave equation. From Eq. (A.86), the angular dependence of the magnitude of the THz
electric field radiated from (110) ZnTe crystal in the far-field can be expressed as*®

sin 0

|E(Q)]  |P(Q)] [1+3cos6]"?]. (A.112)

In a similar fashion, the polarization of the induced THz fields parallel to the x and y axes can be

26By using Matlab,

3 2 1 2 1/2 sin®0  5cos?0sin 0 1/2
P(Q) x [ (—5 cos 0 sin? 9) + (0052 fsin @ — 5 sin® 9) :l = |: 1 + 1 + cos? 0sin? 0 (A.108)
in6
= 731121 [sin4 0 + 5cos? 0sin? 0 + 4 cos* 0} 1/2 (A.109)
in6
= 751;1 [sin2 0(1 — cos? 0)+5 cos® 0sin? 0 + 4 cos? 0(1 — sin? 6‘)] 1/2 (A.110)
in6 in@
_ 51121 [sin2 0 + 4 cos? 0]1/2 _sm [1+ 3 cos2 9]1/2 ) (A.111)
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IEI

Figure A.6: The angular dependence of the radiated THz field with respect to the azimuthal angle 6 of
(110) ZnTe crystal.

expressed as>’

E.(Q) < Py(Q) = 8¢gd 14 E?

3 cos 360 — cos ) |, A.117
8

E,(Q) < P,(Q) = 8¢yd14E] §(sin 30 — %sin 9)

g . (A.118)

Figure A.6 shows the angular dependence of the radiated THz field. Note that angle 6 represents
the angle between the polarization of the optical pump beam and the z-axis as shown in Fig. A.5. More
simple analysis is done in Ref. [135]. This may also be helpful in studying the radiation from zinc-blend

crystals.

27

cos 30 — cos B = cos( + 20) — cos O = cos 6 cos 20 — sin 0 sin 26 — cos 6
= cos0 - (cos2 0 — sin? §) — sin 6 - (2sin 6 cos §) — cos

=cos® 0 — 3cosOsin® 0 — cos = cos® 0 — 3cos 0 - (1 — cos? @) — cos b

=4(cos®0 — cos@) = 4cosh - (cos>0 — 1) = —4cosfsin? 6, (A.113)
which leads to 3 3
-5 cos fsin® § = 3 (cos 30 — cos ). (A.114)
W0 _ ,—i0 [/ ,if —if\ 2 i0 _ ,—i6\ 2
25in600529—sin36:2-e ‘e e te — i
21 2 24
_ 1 [_eie e | 36130 _ 36—1'30]
8t
1 i0 _ —i0 30 _ ,—i30 1
- [f (%) 2i+3(%) 21} :Z(fsin9+3sin3€>, (A.115)
so that 1 1
cos? §sin 6§ — 3 sin® 9 = 3 (3 sin 36 — sin 0). (A.116)
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A.6.1.2 No THz generation from (100) ZnTe crystal

If the polarization of the incident pump beam is given by Eq. (A.98), the electric field E on the

(100) plane as shown in Fig. A.5(b) is expressed in the crystallographic coordinates (z’', ', z’) as

0
E' = MIOE = E; | sing (A.119)
cos 0
with
MO = RS () RS (—0) RS (g) . (A.120)

By Eq. (A.102), the 2nd-order polarization for (100) ZnTe crystal in the crystallographic coordinates is

cosfsinf
P = 860d14E§ 0 . (A121)
0
P’ can be transformed into the lab coordinates as
0
P = M5 P' = 8codia Ef 0 : (A.122)
cos fsin 6

By noting that the incident beam propagates along the z-direction, it is concluded that THz field
cannot be radiated from a (100) ZnTe crystal since there is no nonlinear polarization terms on the
ay plane (i.e. x and y axes) in Eq. (A.122). The content described in this section was confirmed in
Ref. [134-130].

A.6.2 THz detection via the Pockels effect

A.6.2.1 Simple representation of the balanced detection scheme

The probe beam transmitted through a quarter-wave plate, a ZnTe and a half-wave plate can be

written by the Jones matrix as

E = E, R(-DJ(5RC) Ll) 0] = G) (A123)

A/4 plate
/4 Zn'Te Epobe
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where R and J represent the rotation matrix and the Jones matrix for a retardation plate defined by

Eq. (2.120) and Eq. (2.121), respectively. By calculation, this equation becomes®®

E 1—1 i
E=""exp (zz) fexp (i) (A.124)
2 47 | —i+ exp (il")
so that?”
E2
I, =|E,* = 7"(1 +sinT), (A.127)
E2
I,=|E,* = 7‘“(1 —sinT). (A.128)
The balanced signal is then obtained as
Al =1, — I, =I,sinT, (A.129)

where I, = Eg.

A.6.2.2 THz detection by the (110) ZnTe crystal

The principle for the measurement of THz field by EO sampling is explained in the preceding
section 2.5. The processes of the EO detection method with (110) ZnTe are more briefly introduced in
this section.

Figure A.7 shows the geometry of a (110) ZnTe crystal used as a THz sensor, where x, y and z are
the principal axes of the ZnTe cystal. The z-axis is parallel to (001) of the crystal. o and ¢ are angles of
the polarization of the THz beam and the polarization of the probe beam with respect to z-axis (001),
respectively. Note that the two angles are measured on the (110) plane. By the same analogy with
Eq. (2.126), the index ellipsoid in the presence of an externally applied THz field can be written as

a? +y? + 27

3 + 2141 Efy,yz + 2ran Ed gy, 2z + 2ra1 Efy,zy = 1, (A.130)

where Efy,, EYy, and E3y, are the components of the THz waves applied to ZnTe. As shown in

28

] % (owin)

— 2 [0 5] (i) = 25 [V E8) V2P 0] (g

(
_Ep T\ [1 0 —4 1 _Ep T\ [1—dexp (iT")
TP (ZZ) {—i 1} <exp (iF)) =5 &P (12) |:—i+exp G|
29
‘1 _ ,L-eil'“2 _ ‘1 _ ei(l"+7r/2)|2 _ (1 _ e—i(F+7r/2))(1 _ ei(F+7r/2)) —1— ei(F+7r/2) _ e—i(F+7r/2) 41
T+ /2) | o=i(T+m/2)

=2-2 5 =2—2cos(T'+ 7/2) = 2(1 —sinT), (A.125)

eil _ =il
T 2i=2(1—sinl). (A.126)

|—i+el2=(i+e ) (—it+el) =246l —iell =244 5
Y]
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Figure A.7: Geometry of the (110) ZnTe crystal as a THz sensor. z, y and z are the principal axes of the
ZnTe cystal, where the z-axis is parallel to [001] of the crystal. « and ¢ are angles of the polarization of
the THz beam and the polarization of the probe beam with respect to the z-axis [001], respectively.

Fig. A.7, the components of the THz waves can be obtained, giving

—sina
B2y, sin « - cos(—45°) V2
Ery, = | B4y, | = Erne | sine - sin(—45°) | = Etne b sin
Bz, cos a
cos a
Substituting Eq. (A.131) into Eq. (A.130) leads to
2,2 L2 E i E i
Ay e, Ogy e gy R+ 914y By cosa ay = 1. (A.131)

n? V2 V2

This equation can be simplified by means of a coordinate transformation from crystallographic coordi-

nates (z, y, z) to the lab coordinates (z’, y’, z’). Through the use of Eq. (2.127), Eq. (A.131) becomes

1 1 12
x? (2 + 741 Er11, COS a) + 1y (2 — 741 E11, cOS a) + 2—2 +2ryp Eragsina ¢z’ = 1. (A.132)
n n n

To obtain the index ellipsoid on the (110) plane (i.e. y'z" plane), we substitute 2’ = 0 into Eq. (A.132)
which becomes [135]

1 12
y'"? (2 — 741 ETH, cOS a) + Z—Q +2ry Eragsina y'2’ = 1. (A.133)
n n

We next should find the index ellipsoid in the principle coordinates (y”, z”") which is a kind of an
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eigenvalue problem. Equation (A.133) can be written in the form

v G-

¢ = 2ry1 ETay, sina. (A.135)

where

1

a=— —rabra,cosa, b= —,
n n

To satisfy the eigenvalue equation, the determinant in the following equation should be zero, yielding
‘M—ul‘ =0 (A.136)

with

M= < ‘;2 Cé 2) , (A.137)

where p and I represent eigenvalues and the identity matrix, respectively. By solving Eq. (A.136), we

obtain the eigenvalues of a matrix M given by [135]%"
1 ry 3
M=7+7ETHZ —cosa+V1+3sin®a. (A.140)
n

By introducing the lab coordinates

X' = <y> , (A.141)

Eq. (A.134) can be expressed in the form

XTMX' =1, (A.142)
which implies that
XTVvDVhHX' =1 (A.143)
with
M =VDV"™ or (MV =VD), (A.144)

where D is a diagonalized matrix of M and V is a square matrix whose columns are eigenvalues of M.
Note that V! = VT since V is orthogonal. Equation (A.143) then reduces to

X""'DX" =1 with X" =V7TX/, (A.145)
30
_ 2 2
T S e BRI R
2
:,u2—(a+b)u+ab—cz =0, (A.138)
which becomes b

= “;r +/(a—b)2 + 2. (A.139)

Substituting Eq. (A.135) into Eq. (A.139) leads to the result

1
,u,2+mETHZI:—cosa:t\/1+3sin2a:|.
n 2
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where X" represents the principle coordinates (y”, z). So, we obtain the index ellipsoid in the principle

coordinates given by®!

1 1
— 4 TﬂETHZ( —cosa+ V1 + 3sin’a ) v+ | =+ EETHZ( —cosa— V14 3sin®a ) %=1,
n2 2 n? 2
(A.147)
which implies that??
3
ny =n+ n ZMETHZ(cosa— V1 + 3sin? oz), (A.150)
" o__ n3T41 s 2
n, =n-+ Eth,| cosa+ V1+3sin“a |, (A.151)

so that the induced birefringence in the presence of THz fields becomes

3
An =n! — n;’ = ;41 Eru,V1+ 3sin? a. (A.152)

Analogous to Eq. (2.150), the phase retardation induced by the birefringence An is expressed as

3E L
I'ra, = EAnL = %\/ 1 + 3sin? a. (A.153)
c c

By Eq. (A.129), we find that the balanced signal is proportional to the phase retardation given by [135]

Ery,
Al x TQH V1+3sin?a. (A.154)

31Equation (A.145) leads to the form
0 11
xX"Tpx" — (y// z”) (lgl ) <Z”) _ “1y//2 ¥ N2ZN2 =1, (A.146)

where p1 and po are eigenvalues of M.
32

—1/2
1
— + %ETHZ<7COSQ+ V1 + 3sin? a )}

Ny = 71: n2
5 —1/2
=n 1+n T41ETHZ(—cosa+\/1+3sin2a)]
2
2
Nn[l71141ETHZ<COSO¢+\/1+3sin2a>], (A.148)

—1/2
41 .
" 1 1 / 2
J— —F (— — 1+3 )
n, B} + THz Cos & sin“ o

=n

5 -1/2
1+ n T41ETHZ(—COSCK— V1 + 3sin? a )]

2

2
:n[l—”Z‘“ETHZ(—cosa—\/1+3sin2a)]. (A.149)

145



A.6.2.3 No THz birefringence by (100) ZnTe crystal

The geometry of (100) oriented ZnTe crystal is illustrated in Fig. A.8. The components of THz

waves on the (100) ZnTe plane can be then expressed as

E’alez 0
Ern, = | E4y, | = Era. | —sina | - (A.155)
By, coS o

In a similar fashion with the preceding section A.6.2.2, we find by substituting Eq. (A.155) into Eq. (A.130)
that
22 442 4 22

5 — 2ry1 Erp, sina xz + 2141 Epp, cosa xy = 1. (A.156)

n
Since the crystallographic coordinates xyz and the lab coordinates z'y’z’ coincide, the coordinate trans-
formation from xyz to x’y’z’ is not needed. By taking 2 = 0, we obtain the index ellipsoid on the (100)

plane, giving

2, .2
Yy +z
=1 (A.157)
which leads to

ny =n, (A.158)
ny =n, (A.159)

so that the birefringence An in (100) ZnTe induced by the applied THz waves becomes
An =ny, —n, =0. (A.160)

We therefore see that THz waves cannot be measured with (100) ZnTe since there is no birefringence

induced by the applied THz waves.

Figure A.8: Geometry of (110) ZnTe crystal as a THz sensor. z, y and z are the principal axes of the
ZnTe cystal and z-axis is parallel to [001] of the crystal. « and ¢ are angles of the polarization of the
THz beam and the probe beam with respect to the z-axis [001], respectively.
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A.7 EO detection by probing the index ellipse induced from

linear polarized probe beam

According to section 2.5.7, we need to take into account the scattering contribution n and the optical
bias I'yp in conventional EO detection using a quarter-wave plate and a prism. From Egs. (2.153), (2.154)

and (2.155), the intensity of the transmitted probe beam through all the optics is simplified as

=1, <f1(FTHz)+g1> ’ (A161)
f2(Trrz) + g2

where f; are functions of I'ry, terms and g; are functions of other terms except I'rp, terms.
By considering the two terms 7 and I'yp, the intensity of the transmitted field can be defined with

the substitution I'ryg, — [y + T, as follows

pog, (1 AT+ Trw) o) (1B (A.162)
" \n+ f2Tob + Drat) + 92 E,2)’

where we assumed that scattering by the probe beam has the same contribution on each photodiode.

Since THz waves can be measured by balance detection as Al = |E,«|? — |Ey- 2. the effect of scattering

contribution vanishes. Then we obtain

I=1, sin{2(¢ — 6)} sin(Top + I'ray)
X Sin(Fob + FTHZ) = Fob + FTHZ7

(A.163)

where the optical bias I'y; is always constant and the THz wave is measured by sweeping via the time-
delay. Therefore, the results considering the two terms in this detection process shows the same result
as in Eq. (2.160). This is described in section 2.5.7 in detail.

A.8 Finding the optic axis on (110) ZnTe in the presence of
THz field

From Maxwell’s equation, the wave equation is expressed in terms of the Cartesian coordinates
as [19]3

k x (k x E) +w?ueE =0, (A.164)

which leads to

KE — (k-E)k = k2—E, (A.165)
€0

where k is the wave vector, E is the electric field and k3 = w?ueg. The permeability for a orthorhombic

crystal is defined by [7,137]

S
SIS

(A.166)

oS, O
w N o

33See Yariv [19] pp. 72-73.
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where n, < n, < n,. By substituting Eq. (A.166) into Eq. (A.165), we obtain

k2n2 — k2 — k2 kaky keok E,
koky k2n2 — k2 — k2 kyk E, | =0. (A.167)
kegk- —kyk. k2n2 — k2 — k2| \ E.

For non-trivial solutions to exist, the determinant of Eq. (A.167) should be zero. When k, is zero,
Eq. (A.167) becomes

K2n2 — k2 Kk, 0 E,
koky  k3n2 — k2 0 E, | =0, (A.168)
0 0 k2n2 — k2 — k2| \ E.

which leads to the determinant, giving

z

det M = (=1)**(kgn2 — k2 — k) [(k:gni — k) (kgny — k2) — K3k, | = 0. (A.169)

We then find that the equation for the normal surface can be factorized according to

K k) W\ (K kW
AT TR AN TR AN ) A.170
<n§ + n2 2 n2 + n2 2 ( )
When k, is zero, Eq. (A.167) becomes

k&n2 — k? 0 kyk E,
0 k3n2 — k2 — k? 0 E, | =0, (A.171)

kyk. 0 kin? — k2| \E,

The determinant can be obtained, giving

(=172 (kg — K2 = K2) | (Rn — K (K2 = 2) = K2K2] =0, (A172)

Figure A.9: Intersection of the normal surface of a biaxial crystal in zz plane. 6 is the angle between
the optic axis and k..
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which yields

ROk 2\ (R R W
(Tﬁn) (nm)o (4.173)
z T Y Y

In contrast to Eq. (A.170), we can see that there are intersections of the ellipse and the circle in the zz

plane illustrated in Fig. A.9.%* From the second term in Eq. (A.173), we find that k, is expressed as
k2 =—5n. — k2. (A.174)

By substituting Eq. (A.174) into the first term in Eq. (A.173), we obtain

1 [w?, 9 k2 w?
n2 (Cz ny =k +é=§, (A.175)
which leads to
e e
Similarly, the expression for k, can be also obtained, giving
2 2 2 2
_ W PNy w ny —n;

Therefore, the angle ¢ between one of the optic axes and the z axis (k) is expressed in terms of refractive

indices as
ka n, n2 — TL%
tanf = ==, /4L = A.178
an ko.  ng \ n2— n% ( )
which implies that
n2 —n2
0 =tan~! [: ng_nﬁl , (A.179)
T Z y

where n, <ny <n,.
We now recall from Eq. (2.143) the index ellipsoid of ZnTe for o = 7/2 in the presence of THz field,

giving?®
SL‘”2

1 1
— + y/'2{7 + T41ETHZ sin29} + z//2{72 - T41ETHZ sin29} =1. (A180)
n n

n

For a small external electric field, the refractive indices can be evaluated to obtain

1 -1/2 1

Ny = [—2 + 741 By, sin 29} ~n (1 - §r41n2ETHZ sin 29) , (A.181)
n
1 i —-1/2 1 9 )

Ny = [—2 — 741 Frp, sin 29} ~n 14+ Jran Ery,sin26 |, (A.182)
n

which lead to the index ellipsoid

"2 12 "2
i =1, A.183
PR ey )2 (A.189)

34See Yariv [19] p. 74.

357ZnTe is a cubic crystal when the external electric field is zero. However, the structure of ZnTe is changed into an
orthorhombic crystal when the external electric field is different from zero [137]. So, the optical symmetry of ZnTe becomes
biaxial.
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where 8 = %mlnSETHZ sin26. When n, < ny, < n., it is deduced from Eq. (A.173) that the optic axes

2" plane when

are on the zz plane. In a similar fashion, we thus find that there are optic axes on the y
Ny < Ngr < nyr. Hence, the angle §optic between one of the optic axes and the 2z’ axis (k) is thereby

obtained from Eq. (A.178), yielding

tan Ooptic = (A.184)

n+ 8 |n?—n2(1— rqy FETh, sin 20)
n—_p TL2(1 + r41 By, sin 29) —n?’

where ny, =n — 8 =nyr, ny, =n = nys and n, = n+ f = n,» are substituted into Eq. (A.178). Since

the electro-optic coefficient 741 of ZnTe is the order of 1072 m/V [138], we conclude that

n+ g

n —

~

tan Ooptic = =1, (A.185)

313

iy

so that Ooptic is /4 with respect to the 2 axis (k,).

A.9 THz pulse train shown in the measured THz field

(@) (b) Original
THz waveform

T

A » Time
(c) Earlier pulse
» Time Measured
Past Present THz
waveform
=] ==
Time-delay

Figure A.10: Schematic diagram of measuring THz waveform using a probe pulse. (a) The optical probe
beam is reflected by some optical elements. (b) When THz waveform is measured by the probe beam by
varying the time-delay between the THz signal and the probe beam in a range depicted by a gray color,
the THz waveform is measured as a shape with an earlier THz pulse illustrated in (c).

From the measured data in Fig. 3.3(a), we can see that there is an earlier pulse than the main
THz waveform through the sample (red solid line) near 55 ps. The reason why there is an earlier pulse
than the main THz signal is that the optical probe beam is reflected by optical elements involved in the
measurement.

The schematic diagram for understanding is illustrated in Fig. A.10. First, the optical probe beam
is reflected by some optical elements as shown in Fig. A.10(a). When THz waveform is measured by the
probe beam by varying the time-delay between the THz signal and the probe beam in a range depicted
by a gray color in Fig. A.10(b), THz waveform in the time-domain is measured as a shape with an earlier
THz pulse illustrated in Fig. A.10(c).
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A.10 Why the directionality of light becomes better for higher
frequency light?

The directionality of light can be described by the diffraction of which physical interpretation is
explained by Kirchhoff’s diffraction theory given by [11,12,27]3¢
Z'kefiwt eikR

E(xz, t)=— o

/Sd%' Eo(2', y, 2/ =0) O(bo, 0), (A.186)
where E(x, t) is the electric wave at a field point @ with 7 = /22 + y2 + 22. R = |&—a'| is the distance
between the field point and the source point in the aperture plane S, which is the closed surface on the
(', y', 2 =0) plane. Eq(2’, 3/, 2’ = 0) is the incident wave on S.?” © is the oblique factor given as a
function of 6y = Z(n, ') and § = Z(7, ) in which 7 is the normal vector of S. Kirchhoff’s diffraction
theory is valid when the width of the slit is large enough compared with the wavelength A of the incident
electric field.

When both the incident and diffracted waves are effective plane waves, Kirchhoff diffraction is called
as the Fraunhofer diffraction. Effective plane waves means that the distance from the aperture to the
observation plane is large enough compared to the distance from the aperture to the source, i.e., r’ < r.
By substituting Eq. (A.82) into R, Eq. (A.186) for the far-field zone (7' < r) becomes

ik exp [i(kr — wt)]
2m r

r- T

/
/dQI/ Eo(2', o, 2/ =0) exp [—ik’ " } , (A.187)
S

E(x, t) =
where k = 27/ in air and O(fy, 0) ~ 1 since r is sufficiently large compared to the aperture size.

A.10.1 Fraunhofer diffraction in the rectangular aperture

Provided that the incident field on the aperture plane with 2’ € [—a/2, a/2] and y' € [-b/2, b/2]
is assumed to be constant over the entire aperture, Eq. (A.187) in the case of an rectangular aperture

can be obtained, yielding [11,27]%

exp [i(kr — wt)] sin X sinY’

E(x, t) = CEyab A.191
( ? ) 0 r X Y ) ( )
36Eq. (A.186) is called as “Kirchhoff’s diffraction formula”.
37In general, Eg(x’, ', 2’ = 0) is defined as Egexp(ikp')/p’ with p’ = y/2'2 + y'2 for a spherical wave.
38See Hecht [11] pp. 464-470 and Fowles [27] pp. 106-117.
i(kr — wt a/2 ’ b/2 ’
E(xz, t) = CM Eo/ dz’ exp {71kﬁ} / dy’ exp [fzk&} , (A.188)
r —a/2 T —b/2 r
where C = —ik/27. With kz/r = o/, the integral with respect to z’ containing a exponential function is calculated as
/@/2 o - _Z‘kﬂ _ /a/2 d;v’e*ia/x/ _ ;1 [efio/ac'}x/:a/Q _ ;1 [efia'a/2 _eia'a/2]
—a/2 T —a/2 ! z'=—a/2 1oy
ia’a/2 _ —ia'a/2]
_ i [eia/a/2 _ e—ia’a/Q] _ 3 [e ¢ (A.189)
i/ of 24
2 . ,a a ,a sin X
:—5111(()47):75111(@7):@ ,
of 2 o’a/2 2 X
where X = kaz/2r. Similarly, the integral with respect to y’ is also calculated as
b/2 / inY
/ dy’ exp {—zk%} = (A.190)
—b/2 T Y

where Y = kby/2r.
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where C' = —ik /2w, X = kax/2r and Y = kby/2r. The corresponding irradiance is expressed as

I={(Re E)?) = %|E(m, 2 = I (SIHX>2 (Smy)Q, (A.192)

X Y

where Iy is merely another constant.
In order to answer the question of this section, we need to focus when the irradiance is zero. Zero

values occur at X = mm and Y = nx for m, n € Z given by

B kax

kaz _ kby _
== -

=mm, Y = 5y = 1T (A.193)

With k = w/c = 27/, the above equations can be written as

2T ax

27 by

From these equations, we find that the positions of the minima for Egs. (A.194) and (A.195) are pro-
portional to A, which implies that the positions of the minima are proportional to 1/f, where f is the
frequency of the incident field. Therefore, the positions of the minima on the observation plane are closed
to the optical axis when the frequency of the incident field is higher; i.e., the directionality of light with
higher frequency is much better than light with lower frequency.

This question can also be solved by using the Gaussian beam at a focus described as in the sec-
tion A.3.1. Although the paraxial approximation is used, we can find the tendency of diffraction for a
light with a specific frequency. From Eq. (A.11), the angular beam spread for § < 7 as shown in Fig. A.1

is defined by [19]*°
A

0 = tan~* ( A ) ~ , (A.197)
Twon Twon

which implies that A of the incident wave is proportional to 6. In other words, the frequency f is

proportional to 1/6; i.e., the light with higher frequency is diffracted less than the light with lower
frequency. This result is the same as that induced by the diffraction theory.

A.10.2 Fraunhofer diffraction in the circular aperture

Provided that the incident field on the aperture plane with radius of a is assumed to be constant
over the entire aperture, Eq. (A.187) in the case of an circular aperture can be expressed by a change of

variables as

. o - o
E(z, t) = —ﬁwEo/dQl‘/eXp g2 ]
2m r 3 L T
_ ik expli(kr — wt)] £, / 22 exp '_iqu’ cos 6 cos 0’ + gr’ sin 0 sin 9’}
2m r g L r
ik i(kr — wt [ !
= —Z—MEO / 4 exp | —ik L cos(f — 0')} , (A.198)
2m T S L r
39
zZ
tanf = T2 — A . (A.196)
z Twon
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where

2 =7r'cost, x=qcosb, (A.199)
y =1r'sin@, y=gqsinb. (A.200)

For sake of simplicity, we just consider the situation in the case of § = 0. We then find that the integral
in Eq. (A.208) becomes

QTI a 27 QT/
Int = /d2x’ exp [—ik cos 9’] = / dr’ 7"'/ exp {—ik cos 0/] . (A.201)
S r 0 0 r

By using the first kind Bessel function of the order of zero given by [11,133]

1 27 .
Jo(@) = 5= /0 dy €Y, (A.202)

the integral can be evaluated as
a 2m ’ a /
k k
Int :/ dr’ r'/ exp [z( - )cos 0'} = 27r/ dr' ' Jo < ar ) : (A.203)
0 0 r 0 r
With a relation J,(—z) = (—=1)"J,(x), this equation becomes

a /
Int = 27r/ dr' ' J (k‘f ) . (A.204)
0

By taking kqr’/r = £ such that kq dr’/r = d€, the integral can be evaluated as

kqa/rr r , 2
Int =2 —d& —&J, =2 —
n wjﬁ - e (9 7T(kq>

kqga/r
/ de €0 (€). (A.205)

0

The well used property of Bessel function is

Yy
/ dx zJo(x) = yJ1(y), (A.206)
0
which leads to
2 kqa kqa ra kqa
Int=2r(—) —h|—)|=2n—J1|— |. (A.207)
kq r r kq r

Therefore, the E field diffracted by a circular aperture is written as

(kr — wt 2ma? k i(kr — wt k
E(a, 1) = —ipSPlkr Z @b o 2ra” (qa> i SRl Z )] p Ti(Raa)r) o)
r kqa r kga/r
-
which implies that the irradiance is given by
1 1 [ kEora?\*|2J (kqa/r)|?
_ 2y _ 2 _ 1 0 1(7g
I ={(ReE)*) = 2|E(ar:7 t)] 3 ( . ) ‘ Fqa/r (A.209)
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Figure A.11: Graph of a function of f(x).

Furthermore, we find from Eq. (A.208) that the magnitude of the E field is written as

2.J1(kga/r)
E t)| = | EBinitial| | ——————= 1, A.210
‘ (w7 )| | tall kqa/r ( )
where the last term including the Bessel function is illustrated in Fig. A.11 and
kE
|Einitia1| == ‘TOTFCLQ . (A211)

Eq. A.210 straightforwardly indicates Eq. (4.7) in chapter 4. In order to obtain the representation
of FWHM, we need to find  corresponding to the half maximum of Eq. (A.210), which can be obtained
by taking Eq. (A.210) to have the form

—0. A.212
- 0.5, ( )

‘2J1(x)

so that x ~ 2.214. It should be noted that a plane wave by using a focusing lens exhibits the same
physical phenomenon that takes place in the diffraction by a circular aperture [11].*° When a incident
plane wave with a wavelength of A and a beam radius of Wy /2 is focused by a lens with a focal length

of f, the beam radius W/2 in the plane of observation can be obtained, yielding

kga _ k(W/2)(Wo/2)

—_— = =27214 A.213
; ; , (A213
which leads to Eq. (4.7) given by
4.43f
W = A A.214
7TWO ’ ( )

where k = 27/

40See Hecht [11] p. 467.
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A.11 Different intensity of optical beam with 45° pol. by two

optical components

Through a polarizer Through a half-wave plate

O @ | e

Table A.1: Transmitted intensities from an optical beam with 45° polarization through different optical
elements. R(yp) is the rotation matrix defined in Eq. (2.120).

It is easily seen from table A.1 that the transmitted intensity through a polarizer is different from

that of a half-wave plate.

Matlab code

Matlab code for calculating Eqs. (2.153) and (2.157).

clear all;

syms X y z n r4l ex ey ez;

ff=(x/n) "2 + (y/n) "2+ (z/n) 2 + 2%rdlx(ex*xy*xz + ey*x*z + ezxx*y);
rot3x=@(x) [1 0 0;0 cos(x) —sin(x) ; 0 sin(x) cos(x)];

rot3z=@(x) [cos(x) —sin(x) 0 ; sin(x) cos(x) 0 ; 0 0 1];

syms theta xp yp zp

xx=rot3x (theta)* [xp; yp; zpl;

return;

syms theta gamma phi

w_znte=...

[cos (theta) "2+sin(theta) "2*exp (i*gamma) cos (theta)*sin(theta)—cos (theta)*sin (theta)*exp (i*xgamma) ;

cos (theta)*sin (theta)—cos (theta)*sin (theta) *exp (ixgamma) sin (theta) "2+cos (theta) "2%exp (ixgamma) ];
ei=[cos (phi);sin(phi)];

rot=0@(x) [ cos(x) sin(x) ; —sin(x) cos(x)];

w_quarter=rot (—pi/4)*[1 0; 0 exp(i*xpi/2) ]*rot (pi/4);
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ol
ol

et=w_quarterxw_zntexei;
% ( cos(gamma)+i*sin (gamma))

return;

oo
o

0]

( cos(gamma)+ixsin(gamma))*sin (theta) "2%(1/2 + 1/2) +...

( cos(gamma)+i*sin (gamma) )*cos (theta)*sin(theta)*(— 1/2 + 1/2)) +...
sin(phi)* (cos (theta)*sin(theta)*(1/2 + 1/2) + sin(theta) "2%(1/2 — 1/2) +...
( cos(gamma)+ixsin(gamma) ) *cos (theta) "2%(1/2 — 1/2) + ( cos(gamma)+...

ikxsin(gamma) ) *cos (theta) *sin (theta)x(— 1/2 — 1/2));

cetl=cos (phi)* (cos (theta)*sin (theta)*(1/2 + 1/2) + cos(theta) "2x(1/2 —1/2) +...
( cos(gamma)—i*sin (gamma))*sin (theta) "2%(1/2 — i/2) +...
( cos(gamma)—ixsin (gamma))*cos (theta)*sin (theta)*(— 1/2— 1/2)) +...
sin(phi)* (cos (theta)*sin(theta)*(1/2 — 1/2) + sin(theta) "2%x(1/2 + 1/2) +...
( cos (gamma)—i*sin (gamma) )*cos (theta) "2%(1/2 + 1/2) +...
( cos(gamma)—ixsin(gamma))*cos (theta)*sin(theta)x(— 1/2 + 1/2));

% cetl= conjugate of etl.

ol

o
S

et2 =cos(phi)*(cos(theta)s*sin(theta)*(1/2 + 1/2) + cos(theta) 2% (1/2 — 1i/2)
+ ( cos(gamma)+ixsin(gamma))*sin (theta) "2%(1/2 — 1/2)
+ ( cos(gamma)+i*sin(gamma))*cos (theta)s*sin(theta)*(— 1/2 — 1/2)) +

sin(phi)* (cos (theta)*sin(theta)*(1/2 — 1/2) + sin(theta) "2%(1/2 + 1/2) +...
( cos(gamma)+ixsin(gamma))*cos (theta) "2%(1/2 + 1i/2) +...

( cos(gamma)+i*sin (gamma) )*cos (theta)*sin(theta)*(— 1/2 + 1/2));

cet2=cos (phi) % (cos (theta)*sin (theta)*(1/2 — 1/2) + cos(theta) "2x(1/2 + 1i/2)

+ ( cos(gamma)—i*sin(gamma))*sin(theta) "2*(1/2 + 1/2)

+ ( cos(gamma)—ix*sin (gamma))*cos (theta)s*sin(theta)x(— 1/2 + 1/2)) +
sin(phi)* (cos (theta)*sin(theta)*(1/2 + 1/2) + sin(theta) "2x(1/2 — 1/2)
+ ( cos(gamma)—ix*sin (gamma))*cos (theta) "2%(1/2 — 1/2)
+ ( cos(gamma)—ix*sin (gamma))*cos (theta)s*sin(theta)x(— 1/2 — 1/2));

% cet2= conjugate of et2.

oo
o

finalet=expand (etl*cetl—et2*cet2)

% ans=2x*cos (phi)*cos (theta) "4*sin (gamma) *sin (phi)

% — 2xcos (phi)*sin(gamma)*sin (phi)*sin (theta) "4
% — 2xcos (phi) "2xcos (theta) *sin (gamma) *sin (theta) "3
% — 2%cos (phi) "2xcos (theta) "3%sin(gamma) *sin (theta)

% + 2xcos(theta)*sin(gamma) *sin (phi) "2*sin(theta) "3

% + 2xcos (theta) "3*sin(gamma) *sin (phi) "2*sin (theta);
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Chapter B. Experiment equipment

B.1 Lock-in amplifier

The Lock-in amplifire is an experimental equipment used to remove noise in the measured signal.
If the frequency of the reference signal is w;, the noise in the measured signal can be removed by the

lock-in amplifier as [139]

Viue(t) = % /t s+ O)Vin(0), (B.1)
where
Vin(t) = Vo ) _sin(w;t) (B.2)

is the input signal, V} is the magnitude of the measured signal, T is the averaging time, 6 is a phase that
can be modified using the lock-in amplifier.

Note that the original signal has only one frequency component, however, the signal is changed into
the measured signal with noise comprised of each frequency component. We find from Eq. (B.1) that

the noise in the input signal can be removed due to the orthogonality of sine function.

B.2 Laser system

The used laser system is a femtosecond Ti:Sapphire pulsed laser with a repetition rate of 80 MHz. To
understand the oscillator system, we need to know about concepts of spontaneous emission, stimulated

emission, Brewster angle and etc. References [2, 140] would be help to understand.
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Chapter C. Useful mathematical formulas

C.1 TUnit vector calculation

C.1.1 Unit vectors in the spherical coordinates

All the vectors in a n-th dimensional space can be described using a number of linearly independent
unit vectors. In three-dimensional (3D) space, Cartesian coordinate system is often used in the vector
space to represent the direction of an arbitrary vector. In this coordinate system, the unit vectors are
defined by

z, 9, 2. (C.1)

The Cartesian coordinate system is, however, sometimes confusing for one who wants to know its the
physical meaning in relationship to a problem. Therefore, alternative coordinate systems such as spherical
coordinate and cylindrical coordinate systems are required.

In the spherical coordinate system, the unit vectors in the Cartesian coordinates must be changed.
In this section, it is briefly explained that unit vectors in Cartesian coordinates are changed into spherical

unit vectors In Cartesian coordinates, a position vector at point P is defined by
7= dr+ gy + 42, (C.2)
If r is the norm of the position vector, each axis can be defined by three parameters given by
x=r sinf cos¢, y=r sinf sing, z =r cosé. (C.3)
Then the position vector described in Eq. (C.2) becomes
F==2r sinf cosp+§r sinf singp+ 2 r cosf =7 r, (C.4)
where 7 is the unit vector in the radial direction. From Eq. (C.4), we obtain the radial unit vector 7
given by

T

F=—=2 sinf cos¢p+ ¢ sinf sing + 2 cosb. (C.5)

By total differentiation of both sides of Eq. (C.5), the derivative of 7 is

dif = & (cos¢ cosf df —sin6 sin¢ do) + ¢ (cosf sing df +sin cosd dp) — 2 sinf df

= [i: cosf cos¢p+ ¢ cosf sing — 2 sin&} do + {—50 sinf sin¢g + 4 sinf cos¢| do (C.6)

where dZ, dfj and d2 are zero'. Recall that the derivative of the position vector 7 is described as

F=rfdr+60rdl+¢r sind do, (C.8)
1
d(Z sinf cos¢) :\di/ sin@ cos¢ + & d(sinf) cos¢p + & sinf d(cos ¢). (C.7)

=0

158



where Eq. (C.8) is further explained in section C. Therefore, from Egs. (C.6) and Eq. (C.8), an unit

vector in the polar angle 6 and another unit vector in the azimuthal angle QAS can be obtained, giving

v\ (e (o
r\ df ~\df -\ oe
d¢=0 d¢=0 ¢

=2 cosf cos¢+7 cosh sing — 2 sinf =0 (C.9)
r sinf \ d¢ —o sinf \ d¢ —o sinf \ 00 )
=—2 sing+ g cos¢p = . (C.10)

C.1.2 Cross product using spherical unit vectors

In Cartesian coordinates, the cross product of any two vectors can be easily calculated by the Laplace

development. If there are & and ¢, then the cross product of the vectors becomes

00 10 1 0
gxg=11 0 0=(-D'"t3 + (=12 g + (=13 2 = 3. C.11
y010() 1O()yoo() 0 1 (C.11)

How can the cross product of two vectors be obtained when any of the two vectors are in the spherical
coordinates? Let’s consider that there are two unit vectors in the spherical coordinates given by # and
0. Then the cross product of # and 6 can be calculated by spherical coordinate elements or Cartesian

coordinates elements. The cross product can be evaluated as

) Poro rsin&qg
Txaiml 0 0
0 r 0
1 [ 00 10 1o
- 11+1A 7114’2 0 711+3 ino
T (S N RS T A RS T

The cross product can be also obtained by Cartesian coordinate elements as in Egs (C.5), (C.9) and

(C.10) as follows

z U z
7 x0=|sing cos¢ sinf sing cos @
cosf cos¢p cosf sing —sinf
. |sinf sin¢ cos 6 . |sin® cos ¢ cosf sinf cos¢ sinf sin¢
=X —_
cosf sing —sinf cosf cos¢p —sinf cosf cos¢p cosf sin¢
= @(—sing) +§ cos¢ = ¢. (C.13)
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The cross product of 7 x QAﬁ becomes

) Foré rsin@é)
Tx¢zr2sin9 Lo 0
0 O rsin 6
1| 0 0 1o oo
=— |[(=D)Hp —D)H*2 9 + (=D r sing
r2sm9_( ) 0 rsinf ) 0 rsinf (=1) ¢ 0
-1 ~ A
:m r? sinf 0 = —0. (C~14)

C.2 The rotation matrix

There are two ways to describe the rotation matrix. One is the intrinsic rotation and the other is
the extrinsic rotation. These expressions may not be familiar to somebody. However, we have learned
about the matrix rotating the system coordinates or the vector in many text books [133]. The coordinate
system rotation matrix is one that rotates the coordinate system about a given axis in a counterclockwise
direction [141]. On the other hand, the vector rotation matrix represents a matrix that rotates a given
vector about the global axis in a counterclockwise direction [141]. These rotations can be categorized
into the intrinsic or extrinsic rotations [142]. In other words, the coordinate system rotation and the
vector (or point) rotation can be understood as intrinsic and the extrinsic rotations, respectively.

The system coordinate rotation Rjys about the j-axis and the vector rotation matrices R;* about

the j-axis are defined as [133, 141]

[ 0 0 ] —cos 6 0 —sin 0- [ cosf siné O—
RY*(0) =10 cos® sinf|, R0O)=] 0 1 0 , RY@)=|—sinf cosf 0],
—sinf cosd sinf 0 cosf 0 0 1
_ _ _ ' ) (C.15)
[ 0 0 | [ cosf 0 sin 9_ _cos 0 —sinf 0_
Ry°(0) = |0 cos® —sinf|, R;<(0)= 0 1 0 |, RI(0)=|sin@ cosf O
sinf  cosf —sinf 0 cosf 0 0 1
) ) ) ) ) _(C.16)

Since the rotation matrix is orthogonal, R is related to R}*° as

Rjj;ys(e) = R} .(0) = R}*°(0) = R (—0), (C.17)
Rji,\%ec(g) = R}/ec(_a), (C].S)

where T represents the transpose matrix.
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C.4 Taylor expansion

The one-dimensional (1D) Taylor series for f(x) about a point x=a is given by [133]

1) = f@) + (@ —a) @)+ CD a4y T o) 4
-3 |- %Z;] I (c21)
n=0 ’ r=a
where n n
l(x - a)di] =(x—a)" (;i) . (C.22)

The relation in Eq. (C.22) is invalid in the general calculation cases.
The Taylor series can also be generalized to any function of more than one variables. A function of

two variables, f(z, y), can be expanded about a point z = a and y = b given by

Z[w—a <y—b>§y] k)

n!
n=0

r=a, y=b

— e B+ @A) =g Sl )

(a, b)

2 9 ) .
(0= @ + @ - @y g +<yb>§2y] fee v

(a; b)

toe (C.23)
(a, )

A function of three variables, f(z, y, z), can also be expanded about a point (a, b, ¢) given by

(C.24)

] L R

r=a, y=b, z=c

The Taylor series for a function of three variables can be treated in many physical problems since

any vector consists of three elements. Then the Maclaurin series® for f(z, y, 2) is defined by

_ 9 9 9| flz, y, 2)
f(z, y, )—Z $87z+y67+267 ol
n=0 (0, 0, 0)
=f(0,0, 0)+ |z=—+ 2Jrz f(z z) +--
- ) ) 8 yay a 7y7
(0, 0, 0)
=f(0,0,0+(Zx+yy+2=z) fcé—i—Aﬁﬁ-éﬁ f(z ) +--
gy wtis T v,
(0, 0, 0)
=f(0,0,0) +Z - Vf(z, y, 2) 4+ (C.25)
(0, 0, 0)
Here, the third term can be simplified as
o 0 i o o .o\ 2
IR B 7 5y 4 — 1 — 15 = - |z. 9
xax—l—yay—i—za Fx+gy+2=2) (az 5‘x+yay+zaz>1 [m V}, (C.26)

2The Maclaurin series is the Taylor series about the origin [133].
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where @ - V can be represented by its elements in the form
3 3 P
~(Ten) (Soam)-Tewn g -Sha - Ta g
i=1 j=1 7 i, j i

From Eq. (C.22), the square of & -V becomes

{ } Zx* Z i ax Zx zj 8% axj' (C.28)

The above equation is in general invalid when the relation in Eq. (C.22) is not defined. Therefore, the

Maclaurin series for f(z, y, z) about 0 = (0, 0, 0) is

3 92

Z i g f(r, Y, 2)| £ (C29)
1 ULy

j=1 0

f(l‘, Y, Z):f(oa 0, 0)+5Vf($, Y, =

The Maclaurin series for well used functions are as follows

72 23 e "
e’ —1+x+§+3 +- ~=j§::omforallx, (C.30a)
x?  at 2f
coslefaJrﬂfaJr - for all z, (C.30Db)
3 x® 2T
sinz =z — 37 + o + ... for all z, (C.30¢)

tanx—x+x—3+zx5+1—7x cfor —1 <z <1, (C.30d)
3 15 315 .

3 5 7
L T AT
tan” xz =x 3 + 3 - + .- for all z, (C.30e)
2 3 4
ln(l—i—glc):m—a%—i—a%—a%—i—~-~f01"—1<x§17 (C.301)
3 5 7
sinh:r:x—i—%—i—%—i—%—i—--- for all x, (C.30g)
T =l4+az+2+2°+-- for -1 <z <1 (C.30h)
-z

C.5 Binomial expansion

The binomial series is often used to solve enormous physical problems. For a variable x much less

than 1, the binomial series of the function defined by (1 + z)® for s € C is
s(s—=1)(s—2) 4

s(s—1) ,
ST 3! .

s(s — 1)(547 (5 =3) 4y o 2| < 1. (C.31)

lI+z)=1+sx+

The binomial theorem is generally expressed as

(a+b)" = zn: (Z) a" b, (C.32)

r=0
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where the matrix form represents the r-combinations of n elements in the form

(”) R (C.33)

T rli(n —r)!

C.6 Leibniz’s rule

Leibniz’s rule is a convenient integral formula defined by [133]

e " P
& Jo flz,t) dt:f(z,v)%*f(x,u)%Jr/u 5 /(@ t) dt. (C.34)
C.7 Flux
<I>=/V-ﬁda, (C.35)
A

where 7 is the unit normal vector to the closed surface A, which is pointing out of the surface. do

represents an area element on the surface A [133].

C.8 Gauss theorem (Green’s theorem, Divergence theorem)

If A is a vector function and S is a closed surface bounding a three-dimensional volume V', then
/ V-Adz= y{A -hda, (C.36)
\% S

where 7 is the unit normal vector to the closed surface A.

If S is a surface in a plane with boundary 9S, Eq. (C.36) can be written as
/v A dPr=¢ A-adl. (C.37)
S 28
With the substitution A — ¢C),
/ Vo dr = ?% nda, (C.38)
% S

where C' is any constant vector.
With the substitution A —+ A x C,

/VxAd?’x:?{ﬁxAda, (C.39)
\% S

where C' is any constant vector.

C.9 Stoke’s theorem

If A is a vector function and C is a closed contour bounding an open surface S, then

/S(v x A) - fda = 7{314 L, (C.40)
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where dl is the line element of the contour. Problem 17 on p. 293 in Boyd [7] would be a help to

understand.

C.10 Fourier transformation

The Fourier transform is defined as [7, 12]

E(t) = % /:)O dw F(w) 7™ = F[F(w)),

ﬁ@):/wdtﬂﬂdmzé?HE@L

— 00

By replacing ¢ by k and w by z, the Fourier transform can also be written as

Euqzé%/ dz F(z) e,

— 00

ﬁ@:/wwﬁwam

—00

C.11 Planckerel’s theorem

1 o ’
5m=§/ dk e'*®.

Proof. The Fourier transform can be written as

o) =5 [ do fa) e,

Fa)= [ dk gk) .

By substituting f(z) = §(z) into Eq. (C.44a), it follows that

g(k) = S /00 dx §(z) e = S

27 J_ o 2’
which leads to - | oo
ﬂ@:/ dk g(k) ett® = — dk e'*®.

27 J_ o

We therefore obtain the relation in Eq. (C.43).

C.12 Differentiation and inverse functions

Definition C.12.1. Natural number

1
lim(1+2)* = lim(1 4+ —)* = e ~ 2.7182818.
z—0 x—0 x
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Derivative C.12.1. A logarithmic function and an exponential function

d 1
—(logax) =—— fora>0, a#1, >0. (C.48a)
dz zlna
d
d—(ax) =a" Ina fora >0, a#1. (C.48b)
x
Formula C.12.1. Euler’s formula
e = cosx + isin . (C.49)

This can be proved by the Taylor expansion.

Note C.12.1.

cosx = %, sinz = # (C.50)
Definition C.12.2.
If z=a+ib=re?, Inz=In|z| +iargz, where |z| =7 and arg(z) = 4. (C.51)
Derivative C.12.2. Total derivative
df (z, y, z) = gdm + gdy + 8—fclz (C.52)

oz dy 0z

_(9f of of
= (8957 87/’ 62) - (dz, dy, dz)

=Vf-dr, (C.53)

where Vf is a gradient of f.

C.12.1 Trigonometric functions

Definition C.12.3. Trigonometric functions.

T —ix T —ix 3
e +e . e’ —e sinx
cosx = ——— sing = ———— tanx = (C.54a)
2 27 coszT
cos T 1 1
cotr = — secx = csexr = — (C.54b)
sin x cos T sinx
2 L2 2 a2 2, a2
cos“x +sin“y =1 1+tan“z =sec” z 1+ cot®x = csc” . (C.54c¢)
3 r T T
o5 [ %, tan(x) 1
&,
2 4 g
1.5 / sin™(x) 4
fo"
[ A 4 < —
%
Z o5l 06\“) / %)
0 S /
051 tan(x) / ]
(4
) t—— — — — A=
1.5 {
n 0 T

Figure C.1: Trigonometric functions.
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Definition C.12.4. Addition of trigonometric functions.

sin(a £ b) =sina cosb £ cosa sinb

cos(a = b) =cosa cosb F sina sinb

tana &+ tanb

t +bh)= o
an(a ) 1Ftana tanb

Note C.12.2. The law of cosines

a? = b+ ¢® — 2be cos A,
b2 = a? + ¢® — 2ac cos B,

2 =a%+b%>—2ab cosC.

C

Figure C.2: Triangle

Proof. From the above figure, we find that

a="bcosC + ccos B,
b=ccos A+ acosC,
c=acosB+bcosA,

which further make

a? = abcos C + accos B,

b2 = becos A + abeos C,

® = accos B + becos A.

By combining Egs. (C.58b) through (C.58¢), we obtain

b2 + ¢ = becos A + abeos C + accos B + becos A.

We then find by subtracting this equation from Eq. (C.58a) that

a® — (b* 4+ ¢?) = abcos C + accos B — (becos A + abcos C + accos B + becos A),

which implies that
a® — (b + ¢?) = —2bccos A,
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(C.57Db)
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so that

a? = b% + ¢ — 2bccos A. (C.62a)
Similarly, we find that
b? = a® + ¢ — 2accos B, (C.62Db)
¢ =a® +b* — 2abcos C. (C.62¢)
O
Note C.12.3.
2 2a-1 — Za=01+ 2a)/2
cos 2a = cos® a — sin a = oSt ) C082 a=(1+cos2a)/ (C.63)
1—2sina — sin“a= (1 - cos2a)/2.
Derivative C.12.3. Trigonometric functions.
4 ing — d = —si (C.64a)
oy Sinx = cosz 4y CosT = —sinz .64a
d
e tanz = sec® x e cotx = —csc’x (C.64b)
d
—secx =secT tanz —cscr = —cscx cotw (C.64c)
dz dz
Derivative C.12.4. Inverse trigonometric functions.
d 1 d -1
ﬁsin_lx:ﬁforfl<x<l %cosflx:ﬁforfl<x<l (C.65a)
1 d -1
—tan "tz = —cotTlr = — C.65b
de T T2 dz T T Ty a2 ( )
1 -1
% SeC_l Tr = m, T € (_007 _1] U [1700) % CSC_l T = m, T € (_OO7 _1] U [1,00)
(C.65¢)
Proof.
sinlz =y e r=sny
o d d . o 1 dy d ,
—x = —sin = —~—siny = cos
dx do oY dzx dy 4 vy
sy = L ! = ! : ’—dsin_lx— !
Y cosy /1 —sin2y V1-—a? T V1—a?
O
Derivative C.12.5.
-1 1 2 2
cosTw=-In(wt Vw?—-1), wtVw?—-1>0 forweR. (C.66)
i
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Proof.

iz —iz 12)2 1 . .
cosz = % =—w S % =w e by multiplying e'* in both sides.

)2 —2w (®)+1=(e*)? 2w () +w? —w? +1=0
s -—w?=uw-1 e =wt Vw2 -1

; 1
she” =iz=In(w+ Vw2 —-1) . .z=cos 'w=-In(w+ Vw2 —1) forw € C.
i

O

Variable x must be bigger than zero when the function is defined as Inz. Since In(w + vVw? — 1)

can not be defined when w 4+ vw? — 1 < 0, we obtain the result for real numbers as follows
1
z=cos tw=>In(w=+ Vw2 —-1), w+ Vw2 —-1>0 forw € R.
i

Derivative C.12.6.

1
sin~tw = ~ In(iw + /1 — w?) for w € C.
i

Proof.

. = — eiiz (eiz)2 -1 iz . . iz .
sinz = — =Y & g We by multiplying e** to both sides.
i i
()2 = 2w () — 1= (%)% = 2i w () + (iw)* + w? — 1 =0

2

s —iw)?=1-w? e =iw+tV1—w?

: 1
Slne” =iz=Inliw+ V1 —-w?) . z=sin"tw=-In(iw++1—w?) forw e C.
i

Derivative C.12.7.

2 1 —dw
Proof.
sin 2 1 eiz —e iz eiz _ efiz
tanz = = - - - = — — = W,
COS 2 el 4 iz 2 Z(e“*’ + e—zz)
2

which implies that

By multiplying e** to both sides, we obtain
(€)% —1 =iw [(6”)2 + 1},
which leads to

_ 1+aw
T 1—w’

(1- iw)(eiz)2 =1l+iw s (eiz)2
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so that

, . 144
In(e®)? = 2In(e?”*) = 2iz = In (1 * zw)
—fw

We therefore find that

1 1+14
z:tan_lw:2,ln< +zw> for w € C.

1 1—w
O
Note C.12.4. Orthogonality of trigonometric functions
o - 0 form#n
/ COSMET COSNT = / cosmzcosnr =4 w form=n ; (C.70a)
0 - 2r form=n=0
27 ™ 0 f
/ sin mx sinnx = / sinmx sinnx = or m # n , (C.70Db)
0 —n m form=n
2m T
/ cosmz sinnx = / cosmz sinnx = 0, (C.70¢)
0 -
. /2 0 form#n
/ COS X COSNT = / cosmzcosnr =4 5 form=n , (C.70d)
’ e m form=n=0
™ /2 0 f
/ sin ma sinnx = / sin ma sinnx = or m #n (C.70e)
0 —n/2 5 form=n
T /2
/ cosmz sinnx = / cosmaz sinnz = 0. (C.70f)
0 —m/2
C.12.2 Hyperbolic functions
Definition C.12.5. Hyperbolic functions.
ho — efte™® dnh oz — ef—e” tanh z = sinh z (C.71a)
coshx = 5 sinhz = 5 anhz = — — Tla
coshz 1 1
tha = sech © = sch ¢ = C.71b
ONT = Sz SR T T osha FATZ Sinha ( )
cosh? z — sinh®z = 1 1 —tanh®z = sech®x coth® z — 1 = eschx. (C.71c)
Derivative C.12.8. Hyperbolic functions.
4 sinha = coshzx a coshz = sinha (C.72a)
dx B dx B '
d d
— tanh z = sech®x — cothx = —csch®z (C.72b)
dx dx
d d
—sech x = —sech = tanhz —csch @ = —csch « cothz (C.72¢)
dx dx
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Figure C.3: Hyberbolic functions.

Derivative C.12.9. Inverse hyperbolic functions.

d 1 d 1
@ sinh_l Tr = \/TT for x € R % COSh_l Tr = ﬁ forl <z (0733)
d d
%tanhf1 T= 13 for |z| <1 e coth™ z = .2 for x| > 1 (C.73b)
isech_lgc - for0<z<1 icsch_1 S for x #0 (C.73¢)
dx V1 — 22 dx |lz[v/1 + 2 )
Derivative C.12.10.
cosh™ w = In(w + Vw? — 1) for w € C. (C.74)
Proof.
z —z 22 1
cosh z = % =w & % =w e by multiplying e* to both sides.
s 2w () +1=(e)?-2w () +uw? —w>+1=0
s —w)?l=uw-1 acf=wtVu2-1
shne* =z=h(w+ Vw2 —-1) .. z=cosh™'w=In(w+w?—1) forw e C.
O
Derivative C.12.11.
sinh ™' w = In(w + Vw2 + 1) for w € R. (C.75)
Proof.
z _ ,—z z\2 _ 1
sinh z = % =w & % =w e by multiplying e* to both sides.
s —2w () —1=(e)?-2w () +uw? —w?—1=0
s —w)?l=uw+l ecf=wtVur+1
slhne* =z=hw+Vw2+1) . z=sinh™'w=In(w+w?+1) forw e C.
O
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Recall that the variable x should be bigger than zero when the function is defined as Inz. For w € R,
In(w — vw? 4+ 1) can not be defined since w — vw? + 1 < 0. Thus we obtain the result for real number

as follows
z =sinh™' w = In(w + vw? + 1) for w € R.

Derivative C.12.12.

1 1
tanh ™' w = =In (—i—w) for w € C. (C.76)
2 1—w
Proof.
sinh z 1 e —e % e —e %
tanh z = coshz 2 —z 2 T e +e % -
2

Sef—eF=w(ef+eF)
s (@) -1=w [(62)2 + 1] by multiplying e* to both sides.

o l-w)eP=ltwe ()= TY

1—w
1 1 1
& In(e*)? =2In(e*) =2z =1In <1+1wu> cz=tanh tw = 3 In (14_?}”) for w € C.
O
C.13 Well used integral calculus
Integral C.13.1. )
/dm = In(secz + tanx). (C.77)
cosw
Proof. By taking ¢t = sin z such that cosz dx = dt, we obtain
1 1
Intz/da: :/dxﬂz/dx%z/dti.
cos T cos? x 1 —sin’z 1—¢2
Here, the integrand can be written as
1 a n b
1—t2 14t 1-t
which implies that ¢ = b = 1/2. Using this relation, the integral becomes
It—l/dt[i+ ! —|= [1 (L+1) +In(1 )]
3 T+t 1—t " "
71111 1+t 711 1+sinz *lln (1 +sinz)?
) 1—-t) 2 1—sinz/) 2 (1 —sinz)(1 +sinz)
1 1
=In —i—sma: +51nx> = In(secz + tanx).
1 —sin’z cos
O
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Integral C.13.2.

/dac ,1 :1n<tan§).
sinx 2

Proof. By taking tan § = ¢, we find that

1
= sec? z dx = dt.

2 2
Using a relation
1+ tan? = = sec? E,
2
Eq. (C.79) becomes
1
dt = = (1 +t?) d.
L) do
Furthermore, the integrand can be written as
. . (x n x) 9 sin & x
sinz =sin (= + = ) = 2sin = cos —
2 2 2 2
1
2sin = cos = 2sin = cos = cos? = 2 tan 9t
_ 22 2 2 2 _ 2 .
cos? L 4 sin? L cos? T 4sin? s _ 1 1+tan2 2 148
2 2 2 2 7
cos® 5

We then find from Eqgs. (C.80) and (C.81) that

1 2 1+41¢2 1 x
d a2 2 g s =1 (t f).
/ T Gnz / 1+ 2 / A G

Integral C.13.3.

1
/dx = In(sin x).
tanx

Proof. By taking t = sinz such that dt = cosz dx, we obtain

1 1
/dgg = /dgc C?Sx = /dt ik =Int = In(sinx).
tan x sinx cost t

Integral C.13.4.

/d (N N SR
Tt T 2a  \1-diz )

Proof. By taking = atant such that dx = asec?t dt, we obtain

1 asec?t
Int= [de ——= | dt —————
. /xa2+x2 / a? + a2tan?t
1 1
:f/dtzftan*1 (f)
a a a

We then find from Eq. (C.69) that
1 142
It = — 1 a
"= 2a n(l—ii)
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Integral C.13.5.

/dwﬁ = sin~* (%) = %ln (zz +£4/1— x2> . (C.85)
See Eq. (5.107).
Integral C.13.6.
dzﬁln(ji\/ijl). (C.86)
Proof. By taking x = acosht such that dr = asinht dt, we obtain

asinht

1
Int = /dx — = | dt
Va2 —a? Va2 cosh?t — a?
asinht 1/
= | dt ——= = [ dt =t = cosh (—),
/ Va2 sinh? t a

where cosh? t — sinh®t = 1. We then find from Eq. (C.74) that

[.2
Intzln(gczlz g—l).
a a

O
Integral C.13.7.
1 x x?
dr ———==In| — —+1]. C.87
m\/:c2+a2 n<a+ 2 ) ( )
Proof. By taking x = asinht such that dz = acosht dt, we obtain
1 acosht
Int:/dxiz/dt—
Va? + a? a?sinh? t + a2
= /dt =t =sinh! ($> .
a
From Eq. (C.75), we find that
2
Intln(er f”2+1>.
a a
O

Integral C.13.8.

1 1 1+2
dr — = —1 a . .
/xa2—x2 2an<1_2> (C.88)
Proof. By taking = = atanht such that dz = a sech®t dt, we obtain

1 h2¢ 1 h2¢
Y PR L
a* —x a? —a?tanh“t a sech“t

1

:f/dtzltzltanh_l (x)
a a a a
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where 1 — tanh® ¢ = sech®t. We thus find from Eq. (C.76) that

1 1+ £
Int = —1 a . C.89
. 2an<1—z> ( )

Definition C.13.1. T function (Gamma function, fractional function)

pl = / de e %2 =T(p+1), forp> -1, peR. (C.90)
0
(F(p) = / dx e 2P~ = (p—1)!, for Re(p) >0, p € C.) (C.91)
0
Proof. For a > 0,
= 1
fla,z) = / dx e”* = —le*aI =—. (C.92)
0 a 0 a

By differentiation with respect to a, the right-hand side (RHS) and the left-hand side (LHS) of
Eq. (C.92) become

RHS = i/ dx e™ % :/ dx ge"” = dx (—z)e %,
da Jq 0

LHS = ia_l =—a2.
da

Therefore we obtain the 1st-order derivative of a function f(a,x) with respect to a given by
oo
/ dr ze™* = a2 (C.93)
0
Next, by differentiating Eq. (C.93) with respect to a, the 2nd-order derivative is

d o0 o0 oo
RHS = — dr xe ¥ = / dx xgef‘” = 7/ dz x%e %,
da 0 0 da 0

LHS = ia—2 =—2a73,
da

which becomes -
/ dx x2e7 %" =273,
0

By the same analogy, the 3rd-order derivative of a function f(a,x) with respect to a is
o0
/ dr x3e™ % = 3lg™4.
0
Therefore, the n-th-order derivative of a function f(a,z) with respect to a can be expressed by

/0 dx e = pla" T = pray (C.94)

By substituting a by 1 in Eq. (C.94), one obtain the Gamma function given by

oo
/ dr ez = nl.
0
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Definition C.13.2. Properties of I" function

pl=pp-1D!'<TE+1) =pTp)
I 1
<=T(p) = %—H7 where p < 0, or Re(p) > 0, (C.95)
T ™
I(p)D(1—p) = (—p)l = _ _
(p)I(1—p) smap TP (—p) Snp (C.96)
Integral C.13.9.
/OO dx exp(—2") = (l>' (C.97)
0 n

Proof. Let x =t" such that (s.t.) dz = nt"~dt. Then the Gamma function Eq.(C.90) is modified by
pl = / de e "azP = / dt nt"te P = n/ dt e7t"¢mprn=l, (C.98)
0 0 0

In order to elliminate the last term, np +n — 1 should be substituted with zero given by

1—n 1
np+n—1=0&p= =——1
n
With this relation, Eq. (C.98) becomes
1 > n
(7—1)!:71/ dt e b,
n 0
which can be expressed in terms of (1/n)! as
o n 1/1 1
/ dt et = f(f - 1)! - (f)!.
0 n\n n
O
Integral C.13.10.
1\, 7
— )= C.99
(3)'= (©.99

Proof. By Eq. (C.97), (1/2)! becomes

1 o 1 [
<7)! :/ dr e = f/ dz e .
2 0 2 J_ o

Since z is a dummy index, the square of (1/2)! can be expressed as

I A A T o o e

By the spherical coordinates, x and y are transformed in terms of the radial coordinate r and the polar
coordinate 6 given by

x=rcosf, y=rsinb,

such that r? = 22 + 32, From Table. C.1, the infinitesimal differential area element is
da = dx dy = rdrdf.
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Then Eq. (C.100) becomes

(;)!(;)!— i/_o;dx/_o;dy e~ @+ :i/:ﬂde/omdr re”"”,

where the integral with respect to r can be solved by integration by substitution (r? = u s.t. 2rdr = du)

in the form -
> 2 1 [ 1
/ dr re™" = f/ du e -
0 2 Jo

=_—= . 101
5¢ 5 (C.101)

Therefore Eq. (C.100) is calculated as follows

1\, /1 1 [ oo | 1 7
=) == do | drre™” == x2mx - = —
(2)(2) 4/0 /0 e 1Ty T
which implies that

O
Integral C.13.11.

o 1
/ dr exp (—az?) = \/?
0 2

. C.102
" (€102
Proof. Let x = at? s.t. dx = 2at dt. Then the Gamma function Eq.(C.90) is modified as
P! =/ dx e "2 :/ dt 2at e~ (at?)? = 2a”+1/ dt e 20+, (C.103)
0 0 0
In order to elliminate the last term, 2p + 1 should be substituted with zero given by
1
2p+1=0©p:—§.
With this relation, Eq. (C.103) becomes
1 °
(—5)!:2\@ dt et (C.104)
0
From Eq. (C.99), (—1/2)! can be obtained by
(1)1 — 1(_ 1)1 _ VT
2 2 2 27
which implies that )
(f 5)! S (C.105)
Therefore Eq. (C.104) is calculated by
/OO dt eiatz = 1 I
o 2V a
Since e~ is an even function, Eq. (C.102) can be written in the form
/ dt e~ = 1/2- (C.106)
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Integral C.13.12.

oo 2
/ dz exp (—ax? + br) = exp [Za} \/Z. (C.107)

Proof. Provided a and b are any constants, the integral with respect to x becomes

e 2 , b b2 b2
[t ew(cat )= [ e | —a(e? Lot g - )

o

— 00 — 00

— exp [ZZ} /_O:de exp [—a(m—;’aﬂ.

Let x — b/2a =t s.t. dz = dt. From Eq. (C.106), the last integral term can be calculated as follows
0o b2 0o
/ dx expl—a(z—)]_/ dt expl_at2‘|_\/?.
— 0o 2a — o a
/ dz exp ( —az® + ba:) = exp [] T
4a a

Thus one obtain

O
Integral C.13.13.
/ dz exp (—2%) cosax = \/me 19 (C.108)
Proof. Assume that a function f is defined by
o0 2
fla,x) :/ dx €™ cosaz.
— 00
By integration by parts, f(a,z) becomes
o o ad1
fla,z) = dr e cosax = dr e — | —sinax
oo oo dr | a
1 - o0 1
:M— / dx (—2%‘6_362)* sin ax
r=—00 - @
2 [ 2.
= 5/ dx xe™® sinaz. (C.109)
Next, by differentiation with respect to a, one find that
d d [ ° 0
%f(a,x) = T [m dz e cosax = [m dz 6_12% [cosax]
:—/ dz ze™™ sinaxz—gf(a,x),
- 2
which becomes the differential equation given by
4 fa2) + Lf(a,z) =0 (C.110)
da’ "’ 27 '
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The 1st-order differential equation can be solved by
a a
—f(a,x):fif(a,x)@—:—fda. (C.111)

By integration, both sides of Eq. (C.111) are calculated as follows

RHS:/%:lnf,

a 1,
LHsf—/idaffZa +C,

where C'is a integral constant. Therefore the solution of Eq. (C.110) is

fla,x) = e 1% +C = Crem 9’

where C is another integral constant. By the initial definition of f(a, ), one obtain

(oo}

fla,2) = / dz e cosax = Cre i .
—o0

By substituting a by 0,

f(0,2) = /_OO dr e = /7= Cy.

Thus a function f(a,x) can be integrated to give

o0
22 1.2
/ dx e™™ cosax = /me 1%,

—0o0

O
Integral C.13.14.
e 5 5 1 /=
; dx x° exp (—az”) = Vo (C.112)
Proof. By taking o = at? such that do = 2at dt, the Gamma function in Eq. (C.90) is expressed as
pl = / dx e %aP = Qa/ dt t e (at?)P = 2ap+1/ dt e 20+, (C.113)
0 0 0
We find by taking 2p + 1 = 2 that p = 1/2. Equation (C.113) can then be evaluated as
1 141 > —at?,2
— |1 =2a2 dt e” " t-.
2 0
From Eq. (C.99), the integral becomes
o 1 /=
gt et = VT L [T C.114
/0 € 4(1% 4\ a3 ( )
O
Integral C.13.15.
0o 2
sin“ z
/_OO dx 5 =T (C.115)
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2 2

x =1 — 2sin? z, the integral can be expressed as [143]

Proof. Since cos2x = cos” x — sin
> sin® x 1 1 —cos2z 1 [ 1 —e'?®
- dx xz = 5 . dx T = R,e 5 - dx x2 . (C116)

Here, the exponential term in the numerator of the integrand can be expanded by Taylor expansion as

(i2x)? N (i2x)3

2x .
et =14+12x + o1 i

I

To eliminate the pole of (1 — e?2%) /22, the integral in Eq. (C.116) needs to be modified as [143]

o0 1 —cos?2 o0 1 — e 4+ 2
m:/ dwﬂ:Re/ ge LT 2T (C.117)
2 2
oo T oo T
which further makes
o0 14422 — (1 +i22 +--- oo 1 [(i2z)? 1223
Int:Re/ do LE 22 T ):—Re/ de — @22)° @22 ] (e
oo x o T 2! 3!

We can see from this equation that Eq. (C.117) has no poles due to the term of i2z. The integral over
the contour C illustrated in Fig. C.4(a) is then obtained according to Cachy integral theorem [133]

_ 12z .
j{dz £z) = }{ R ey ) (C.119)
C C

z

since the integrand f(z) has no poles. Equation (C.119) becomes

1— 2x P 1— 2z i
j{ dz f(2) :/ de 672"” _|_/ d 672"“4_ -0, (C.120)
C C1 x Ca

z

which yields

/R " 1—ei2””2+i2x:_/ 5 l—ei2z2+i2z
Ca

—R x z
' 1 1— eiZz
= —12/02 dz 2 —/C2 dz 2 (C.121)
a Y b Yy
(@) v (b) v
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“R 0|, R . _\Q/k ~

Figure C.4: (a) A contour C = C; 4+ Cy on the complex plane z = x 4 iy. (b) There is singular pole at
z =0 in a contour Cs.
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The first integral in Eq. (C.121) can be solved to obtain

/ dz 1o lj{ dz 1, (C.122)
C, z 2 Cs z

where the integral over the contour Cjs is obtained according to Residue theorem. When a function f is

analytic and f has a pole of the order of m at z = a, the residue can be obtained, giving [133]

m—1
Res[f(z) : a] = 1 lim (c;iz) (z—a)" f(2). (C.123)

(m — 1)! z—a

According to Residue theorem, the Cachy integral can be evaluated as [133]
j{ dz f(z) = 27TiZRes [f(2) : 2] (C.124)
c k=1

Let us consider that a function f(z) = p(z)/q(z) is analytic at z = zg, p(z9) # 0 and ¢(z) has a simple
pole at z = zp. The Residue is then obtained, yielding [133]

w22 (C.125)

1 p(%0) _ p(2)
Res[f(z) . 0} z—20 q/(Z)

From the Residue theorem, the right-hand side in Eq. (C.122) can be evaluated over the contour Cs in
Fig. C.4(b) as

1 1
7{ dz — = 27t Res [ 1z = O] = 2mi X 1 = 271, (C.126)
Cs z V4
which leads to . .
/ dz — = = 2mi = im. (C.127)
Co z 2

We also find by taking z = Re® that the second term in Eq. (C.121) tends to 0 as R — oo, yielding

1 — 22 R 1— i2Re"?
lim [ dz——= lim [ de—t—=0. (C.128)
R—o0 Co z R—oo J_p R?e?

By substituting Eqgs. (C.127) and (C.128) into Eq. (C.121), we thus find that Eq. (C.117) can be evaluated

as

R 2z | ; 2250
1-— 2 1-—
lim [ ode = T o — =or, (C.129)
R—o0 _R x 2 z
which leads to the result
o) 2 [e7e) 2x .
sin” x 1 1—e"" +12x
/_Oodx = = Re 5/_Doda: T:w. (C.130)
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