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Coherent transients mimicked by two-photon coherent control of a three-level system

Jongseok Lim, Han-gyeol Lee, Jae-uk Kim, Sangkyung Lee, and Jaewook Ahn*

Department of Physics, KAIST, Daejeon 305-701, Korea
(Received 24 December 2010; revised manuscript received 21 March 2011; published 26 May 2011)

We show theoretically and experimentally that two-photon coherent control in a V -shape three-level system
projects a one-photon coherent transient in a simple two-level system. The second- and third-order spectral phase
terms of a shaped laser pulse play the roles of time and quadratic spectral phase, respectively, in conventional
coherent transients. In a three-pulse coherent control experiment of atomic rubidium, the phase and amplitude
of controlled transition probability is retrieved from a two-dimensional Fourier-transform spectral peak. It is
hoped that this control scheme may harness coherent control capability on multidimensional Fourier-transform
spectroscopy.
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I. INTRODUCTION

Recent advances in ultrafast laser and optical pulse shaping
techniques have brought the use of shaped pulses of optical
frequency for the manipulation of quantum systems [1–4].
This field, known as quantum control, though being started
as a theoretical exercise, has rapidly become an experimental
reality in a vast variety of materials extending from atoms and
molecules to condensed matter and biological materials [5–9].

One of the simplest ways to shape an optical pulse is to
chirp or to make a quadratic spectral phase, i.e.,

φ(ω) = a2

2
(ω − ω0)2, (1)

where a2 is the linear chirp rate and ω0 the laser center
frequency. Chirped pulses have been used to control molecular
vibrational excitation and fragmentation [10,11], coherent
anti-Stokes Raman scattering microscopy [12], molecular
alignments [13], and high harmonic generation [14], to list
a few. Of particular relevance in the context of the present
paper is the chirped pulse excitation of atoms in the weak-field
interaction regime, also known as coherent transients (CTs)
[15–17].

As a brief review of CTs, we consider one-photon transition
in a two-level system of ground state |1〉 and excited state |2〉.
For an optical short pulse of Gaussian pulse shape with chirp,
the electric field E(t) is given by

E(t) = Eo exp

[
− t2

τ 2
c

− i(ω0t + αt2)

]
, (2)

where τc = τo

√
1+a2

2/τ 4
o , α = 2a2/(τ 4

o + 4a2
2), and τo is the

unchirped pulse duration. Then the excitation probability
amplitude c21 at a finite time t is given in the weak-field regime
as [17]

c21(t) = iµ21Eo

h̄

∫ t

t0

exp

(
− t2

τ 2
c

)
× exp{−i[(ω0 − ω21)t ′ + αt ′2]}dt ′, (3)

where the time t and the linear chirp rate a2 are the two control
parameters for the quadratic and cubic phase terms, respec-
tively, and the finite time integration with a quadratic temporal
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phase αt ′2 leads to the transient excited-state population being
of a Cornu spiral shape, well known from Fresnel diffraction
patterns from a sharp edge [18]. For a short pulse which
has broad spectral components, putting chirp on the pulse
delays some of those components with respect to others in
the time domain, and the instantaneous laser frequency shifts
as a function of time. So, from the time when the resonant
condition is met, further off-resonant excitation interferes with
the resonant transition, either constructively or destructively.
In the frequency domain representation, Eq. (3) is given by

c21(t) = µ21

h̄

[
iπẼ(ω21)

+ P
∫ ∞

−∞

Ẽ(ω) exp[i(ω21 − ω)t]

ω21 − ω
dω

]
, (4)

where Ẽ(ω) = Eo exp[−(ω − ω0)2τ 2
o /4 + iφ(ω)] and P is the

Cauchy principal value [19]. So, the quantum interference
between the resonant and nonresonant excitation contributions
shows an oscillatory transient behavior for a given chirped
pulse. CTs have demonstrated many novel phenomena, in-
cluding the time-domain Fresnel lens [16], coherent transient
enhancements [19], quantum-state holographic measurements
[20], and coherent controls of multistate ladders [21].

In this paper we show that the conventional CT in a
simple two-level system is mimicked by two-photon coherent
control in a V -shape three-level system. Higher order chirps
of a shaped laser pulse play the roles of time and linear
chirp in CTs. For this, we consider two-photon control of
a three-level system in V -type configuration [22]. We note
that the controlled transitions in a two-level system or in
a three-level ladder-type system are readily monitored by
detecting the fluorescence decay from the target excited state
[23–26]. On the other hand, the two-photon interexcited state
transition in a V -type quantum system is not straightforward to
measure and thus has been difficult to control. It is because the
state population of the target excited state is coherently mixed
with the dominant one-photon transition population from the
ground state. We report in this paper that this difficulty is
overcome with the combined use of two-dimensional Fourier-
transform spectroscopy (2D-FTOS) [27–29] and a coherent
control technique.
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The paper is organized as follows: In Sec. II, after describing
the model, we show that with a chirped pulse of up to cubic
phase, i.e.,

φ(ω) = a2

2
(ω − ω0)2 + a3

6
(ω − ω0)3, (5)

the given two-photon coherent control of a V -type system is
reduced to the discussed CT in a two-level system, where now
a2 and a3 play the roles of the time and linear chirp in a regular
CT. Section III is devoted to the experimental description
where the three-pulse coherent control scheme devised in the
Appendix is used to measure the two-photon interexcited state
transition in a 2D-FTOS setting. In Sec. IV we present the
experimental results before concluding in Sec. V.

II. THEORETICAL MODEL

The model atomic system is in V -type configuration,
composed of ground state |g〉 and two excited states |a〉 and |b〉,
with respective energies h̄ωg , h̄ωa , and h̄ωb. The excited states
are dipole-coupled to the common ground state, with dipole
moments µag and µbg , and the transition between the excited
states is forbidden (i.e., µab = 0). Then the Hamiltonian is
given by

H (t) = H0 + V (t), (6)

where H0 = ∑
i h̄ωi |i〉〈i| and V (t) = −∑

i,j µijE(t)|i〉〈j |
for i,j ∈ {g,a,b}. With T = exp(−iH0t/h̄), we transform to
the interaction picture, obtaining the interaction Hamiltonian

HI (t) = T †H (t)T + ih̄
dT †

dt
T =

∑
i,j

Vij (t)eiωij t |i〉〈j |, (7)

where Vij (t) = 〈i|V (t)|j 〉 and ωij = ωi − ωj . Then the tran-
sition probability amplitude from state |i〉 to state |f 〉, defined
by

cf i(t) = 〈f |UI (t,t0)|i〉, (8)

where UI (t,t0) is the evolution operator given by

UI (t,t0) = 1 − i

h̄

∫ t

t0

HI (t ′)UI (t ′,t0)dt ′, (9)

is obtained by the order of V (t) as

c
(0)
f i (t) = δf i, (10)

c
(1)
f i (t) = − i

h̄

∫ t

t0

dt ′Vf i(t
′) exp(iωf i t

′), (11)

c
(2)
f i (t) =

(
− i

h̄

)2

�j

∫ t

t0

dt ′
∫ t ′

t0

dt ′′

×Vfj (t ′)Vji(t
′′) exp(iωfj t

′ + iωji t
′′). (12)

For an electric field shaped in the frequency domain as

Ẽ(ω) = A(ω)eiφ(ω), (13)

where A(ω) is spectral amplitude and φ(ω) is spectral phase,
the time domain pulse profile is given by

E(t) = 1√
2π

∫ ∞

−∞
Ẽ(ω)e−iωtdω, (14)

where the imaginary part of E(t) is maintained zero all
the time by defining Ẽ(−ω) = Ẽ∗(ω) for ω < 0. Then
Vij (t) = −µijE(t), and the first-order (one-photon) transition
probability amplitude is simply the corresponding spectral
amplitude given by

c
(1)
f i = i

µf i

h̄

√
2πẼ(ωf i), (15)

where we consider the integral limit [t0,t] → [−∞,∞] by
assuming the pulse duration is considerably shorter than all
lifetimes involved.

Now we consider the two-photon transition probability am-
plitude between the excited states |a〉 and |b〉. From Eq. (12) we
obtain the second-order interexcited state transition probability
amplitude as

c
(2)
ba = i

µgaµgb

h̄2

[
iπẼ∗(ωag)Ẽ(ωbg)

− P
∫

Ẽ∗(ω)Ẽ(ωba + ω)

ωag − ω
dω

]
, (16)

which is similar to Ref. [15] of a ladder-type three-level
system, except for minor details.

For a Gaussian pulse spectrally centered at ω0, i.e., A(ω) =
E0 exp[−(ω − ω0)2/�ω2], with the spectral phase φ(ω) given
in Eq. (5), the transition probability amplitude Eq. (16) is
simplified to the following form:

c
(2)
ba = i

µ̃ba

h̄2

[
iπẼ(ω) − P

∫ ∞

−∞

Ẽ(ω)

ω − ω
dω

]
, (17)

where µ̃ba = µgaµbg exp[−ω2
ba/2�ω2 + ia3ω

3
ba/24], ω =

(ωag + ωbg)/2, and

Ẽ(ω) = E2
o exp

[
− 2

(ω − ω0)2

�ω2
+ iωba

dφ

dω

]
. (18)

It is noted that Eq. (17) is of a functional form strikingly
similar to Eq. (4), the one-photon transition in a two-level sys-
tem, except for the sign between the resonant and nonresonant
contributions. The difference between Eq. (4) and Eq. (17) is
resolved by considering a de-excitation. For an electric field of
Gaussian pulse shape with linear chirp (only), the one-photon
transition probability amplitude from |2〉 to |1〉 is easily
found as

c
(1)
12 (t) = µ21

h̄
e−i(ω21−ω0)t

[
iπE∗(ω21)ei(ω21−ω0)t

− P
∫ ∞

−∞

E∗(ω)ei(ω−ω0)t

ω21 − ω
dω

]
. (19)

As evident from the same structure, the two-photon interex-
cited state transition in a V -type system projects one-photon
transition (de-excitation) in a simple two-level system. The
tantalizing part is that since Ẽ(ω) has a differentiated phase,
linear chirp in the V -shape system corresponds to time in a
two-level system, and minus quadratic chirp to linear chirp.
So, the obtained solution in Eq. (17), which is the transition
probability amplitude c

(2)
ba for the two-photon interexcited

state transition in a V -type system, has become formally a
one-photon transition probability amplitude, more specifically,
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a de-excitation process in a two-level system of energies 0 and
ω, induced by the newly defined electric field Ẽ(ω).

Therefore if we consider the interaction of the V -shape
system with a laser-shaped pulse of linear and quadratic chirps,
then we can achieve duplicated results of coherent transients
in a two-level system interacting with a linearly chirped pulse.
With this information, we can derive the “transient” excitation
probability amplitude, a similar form to Eq. (3), for the V -
shape system. For this, the electric field E(t) is the inverse
Fourier transformation of the complex conjugate of the electric
field in frequency domain Ẽ(ω), having t̃ = ωbaa2 (t = 0)
and ã2 = −ωbaa3. Then, the “CT-like” transition probability
amplitude in a V -shape system is obtained as

c
(2)
ba (a2,a3) = − µ̃baE

2
oe

iθ

h̄2

�ω√
τ̃c/τ̃0

∫ t̃

−∞
exp

(
− t ′2

τ̃ 2
c

)
× exp{−i[(ωba − ω0)t ′ − α̃t ′2]}dt ′, (20)

where θ = − 1
2 tan−1 2̃a2/τ̃

2
o + (ω − ω0)̃t , τ̃o = 2

√
2/�ω,

τ̃c = τ̃o

√
1+ã2

2/τ̃ 4
o , and α̃ = 2̃a2/(̃τ 4

o + 4̃a2
2).

III. EXPERIMENTAL DESCRIPTION

The two-photon control in the previous section can be
verified by measuring the phase and amplitude of c

(2)
ba (a2,a3).

This is achieved by using the three-pulse coherent control
scheme to be described in the Appendix. To summarize briefly,
we need three optical pulses among which the second pulse (β)
is the control pulse shaped to induce two-photon interexcited
state transition from |a〉 to |b〉 [see Fig. 1(a)]. Prior to the
second pulse, the atoms need to be excited to |a〉 by the first

1τ
(a)

α
shaped pulses

unshaped
pulse

βγ

2τ
pulse
shaper

PMT

5S1/2

5P1/2
5P3/2

Rb atom

),( 21 ττS

D1D2

agωhbgωh

(b)

laser oscillator
100 MHz

pump laser

Pockel cell
1 kHzStretcher 8-pass

amplifier

Compressorλ/2
PBS

PMT

collective lens

(c)

bandpass filter (D2)

AOPDF

FIG. 1. (Color online) (a) Schematic diagram of three-pulse
coherent control scenario. The first pulse has a spectral hole around
the D2 transition, the second pulse is shaped to control the transition
probability of the interexcited state transition, and the third pulse is
unshaped. (b) The three-pulse sequence was applied to a gaseous
Rb atom and the fluorescence at 780 nm was detected with PMT.
(c) Experimental setup.

pulse (α). In addition, the third pulse (γ ) induces the quantum
interference which is used to measure c

(2)
ba (a2,a3). After all

three interactions, the excited state population Pb(τ1,τ2) is
measured as a function of two time intervals τ1 and τ2. Then
from the 2D Fourier-transform spectrum of Pb(τ1,τ2), that is,
S(ω1,ω2), the spectral peak located at (ω1,ω2) = (ωag − ω0,

ωbg − ω0) reveals the controlled transition probability ampli-
tude c

(2)
ba (a2,a3).

For the experiment, we used the lowest three energy
levels of atomic rubidium [see Fig. 1(b)]. The energy states
|a〉 = |5P1/2〉 and |b〉 = |5P3/2〉 were resonantly excited from
the common ground state |g〉 = |5S1/2〉, so these three energy
states comprise an ideal V -shape coupled system. The experi-
mental setup is shown in Fig. 1(c). The sequence of temporally
and spectrally designed ultrafast pulses was produced from an
acousto-optic programmable dispersive filter [30] assembled
in a Ti : sapphire multipass laser amplifier operating at 1 kHz.
The laser pulse duration was 35 fs, and the laser spectrum
was centered at 800 nm with a full-width-half-maximum
bandwidth of 26 nm. From a single pulse of 600-µJ energy,
three pulses each having 4 µJ of energy were independently
pulse-shaped and delivered in an unfocused beam with 3 mm
diameter.

Figures 2(a) and 2(b) show a typical 2D-FTOS mea-
surement of Pa(τ1,τ2)+Pb(τ1,τ2) and its Fourier spectrum
S(ω1,ω2), respectively. As described in the Appendix, the first
and second pulses excite the ground state atom to |a〉 first and
then to |b〉, i.e., |g〉 → |a〉 → |b〉. This transition coherently
mixed with the third pulse excitation |g〉 → |b〉. The quantum
interference of these two transition paths is measured in the
FT spectra as

S(ωag − ω0,ωbg − ω0) = c(1)∗
ag (α)c(2)∗

ba (β)c(1)
bg (γ ), (21)

1
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FIG. 2. (Color online) (a) Experimental fluorescence data of 2D-
FTOS measurement as a function of two delays, τ1 and τ2. (b) 2D
Fourier-transformed spectrum S(ω1, ω2) from the time domain data
(a). (c) Fluorescence signal decayed from |b〉 for the three pulses
described in the text and (d) 2D Fourier spectrum of (c).
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where c(1)
ag (α) and c

(1)
bg (γ ) are the one-photon transitions due

to the first and third pulses, respectively. They correspond to
α(1)

ag and γ
(1)
bg , respectively, in Eq. (A4). The asterisk denotes

the complex conjugate. The off-diagonal peak, marked by the
white arrow in Fig. 2(b), represents the controlled transition
c

(2)
ba (a2,a3), aside from the constant one-photon transitions.

Therefore, the controlled transition from |a〉 to |b〉 is well
separated from others in the 2D FT spectra.

In the experiment, the first pulse α was shaped to have a
spectral hole around the D2 transition at 780.0 nm. By doing
so, the |g〉 → |b〉 transition is not initiated, which reduces the
number of unused spectral peaks in S(ω1,ω2). The second
pulse, the control pulse, was programmed in the spectral
domain. The third pulse was not shaped. After the three pulses
were applied, the fluorescence spectrally filtered at 780 nm
(3-nm bandwidth) was recorded using a photomultiplier
tube. Figures 2(c) and 2(d) show correspondingly measured
Pb(τ1,τ2) [without Pa(τ1,τ2)] and its Fourier spectrum for
comparison with Figs. 2(a) and 2(b), respectively. Since
the primary slow oscillation component decayed from |a〉
is eliminated by the interference filter, Fig. 2(c) [Pb(τ1,τ2)]
should be filled with a speckled pattern. However, due to
the spectral hole around the D2 transition of the first pulse,
the coherence between |g〉 and |b〉 is annihilated during the
delay τ1 and the slow oscillation dominates the signal along
the τ1 axis. Therefore the higher frequency components of
S(ω1,ω2) in Fig. 2(d) are almost wiped out and the (ωag − ω0,
ωbg − ω0) peak is emphasized. In this way, unwanted higher
order transitions affecting (ωag − ω0, ωbg − ω0) peak and
background noises are greatly suppressed.

IV. RESULTS AND DISCUSSION

The proposed two-photon “CT-like behavior” experiments
in a V -shape system are shown in Fig. 3. The surface plot in
Fig. 3(a) shows results of a numerical calculation of the 5P1/2–
5P3/2 transition probability in Eq. (20). The boxed region in
Fig. 3(a) was tested using the spectral phase function φ(ω) in
Eq. (5). The control pulse was programmed with two kinds of
chirp coefficients that were uniformly sampled from a2 = [–3,
3]×103 fs2 and a3 = [−5, 7] ×104 fs3, and the result is shown
in Fig. 3(b). The amplitudes extracted from the (ωag − ω0,
ωbg − ω0) peaks in the 2D FT spectra are plotted in Figs. 3(c)–
3(e) for a3 = –5×104, –1×104, and 3×104 fs3, respectively,
together with the theoretical curves calculated from Eq. (20).
For a given quadratic chirp, the transition probability shows an
oscillatory nature as a function of the linear chirp coefficient,
a typical feature of CTs.

Figure 4 illustrates the retrieval of 5P1/2–5P3/2 transition
probability amplitude from the coherently controlled 2D
spectral peak. The left panel of Fig. 4 (sublabeled with -I)
shows |S(ωag − ω0,ωbg − ω0)|, the absolute of the extracted
2D-FTOS peaks. The experimental results (circles) and the
calculations (lines) are shown as a function of linear chirp for
various quadratic chirps of (a) –5×104 fs3, (b) –3×104 fs3,
(c) –1×104 fs3, (d) 1×104 fs3, (e) 3×104 fs3, (f) 5×104 fs3,
and (g) 7×104 fs3. The numerical calculations are normalized
with the transition probability amplitude at a2 = 6 × 103 fs2,
a3 = 0, and the experiments accordingly. The experimental
results are in good agreement with the numerical calculation.
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FIG. 3. (Color online) (a) Numerical calculations of the 5P1/2–
5P3/2 transition probability amplitude |c(2)

ba | as a function of the linear
and quadratic chirp. (b) Extracted amplitudes of (ωag − ω0, ωbg − ω0)
peak of the experimentally measured 2D FT spectra (the data were
interpolated twice from 13 × 7 measurements.) (c)–(e) Two-photon
transition amplitudes c

(2)
ba in the complex plane as a function of chirp,

(c) for quadratic chirp –5×104 fs3, (d) for –1×104 fs3, and (e) for
3×104 fs3.

Finally, the phase information of the 5P1/2–5P3/2 transition
probability amplitude is obtained directly from the phase of
(ωag − ω0, ωbg − ω0) peaks in 2D-FTOS spectra. The central
panel of Fig. 4 (sublabeled with -II) represents the phase
and amplitude of extracted c

(2)
ba . The values start from the

origin at a negative linear chirp and spread out by rotating
counterclockwise as the linear chirp becomes positive. The
well-known Cornu spirals of CTs [20] are reconstructed
by compensating the phase difference, φc = exp[−i(ω −
ω0)ωbaa2], between Eqs. (3) and (20). We note that another
phase, − 1

2 tan−1 2̃a2/τ̃
2
o in Eq. (20), is already included in Eo of

Eq. (3). The results are summarized in the right panel of Fig. 4
(sublabeled with -III). The phase-compensated transition
probability amplitudes, eiφcc

(2)
ba , perfectly reconstruct a Cornu

spiral which starts from the origin and approaches to an
asymptotic point. It is noted that the asymptotic points have
the same radius from the origin for all quadratic chirps,
which is equivalent to the fact that the transition probability
amplitude of the two-level problem is dependent only on the
resonant spectral amplitude Ẽ(ω21) in Eq. (15).
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FIG. 4. (a) Extracted transition probabilities from the experimental 2D spectra at (ωag − ω0, ωbg − ω0) peaks (circles) together with the
numerical calculations of 5P1/2–5P3/2 transition (lines) as a function of linear chirp for quadratic chirp of the second pulse, (a) –5×104 fs3,
(b) –3×104 fs3, (c) –1×104 fs3, (d) 1×104 fs3, (e) 3×104 fs3, (f) 5×104 fs3, and (g) 7×104 fs3. The left panel, sublabeled with -I, shows the
absolute value of c

(2)
ba , and the central panel (II) is the complex plane representation of c

(2)
ba . The reconstructed Cornu spirals are shown in the

right panel (III) following the process explained in the text.
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V. CONCLUSIONS

In summary, we have shown that two-photon coherent
control in a V -shape three-level system behaves formally like a
coherent transient signal in a two-level system, where the roles
of time and linear chirp in the latter are duplicated by linear
and quadratic chirp rates in the former. For the measurement
a three-pulse coherent control scheme is devised, and the
phase and amplitude of the controlled transition probability
are retrieved from a 2D FT spectral peak.
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APPENIDX : THREE-PULSE COHERENT
CONTROL SCHEME

Measurement of the phase and amplitude of interexcited
state transitions can be achieved by using a three-pulse
coherent control scheme for a 2D FT spectroscopy.

As our starting point, the quantum system is in the ground
state, i.e., |ψ(t = 0−)〉 = |g〉. By assuming the interaction in

the weak field regime [i.e., Vij (t) 	 h̄ for all t], we neglect
the higher order terms of V (t) and consider the lowest order
terms of each transition. Then the evolution operator for the
first pulse is written in terms of three states {|g〉,|a〉,|b〉}
as

UI (α) =

⎛⎜⎜⎝
1 α(1)

ga α
(1)
gb

α(1)
ag 1 α

(2)
ab

α
(1)
bg α

(2)
ba 1

⎞⎟⎟⎠ , (A1)

where α(1,2) denote the transition probability amplitudes,
respectively defined in Eqs. (11) and (12), for the first pulse.
(Likewise, β(1,2) and γ (1,2) denote the ones for the second
and third pulses, in the following.) We note that α(1)

ga = α(1)∗
ag

but α
(2)
ba 
= α

(2)∗
ab . Then the wave function after the first

interaction is given by |ψ(0+)〉 = |g〉 + α(1)
ag |a〉 + α

(1)
bg |b〉.

For the second pulse, the time delay τ1 causes an overall
phase shift of exp [i(ωng − ω0)τ1] to the Vij (t) exp(iωij )
term in Eqs. (11) and (12), relative to the ones for α(1,2).
Therefore, the first- and second-order transition probability
amplitudes for the second pulse, including the phase shift
from the time delay, are obtained, β(1)

f i exp[i(ωf i − ω0)τ1] and

β
(2)
f i exp [i(ωfg − ω0)τ1 − i(ωig − ω0)τ1], respectively, where

the rotating wave approximation is used for β
(2)
ba . Accordingly,

the evolution operator for the second pulse, including the time
delay effect, is given by

UI (β) =

⎛⎜⎜⎝
1 β(1)∗

ag e−i�ωagτ1 β
(1)∗
bg e−i�ωbgτ1

β(1)
ag ei�ωagτ1 1 β

(2)
ab ei(�ωag−�ωbg )τ1

β
(1)
bg ei�ωbgτ1 β

(2)
ba e−i(�ωag−�ωbg)τ1 1

⎞⎟⎟⎠ , (A2)

where �ωij = ωij − ω0. After the second pulse the wave function becomes |ψ(τ1)〉 = UI (β)|ψ(0+)〉. Likewise, the evolution
operator for the third pulse, including the effect of the time delay τ2 relative to the second pulse, is given by

UI (γ ) =

⎛⎜⎜⎝
1 γ (1)∗

ag e−i�ωag (τ1+τ2) γ
(1)∗
bg e−i�ωbg (τ1+τ2)

γ (1)
ag ei�ωag (τ1+τ2) 1 γ

(2)
ab ei(�ωag−�ωbg )(τ1+τ2)

γ
(1)
bg ei�ωbg (τ1+τ2) γ

(2)
ba e−i(�ωag−�ωbg)(τ1+τ2) 1

⎞⎟⎟⎠ , (A3)

and after the all three pulsed interactions, the final wave
function |ψ(τ1 + τ2)〉 is obtained as the sum of 27 different
terms. By measuring the projection to |b〉 state, the probability
Pb = |〈b|ψ〉|2 is given by

Pb(τ1,τ2) = ∣∣α(1)
bg

∣∣2 + ∣∣β(1)
bg

∣∣2 + ∣∣γ (1)
bg

∣∣2 + . . .

+α(1)∗
ag β

(2)∗
ba γ

(1)
bg ei(�ωagτ1+�ωbgτ2) + . . . , (A4)

where, for example, the term α(1)∗
ag β

(2)∗
ba γ

(1)
bg

exp (i�ωagτ1 + i�ωbgτ2) denotes the quantum interference
between the two transitions |g〉 → |a〉 → |b〉 and |g〉 → |b〉.
The coefficient α(1)∗

ag β
(2)∗
ba γ

(1)
bg is retrieved from |〈b|ψ〉|2 as the

amplitude and phase of the temporally modulated component

with the function exp (i�ωagτ1 + i�ωbgτ2). The modulation
exp(i�ωagτ1) and exp(i�ωbgτ2) are from the phase evolution
that the atoms are respectively in state |a〉 during τ1 and
in state |b〉 during τ2. The 2D FT spectrum is defined
as

S(ω1,ω2) =
∫ ∫

Pb(τ1,τ2)e−i(ω1τ1+ω2τ2)dτ1dτ2, (A5)

which has 49 peaks including a zero-frequency peak. The
coefficients of the spectral peaks of S(ω1,ω2) in the first
quadrant of the 2D plane are listed in Table I. Aside from
the constant α(1)∗

ag γ
(1)
bg , the controlled transition probability

amplitude β
(2)∗
ba is then retrieved from the peak located at (ω1,
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TABLE I. Peaks in the first quadrant of a 2D FT plane of |〈b|ψ〉|2. For example, the peak at (�ωag , �ωbg) represents the quantum
interference between |g〉 → |a〉 → |b〉 and |g〉 → |b〉 transitions.

ω2 \ ω1 �ωag �ωbg − �ωag �ωbg

�ωbg α(1)∗
ag β

(2)∗
ba γ

(1)
bg α(1)

ag α
(1)∗
bg β (1)∗

ag γ
(1)
bg α

(1)∗
bg γ

(1)
bg

�ωbg − �ωag α(1)∗
ag β (1)

ag β
(2)∗
ba γ

(2)
ba α(1)

ag α
(1)∗
bg γ

(2)
ba α

(1)∗
bg β (1)

ag γ
(2)
ba

�ωag α(1)∗
ag γ

(1)
bg γ

(2)∗
ba α(1)

ag α
(1)∗
bg β (1)∗

ag β
(2)∗
ab γ

(1)
bg γ

(2)∗
ba α

(1)∗
bg β

(2)∗
ab γ

(1)
bg γ

(2)∗
ba

ω2) = (�ωag , �ωbg). As a result, the three-pulse coherent
control scheme devised for 2D FT spectroscopy can be

used to measure the two-photon interexcited state transition
coefficients.
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