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Rabi oscillations of Morris-Shore–transformed N-state systems by elliptically
polarized ultrafast laser pulses
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We present an experimental investigation of ultrafast laser-driven Rabi oscillations of atomic rubidium. Because
the broadband spectrum of an ultrafast laser pulse simultaneously couples all of the electronic hyperfine transitions
between the excited and ground states, the complex excitation linkages involved with the D1 or D2 transition
are energy degenerate. By application of the Morris-Shore transformation, this study shows that the considered
multistate system is reduced to a set of independent two-state systems and dark states. In experiments performed
by ultrafast laser interactions of atomic rubidium in the strong interaction regime, we demonstrate that the
ultrafast dynamics of the considered system are governed by no more than two decoupled Rabi oscillations when
it interacts with ultrafast laser pulses of any polarization state. We further show the implications of this result
with regard to possible control of photoelectron polarizations.
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I. INTRODUCTION

The Morris-Shore (MS) transformation [1] offers a theoreti-
cal framework by which the complexity in a variety of coherent
excitation coupling linkages of an N -state quantum system can
be minimized [2]. Often used in modeling the laser-induced
excitation of atoms, the MS transformation replaces the
complex system with a decoupled set of independent two-state
systems and unlinked states. For example, when a degenerate
two-state atom with angular momenta J and J ′ for the ground
and excited levels, respectively, interacts with a laser field,
the excitation degeneracy in the magnetic sublevels results in
various coupling linkages among N = 2(J + J ′ + 1) levels,
characterized by the polarization states of the laser field.
However, a consequence of the MS transformation decoupling
is that the N × N Hamiltonian that describes the coherent
excitation is reduced to a set of 2 × 2 sub-Hamiltonians plus a
diagonal matrix that represents uncoupled dark or spectator
states. The dynamics of such a system can therefore be
described simply by a superposition of independent two-state
dynamics, each of which undergoes a Rabi oscillation between
a pair of new ground and excited states defined in a factorized
Hilbert subspace.

The MS-transformation procedure can be summarized as
follows [3]. Suppose that an atomic system with N1 ground
levels and N2 excited levels (N = N1 + N2) undergoes a
resonant interaction with a laser field. Under the assumption
of no damping, the interaction Hamiltonian is written in the
rotating-wave approximation (RWA) [4–6] as

H =
(

0 V

V † 0

)
, (1)

where V is an N1 × N2 coupling matrix between the ground
and excited levels. The MS-transformation theory then predicts
that the coupling matrix V is diagonalized by means of an MS
transformation given by

H ′ = UHU †, (2)
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where the unitary transformation U is defined by

U =
(

X 0
0 Y

)
. (3)

Here, the block matrices X and Y are the unitary trans-
formations that diagonalize V V † and V †V , respectively.
The resulting Hamiltonian H ′ is a direct sum of M sets
of two-state systems and N − 2M uncoupled single states
(2M � {N1,N2}), i.e.,

H ′ = �

(
0 �1

�∗
1 0

)
⊕

(
0 �2

�∗
2 0

)
⊕ · · · ⊕

(
0 �M

�∗
M 0

)

⊕ (h1) ⊕ (h2) ⊕ · · · ⊕ (hN−2M ), (4)

where �i’s are the Rabi frequencies, which are all different in
general, of the two-state systems.

Various systems have been analyzed by MS transfor-
mation [2], including two-state superposition systems [7,8],
three-state �-linkage systems [9], four-state diamond- and
tripod-linkage systems [10–14], and N -state M- and W -
linkage systems [3]. The MS transformation of three-state
�-linkage systems is of particular interest with regard to
the laser technique known as stimulated Raman adiabatic
passage (STIRAP) [15], in which the systems undergo an
adiabatic evolution between two MS-transformed coupled
states, leaving the dark state unpopulated during the laser
interaction. The result is a complete population transfer
(CPT) [9,16,17] from one ground state to the other, which
is easy to understand in the context of the MS transformation.

In this article, we describe an experimental study of
MS-transformed N -state systems performed by ultrafast laser-
induced coherent excitations. The systems under consideration
are the complex coupling linkages of the D1 and D2 transitions
of atomic rubidium (85Rb). For example, the D1 transitions
from |5S1/2,F = 2,3〉 to |5P1/2,F

′ = 2,3〉 correspond to an
N = 24 system with N1 = 12 and N2 = 12. We first analyze
the atomic rubidium systems in terms of the MS transformation
to derive the Rabi frequencies for the D1 and D2 transitions
induced by an elliptically polarized light in Sec. II. After a
brief description of the experimental procedure in Sec. III,
our experimental results show that all of the system dynamics
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are governed by no more than two decoupled Rabi oscilla-
tions [18,19] when these systems interact with ultrafast laser
pulses of any polarization state. We discuss the implications of
this result with regard to the possible control of photoelectron
polarization in Sec. IV before giving our conclusions in Sec. V.

II. THEORETICAL CONSIDERATION

A. Linear and circular polarizations

We first consider that a laser pulse in a linear or circular
polarization state interacts with the atomic rubidium. Suppose
that the polarized electric field is given by

E(t) = ε̂E(t) cos(ωt + φ), (5)

where the polarization vector ε̂ = ẑ or (x̂ ± iŷ)/
√

2 for the
linear or circular polarization, respectively. The D1 transition
is dictated by the selection rule of �m = 0 or ±1 (q = �m), so
for each m, the Hamiltonian can be written in the four-state ba-
sis {|F = 2,m〉,|F = 3,m〉,|F ′ = 2,m ± q〉,|F ′ = 3,m ± q〉}
as

H (t) =

⎛
⎜⎝

0 0 μ22′E(t) μ23′E(t)
0 δ μ32′E(t) μ33′E(t)

μ∗
22′E(t)∗ μ∗

32′E(t)∗ ωo 0
μ∗

23′E(t)∗ μ∗
33′E(t)∗ 0 ωo + δ′

⎞
⎟⎠,

(6)

where δ = ωF=3 − ωF=2, δ′ = ωF ′=3 − ωF ′=2, ωo = ωF ′=2 −
ωF=2, and the dipole moments are given by μFF ′ =
〈F,m|erq |F ′,m − q〉.

Because we are considering ultrafast laser interactions, the
interaction time is extremely short compared to the inverse of
any hyperfine energy splitting, so the effective Hamiltonian
under a resonant approximation [20] can be alternatively
written in the atomic frame as

H (t) =

⎛
⎜⎝

0 0 A B

0 0 C D

A∗ C∗ 0 0
B∗ D∗ 0 0

⎞
⎟⎠, (7)

where A = μ22′E(t)/2, B = μ23′E(t)/2, C = μ32′E(t)/2, and
D = μ33′E(t)/2. When φ = 0 is assumed with no loss of
generality, the coupling matrix V (t) is given by

V (t) =
(

A B

C D

)
, (8)

and the MS transformation decouples the system into two
independent two-state systems through diagonalization of the
matrices V (t)V †(t) and V †(t)V (t), which are given by

V (t)V †(t) = V †(t)V (t) =
(

A2 + B2 AC + BD

AC + BD C2 + D2

)
. (9)

The coupling strength of each two-state system, or the
square of each Rabi frequency, is then determined by the
eigenvalues [2] given by

λ± = A2 + B2 + C2 + D2 ±
√

(A2 + B2 + C2 + D2)2 − 4(AD − BC)2

2
. (10)

On the basis of the eigenvectors |λ±〉, an arbitrary ground state
can be a pure superposition state or a mixed state of |λ±〉. If
these two eigenvalues λ± are the same, the two independent
oscillators represented by |λ±〉 vibrate coherently with the
same Rabi frequency, thus allowing CPT. Here, the condition
for λ+ = λ− is given by

{(A + D)2 + (B − C)2}{(A − D)2 + (B + C)2} = 0. (11)

As for the π transitions (q = 0), Clebsch-Gordon coeffi-
cient symmetries [23] allow 〈2m|z|2m′〉 = −〈3m|z|3m′〉 (A =
−D) and 〈2m|z|3m′〉 = 〈3m|z|2m′〉 (B = C) for all m = m′,
which satisfies λ+ = λ−, and the Rabi frequencies are the same
for all m’s. Therefore, the entire system undergoes CPT and,
moreover, the initial system in any coherent superposition or
mixed ground state simply undergoes Rabi oscillation, with
the Rabi frequency given by

�(t) =
√

μ2
22′ + μ2

23′
E(t)

2�
. (12)

The Rabi oscillations in these complex degenerate-level mani-
folds have been observed in the implementation of single-qubit
operations of atomic rubidium [21].

Meanwhile, the equality AD = BC holds for the σ transi-
tions (q = ±1), which means that one of the eigenvalues is zero
and the other is twice the eigenvalue of q = 0 (the π transition).
In other words, the σ transitions for different m’s have a pair

of respective uncoupled states and their Rabi frequencies are√
2 times larger than those of the corresponding π transitions.

Therefore, unlike the π transitions, the temporal dynamics of
σ± transitions depend on the initial condition because their
oscillators are drastically different; this behavior has been
applied to coherent controls of medium gains [22].

B. Elliptic polarizations

Now we generalize the problem by considering elliptical
polarizations of the laser interaction [3]. When the electric
field is defined by

E(t) = σ̂+E+(t) cos(ωt + φ+) + σ̂−E−(t) cos(ωt + φ−), (13)

the elements in V are given by E±(t)ηm′
m eiφ±/2, where ηm′

m

are the transition dipole moment 〈Fm|er±1|F ′m′〉. The dipole
moments can be factorized by a common factor μJJ ′ = 〈J =
1/2||er||J ′ = 1/2〉 for all {F,m} [23]. When the ellipticity ε

is defined by (E2
+ − E2

−)/(E2
+ + E2

−), the Rabi frequencies are
given by

�±(ε) = ±�o(t)

√
1 ± ε

3
, (14)

with �o(t) = μJJ ′ (E2
+ + E2

−)1/2/2�.
When the Hamiltonian is MStransformed by means of

the summarized procedure in Eqs. (1)–(4), the resulting
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Hamiltonian H ′ is a direct sum of 12 sets of two-state systems
given by

H ′ = �

(
0 �+eiφ+

�+e−iφ+ 0

)⊕6

⊕
(

0 �−eiφ−

�−e−iφ− 0

)⊕6

,

(15)

where the first set of six two-state systems corresponds to
the σ+ transitions and the second set corresponds to the σ−
transitions. This result can be readily understood in terms of
the basis reduction from |F,mF 〉 to |J,mJ 〉 [24]. Because
spin interactions (in this case, hyperfine interactions) are
irrelevant in ultrafast time-scale dynamics, they can be traced
out, and the reduced basis description in |J,mJ 〉 can be
acquired by alternative means. The advantage of the use of
the MS-transformed |F,mF 〉 bases, instead of the reduced
basis set, results from the fact that the coherent dynamics
coupled with spin interactions can be directly seen in the
former bases, which implies possible applications in ultrafast
time-scale nuclear-spin polarization controls [25–27].

III. EXPERIMENTAL PROCEDURE

A schematic of the experimental setup is shown in Fig. 1.
The rubidium atoms (85Rb) were cooled and trapped in a con-
ventional magneto-optical trap (MOT) [28]. The details of the
experimental setup have been reported elsewhere [21,29,30].
The atoms then interacted with ultrashort laser pulses from a
Ti:sapphire mode-locked laser amplifier operating at a pulse
repetition rate of 1 kHz. The center wavelength of the laser
pulses (the pump pulse) was tuned to 794.7 nm (or 780 nm)
for the rubidium D1 (D2) transition with a FWHM bandwidth

Laser oscillator
100 MHz Pump laser

Pockels cell
1 kHzStretcher

Rb85

8-pass
amplifier Compressor

MCP

Bias plate

Trapping laser

(a)

(b)

(c)

Magneto-optical trap

Repumping laser

5S1/2

5P1/2

Rb atom

794.7 nm

Ionization
continuum

397 nm

MCP

Delay
stage

B
B
O

MOT

Shutter 3
DM

f=500mm

f=300mmPump pulse

Ionization pulse

PBS

Shutter 2

Shutter 1

Q
W
P

FIG. 1. (Color online) (a) Schematic diagram of the experimental
setup. (b) Magneto-optical trapping apparatus for 85Rb. (c) Energy
level diagram of 85Rb atoms.

of 3 nm (0.5 nm). The single-pulse energy was varied up to
0.03 mJ, which was equivalent to a Rabi oscillation phase of
2π when the pulse diameter at the atom was about 0.5 mm and
the size of the atom cloud was 200 μm. The polarization was
controlled by a broadband quarter-wave plate (QWP).

The measurement of the excited state (5P1/2 or 5P3/2)
population of the atoms was achieved by photoionization
of the excited atoms with frequency-doubled ultrafast pulses
(the probe pulse) from the same laser. The pump and probe
pulses were independently focused and delivered by a dichroic
mirror (DM) to the MOT. The number of ions (Rb+) was
determined with a microchannel plate detector (MCP). The
signal linearity was ensured by operating the experiment
in the one-photon perturbation regime. The error caused by
three-photon ionizations by the pump pulse was estimated to
be below 5% at a pulse area of 3π [30], which was negligible in
the experimental conditions considered. The entire experiment
(four steps: MOT-turn off, laser control, ionization, MOT-turn
on) was repeated at 2 Hz by turning three mechanical shutters
on and off in a cyclic fashion.

IV. RESULTS AND DISCUSSION

The MS transformation of the rubidium D1 transitions,
described in Sec. II, predicts the following relationship
between the accumulated Rabi oscillation phases of the given
π and σ transitions:

π = 1√
2
σ , (16)

which results from Eq. (14) that gives �±(ε = 0) = �o/
√

3
and �±(ε = ±1) = ±√

2/3�o or zero. In terms of the laser
pulse area defined by o = ∫

�o(t)dt , π = o/
√

3, and
σ = √

2/3o. For the same reason, half of the ground
levels also remain intact for the σ transitions if the atom
is unpolarized, resulting in the relationship of the maximal
excitation probabilities given by

Pmax
π = 2Pmax

σ . (17)

To verify these predictions, we performed Rabi oscillation
experiments with rubidium D1 transitions by π - and σ -
polarized ultrafast laser pulses. The results are shown in Fig. 2,
which clearly shows that the Rabi frequency of the σ transition
is

√
2 times greater than that of the π transition and that the

oscillation amplitude of the σ transition is only half that of the
π transition; the two relationships in Eqs. (16) and (17) are thus
confirmed. The theoretical calculations are respectively plotted
with dashed lines whose deviation from the experimental result
is a result of the spatially inhomogeneous laser interaction
with the atom ensemble [30]. When the spatial averaging
effect is taken into account (by assuming that the size ratio
of the Gaussian laser beam and the atom ensemble is 2.5),
the new calculations, shown as solid lines, agree well with the
experimental results.

Elliptical polarizations are considered in the second experi-
ment. When the rubidium atoms interact with an ultrafast laser
pulse in an elliptical polarization, the interaction Hamiltonian
in Eq. (7) is expressed as a superposition of the σ+ and σ−
transitions. In this case, the decoupling is not simply attained
by means of a 4× 4 MS transformation H ′ = UHU † in
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FIG. 2. (Color online) Ultrafast Rabi oscillations of 85Rb atoms
between 5S1/2 and 5P1/2 energy states. Experimental results for
ultrafast laser pulses with linear (π transition) and circular (σ
transition) polarization are shown with open blue circles and filled
red circles, respectively. Both results are scaled along the vertical axis
by the maximal excitation probability of the π transition and along
the horizontal axis by the π -transition Rabi oscillation phase (π ).
The black dotted lines are the theoretical calculation on the basis of
Eq. (18) for the corresponding Rabi oscillations. The new calculations
that take into account the spatial average effect are represented by
solid lines.

Eq. (3). However, we can still describe the dynamics of the
MS-transformed two-state system as a combination of the Rabi

oscillations that correspond to the constituent polarization-
specific transitions. In the D1 transitions performed by an
elliptically polarized pulse, parts of the two-state system are
run by σ+ and σ− transitions, respectively. Then, we can
decompose the initial ground-state atom, written in |J,mJ 〉
bases, into |ψ±〉 (the Rabi oscillation bases, respectively,
for σ± transitions), given by |ψ±〉 = a±|1/2, ∓ 1/2〉, where
|a+|2 + |a−|2 = 1. Therefore, the dynamics of the excited-
state population of the atom under an elliptically polarized
light pulse predicts the following relationship:

PD1 (ε) = |a+|2 sin2 + + |a−|2 sin2 −, (18)

where ±(ε) = √
(1 ± ε)/3o are the Rabi oscillation phases

accumulated by the σ± transitions, respectively, from Eq. (15).
The π transition is naturally defined for ε = 0.

Figure 3 shows the experimental results. The excited state
population in 5P1/2 appears as a degraded oscillation in each
ellipticity ε ∈ {0.3,0.4,0.45}, as shown in Figs. 3(a)–3(c),
because, as in Eq. (18), it is given by a sum of two distinct
oscillations. The calculation based on Eq. (18) that considers
inhomogeneous pulse areas, o, for various ellipticities is
represented in Fig. 3(d). Figure 3(e) shows a closeup of the
region around the first peak for various ellipticities. When the
ellipticity is changed from zero to one, the first oscillation
appears in a gradually smaller Rabi oscillation phase (π ),
and the π for the first peak is changed from π to π/

√
2, as

shown in Figs. 3(d) and 3(e).
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FIG. 3. (Color online) Experimental results (blue circled lines) for D1 transitions with elliptically polarized lights for (a) ε = 0.3, (b)
ε = 0.4, and (c) ε = 0.45. Black dotted lines represent the ideal Rabi oscillation curves, and blue solid lines represent their spatially averaged
oscillations. (d) Calculated Rabi oscillations for various ellipticities are represented in a two-dimensional plot. (e) Experimental data for the
first peak position are shown close up for various ellipticities.
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FIG. 4. (Color online) (a) Experimental results for D2 transitions
for circular (blue open circles) and linear (red closed circles)
polarization. In comparison, theoretical calculations and their spa-
tially averaged results are represented by dotted and solid lines,
respectively. (b) Coupling strengths defined in |J,mJ 〉 bases. (c)
Schematic comparison between the ionization schemes for 5P1/2 and
5P3/2 states.

Finally, the Rabi oscillations of D2 transitions between
5S1/2 and 5P3/2 energy states are considered. In Fig. 4(a),
the experimental results are compared with the theoretical
calculations. After a similar argument leading to Eq. (18),
the excited state population as a result of D2 transitions is also
given by a sum of two Rabi oscillations as

PD2 (ε) = |a+|2 sin2

√
2 + ε

3
o + |a−|2 sin2

√
2 − ε

3
o,

(19)

where D2
o = (2�)−1

∫ t

−∞ < 1/2‖er‖3/2〉E(t)dt and the a±
denote the initial probability amplitudes of the ground state
in |J = 1/2,mJ = ∓1/2〉 bases. The Clebsch-Gordan coeffi-
cients for their coupling to |J ′ = 3/2,m′

J 〉 bases are shown in
Fig. 4(b). However, a direct comparison of the populations
of excited atoms in 5P3/2 levels by counting the photo-ions
yields an experimental artifact, because the ionization passages
via one-photon transitions to the continuum differ, as shown
in Fig. 4(c) for |J ′ = 3/2,m′

J = ±1/2〉 and |J ′ = 3/2,m′
J =

±3/2〉. The ratio between the ionization rates may be estimated
by comparing the bound-to-bound transitions of the corre-
sponding angular symmetries. Because the coupling strengths
from |J = 3/2,mJ = 1/2〉 and |J = 3/2,mJ = 3/2〉 are
proportional to

∑
J ′ |〈3/2‖ez‖kJ ′〉 < kJ ′,1/2|3/2,1,1/2,0〉|2

and
∑

J ′ |〈3/2‖er‖kJ ′〉〈kJ ′,3/2|3/2,1,3/2,0〉|2, respectively,
when |〈J‖er‖kJ ′〉|2 ∝ (2J ′ + 1)/(2J + 1) is assumed, the
estimated ratio of the ionization rates is 1.06, which shows
good agreement with the value of 1.1 that is used to fit the data
to the theoretical calculations in Fig. 4(a).

The remaining experimental errors are the result of laser
power fluctuations and the center mismatch between the laser

and the atoms, both of which are the predominant deviations
in large pulse areas. The laser fluctuation within 10% of the
shot-to-shot deviation was maintained at a low level by the
event statistics. The size of the atom cloud (200 μm) was
small compared to the distance between the steering mirrors
(300 mm), so the intrinsic misalignment of 30 μm caused by
the steering angular resolution led to an experimental error.
However, the guidelines that consider the spatial averaging
effect are valid in this experiment [30].

We now turn our attention to the implications of the
results obtained in this study to possible applications with
regard to the polarization control of electron spins. Electron
spin polarization control by photoexcitation of atoms has
been theoretically discussed for alkali atoms [31], for which
coherent excitations to nP states by circularly polarized light
were considered so that spin-orbit coupling exchanged the
spin and angular momenta. Alternatively, on the basis of our
demonstration, it can be considered that the excited nP state
is independently controlled to nP1/2 and nP3/2 by means
of ultrafast Rabi oscillations. Therefore, for example, the
procedure to control the electron polarization can be stated
as follows. First, a circularly polarized pulse resonantly tuned
to nP1/2 state completely excites the population in a particular
electron spin state, such as the |mS = 1/2〉 state, leaving the
rest of the spin states intact. The second pulse, which is
resonantly tuned to the nP3/2 state, then completely excites the
remaining ground-state atoms. Finally, the third pulse, which is
identical to the first pulse, deexcites the atoms in nP1/2 back to
their ground state. When the prepared state is photoionized by
means of an ultrafast time resolution, the liberated electron will
be in a pure spin state. Therefore, with this procedure, ultrafast
time-scale electrons of well-defined spin polarizations may be
generated.

V. CONCLUSIONS

In summary, we studied the ultrafast laser-driven Rabi
oscillations of MS-transformed atomic rubidium transitions.
The complex coupling linkages involved with the D1 or
D2 transitions were analyzed on the basis of the MS
transformation, and the simplified decoupled systems were
experimentally investigated by ultrafast laser interactions of
spatially localized rubidium atoms in a MOT in the strong
interaction regime. All of the system dynamics were found to
be governed by no more than two decoupled Rabi oscillations
for any polarization state of the interacting ultrafast pulse. The
implications of this result are discussed with regard to the
control of photoelectron polarizations.
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