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Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been
demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically
loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom
rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force
methods search all possible combinations so the process is slow, while heuristic methods are time efficient but
optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous
alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost
function that restricts collision-free guiding paths so that atom loss due to collision is minimized during
rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with
holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 × 7 lattice
to a 3 × 3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the
collisional and trespassing paths and results in improved performance, with over 50% higher success probability
than the heuristic shortest-move method.
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I. INTRODUCTION

Neutral atom arrays in two- or three-dimensional space may
play an important role in quantum information processing
(QIP), because of their scalability to a massive number of
qubits [1–6]. Currently, arrays of several hundred atoms have
been implemented with optically addressable spacings of a
few μm [7,8], and this number is expected to increase to a few
thousand as laser power permits. These atoms are confined
by an array of optical-dipole traps made through various
methods including holographic devices [9], diffractive optical
elements [10,11], microlens arrays [12], and optical lattices
[13]. Ultimately, neutral-atom platforms for QIP may require
(i) a significant number of atoms, (ii) a high-dimensional
architecture, preferably with an arbitrary lattice geometry,
(iii) single-atom loading per site, and (iv) the ability to
be individually addressable. However, no existing method
satisfies all these requirements. For example, optical lattices
can provide a large number of atoms singly loaded per site
through the Mott insulator transition [13], but they have rather
limited geometries and often lack individual addressability;
other methods have advantages of arbitrary configurations and
site addressability but fail the single-atom loading condition
due to the collisional blockade effect [14].

In optical-dipole traps, the probability of single-atom
trapping per site is about 50%. Both the filling factor and
the configuration of the entire array are, in consequence,
probabilistic. The probability of filling an entire array with
N atoms scales as 0.5N , which is extremely small for a
large N . Significant efforts are being devoted to achieve a
deterministic or near-deterministic single-atom loading; one
approach uses an array of bottle-shaped blue-detuned optical
well potentials [15], and the others include light-assisted,
controlled inelastic collision [16–18]. The loading probability
of defect-free arrays, however, still remains distant from one,
especially when we consider a large number of atoms.
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Recently, methods have been devised to achieve defect-free
atom arrays at a high probability by filling vacancies with
nearby reservoir atoms [19–24], along with the development
of atom transport techniques [25–30]. In this vacancy-filling
scheme, as illustrated in Fig. 1, the probability of achieving N

completely filled lattice points is a product of the probability
of initially trapping more than or equal to N atoms and the
probability of successful transport of N atoms to target sites.
Since the former is a conditional probability that approaches
one as the number of initial traps exceeds 2N , the vacancy
filling of the target sites is mainly governed by the latter, or how
N -atom transport is performed. The shorter the overall travel
path of all atoms, the smaller the loss that is given as a function
of travel time and distance. Thus successful transport depends
on a “good” atom-guiding plan that minimizes the travel time
and distance as well as any lossy transport paths. This is a
combinatorial optimization problem, and can be specifically
categorized as bipartite matching, for which the solutions can
be efficiently found with graph theories such as the Hungarian
method, or Hungarian matching algorithm [31].

In this paper, we consider the Hungarian matching al-
gorithm as an efficient means to achieve defect-free atomic
lattice formation through vacancy filling. In Sec. II, we first
compare atom-site matching methods, namely the brute-force
and heuristic approaches as well as the Hungarian, to discuss
their pros and cons, and then explain how to obtain collision-
free paths using the Hungarian algorithm in Sec. III. The
experimental procedure of capturing atoms with optical-dipole
traps, identifying the vacancies, calculating the optimal path
plans accordingly, and finally verifying the filling is described
in Sec. IV. In Sec. V, we present the results of experiments uti-
lizing the optimal path planning before concluding in Sec. VI.

II. ATOM-SITE MATCHING ALGORITHMS

When we consider the relocation of atoms to transform a
partially filled atomic lattice to a completely filled one, finding
a set of relocation paths can be viewed as the problem to
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Partially filled trapped atoms in an initial 7x7 trap array

A zero entropy 3x3 atom array after rearrangement

FIG. 1. Reconfiguration of an initial 7 × 7 lattice of probabilis-
tically loaded atoms to a completely filled 3 × 3 atomic array. A
defect-free array is achieved by filling vacancies with nearby reservoir
atoms.

find a match between every target site and a corresponding
atom. Although there are a plethora of algorithms to assign
matching between the target sites and the same number of
atoms, we must consider their operational efficiency in actual
experiments. Not only do atoms in optical-dipole traps have
a finite trapping time, but they also escape from the traps
during transport with a certain probability given as a function
of both time and distance. In choosing a specific algorithm,
therefore, we need to consider the time and travel distance.
The time is the sum of computational time for the matching
algorithm, and execution time for the subsequent guiding
operation (transport), with the latter closely related to the
travel distance. In our case of about half-filled lattices, the
travel distance (or the execution time) does not change much
for various initial configurations and algorithms; however,
the computation time changes significantly depending on the
choice of algorithm.

Figure 2 compares the computational times of various atom-
site matching algorithms. The brute-force algorithm requires
a factorial increasing computational time as the size of the
target site N increases, and the Hungarian algorithm scales as
N3 [32]. While the result of the heuristic method (the shortest
move method [23]) provides a shorter computational time,
the resulting matching is not only suboptimal but also often
involves path collisions (see Sec. III). The pros and cons of
these algorithms are summarized in Table I, with the details of
each method discussed in the following subsections.

A. Brute-force atom-site matching

The brute-force method extensively searches all possible
matching solutions; thus it finds the optimal solution without
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FIG. 2. Computational time vs the number of initial sites. The
computational time of atom matching to target sites using the brute-
force, heuristic shortest move, and Hungarian algorithms, when the
numbers of target sites, atoms, and initial sites are given by N : NA :
Ni = 1 : 2 : 4, respectively. Each error bar represents the standard
deviation.

failure, but in an extremely time-inefficient way. In this
method, after identifying the initial configuration of atoms
in the lattice, we calculate the distance matrix D, of which
the element di,j is the distance between each target site ti
and the initial position of each trapped atom aj . When all
the target sites are indexed with T = {ti |1 � i � N} and the
positions of the trapped atoms with A = {aj |1 � j � NA},
the objective is to find a one-to-one matching f : T → A

which minimizes the total distance between atoms and target
sites, where dtotal = ∑

i di,f (i) and di,f (i) = |ti − f (ti)|. All
possible subsets of A of size N are sequentially selected
with all possible permutations inspected. This method ensures
the optimal solution (i.e., the one-to-one function with the
minimum total distance); however, it requires a tremendous
amount of calculation time. As shown in Fig. 2, the brute-force
calculation time scales factorially as a function of the total
number of initial sites, Ni , and as a result it takes more than an
hour for Ni = 100, which is not practical in our experiments.
(The comparative benchmarking of matching computation
time in Fig. 2 was performed with a MATLAB code and an
Intel CPU i5-4670.)

B. Heuristic shortest-move matching

Heuristic algorithms can find a solution in a time-efficient
manner. One example used in Ref. [23], which may be referred

TABLE I. Comparison of atom-site matching algorithms.

Algorithm Calculation complexity Rigorosity

Brute-force method O(N !) Yes
Heuristic shortest move O(N3) No
Hungarian matching O(N3) Yes
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to as heuristic shortest-move matching, finds a solution in
such a way that N smallest elements are sequentially selected
from the distance matrix D with the condition of choosing
only one element from each row and column. So, in the
distance matrix, this algorithm finds the smallest element
dl,m and assigns am to tl , i.e., am = f (tl). Then, the lth row
and mth column are eliminated from the matrix D and the
process repeats NT times until all target sites are assigned
to atoms. As shown in Fig. 2, the heuristic approach allows
fast calculation, with a computational time an order smaller
than the Hungarian algorithm for typical cases (30 times faster
for Ni = 100). This algorithm is fast but not rigorous; this
suboptimality can be improved by using additional restriction
rules. Compared with the Hungarian algorithm, which will
be introduced in the following subsection, our computer
simulation of the heuristic shortest-move method, without
additional rules, finds an optimal solution with a 50% chance;
the suboptimal solutions involve either a longer travel distance
(14%), atom-atom collision en route (93%), or both (7%).

C. Hungarian matching algorithm

Graph theories, such as Hall’s marriage theorem, the
Hopcroft-Karp algorithm, and the Hungarian algorithm, pro-
vide useful theoretical backgrounds to achieve a fast and rigor-
ous matching between target sites and atoms. Hall’s marriage
theorem [33], or Hall’s theorem, provides the necessary and
sufficient condition for the existence of a matching M that
covers at least one side of a bipartite graph G(U,V ; E), where
U and V are two finite sets, and E is the set of edges that
connect U and V . In the current work, we consider U = T

and V = A, and this theorem tells whether there exists in
G any possible exclusive matching between each target site
and a corresponding atom among all trapped atoms. The
Hopcroft-Karp algorithm [34] finds an actual matching M that
allows the maximal one-to-one connection between U and V ,
from a given bipartite graph G. When all elements in U = T

are one-to-one connected to V = A, in other words maximal
matching, the complete filling of the target sites in our case is
possible. This theorem however only finds possible matching,
without considering distance minimization.

As total distance minimization is necessary, we focus
on the Hungarian matching algorithm, which can use cost
functions when finding a maximal matching M in G [31]. The
Hungarian method efficiently finds the maximal matching with
a time complexity of N3 for an N × N cost matrix, when the
constraint is given to minimize the cost function. Our Monte
Carlo simulation using the total travel distance as the cost
function shows the same scaling behavior of computational
time as in Fig. 2. Furthermore, some modifications to the
original Hungariam algorithm can significantly reduce the cal-
culation time, either by employing a sparse-matrix Hungarian
algorithm or by using the subdomains of trapped atom sites
to apply the algorithm to each domain (a divide-and-conquer
approach).

III. COLLISION-FREE PATH PLANNING
BY HUNGARIAN ALGORITHM

Examples of actual atom-guiding plans obtained with
the heuristic shortest-move and Hungarian algorithms are

Initial status )b()a(

(d)(c)

Heuristic shortest-move

Hungarian algorithm (α=1) Hungarian algorithm (α=2)

A

C
B

A

C
B

FIG. 3. Visualization of move solutions from (a) the 7 × 7 initial
array by (b) shortest-move matching algorithm and (c),(d) Hungarian
algorithm matching with α = 1 and 2, respectively, to the central
3 × 3 target array. The orange dotted circles show overlapping of the
paths and trespassing of atom sites.

shown in Fig. 3. The initial configuration is a 7 × 7 square
lattice (Ni = 49) randomly occupied by NA = 21 atoms, as
in Fig. 3(a), where filled circles represent the initial atoms
and unfilled circles the vacancies in the 3 × 3 target lattice
(N = 9). The result of the heuristic shortest-move method
without any additional rule is shown in Fig. 3(b). However,
some guiding paths cross each other or trespass on existing
atoms (orange dotted circles), which leads to possible atom
loss or improper guiding due to the merging of optical-dipole
traps en route.

The Hungarian matching algorithm in Fig. 3(c), on the
other hand, intrinsically shows no path crossing. This is
because the matching with path crossing gives a bigger travel
distance than the corresponding collision-free matching that
swaps the targets, and the Hungarian algorithm minimizes the
total distance. However, trespassing still remains, as shown
with the dotted circle in Fig. 3(c). In order to avoid such
trespassing, we can employ an alternative cost matrix D,
for example, with a modified distance metric dα

i,j . With the
modified distance metric, trespassing is avoided when α > 1.
If, for example, α = 2, since the matching A → B, B → C

(“relaying path”) in Fig. 3(d) gives lower cost (12 + 12 = 2)
than A → C, B → B (trespass) in Fig. 3(c) (22 + 02 = 4).

A similar principle can also apply to “nearly trespassing
paths” where, for instance, atom B is near the A → C path.
Since atom traps have finite sizes in space, by avoiding the
atoms which are too close, atom loss could be reduced. In a
similar manner to the trespassing case, a relaying path is chosen
when α > αc, in which the minimum interatomic distance
is increased. Sufficient αc can vary according to the array
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FIG. 4. (a) “Nearly trespassing path” and (b) “relaying path” for
a configuration with two atoms and two targets in a 1 × L lattice.

configuration. For the square lattice in our case, it is found that
α > 1.12 ensures the minimum interatomic distance of 1/

√
2,

as follows. We consider nearly trespassing configurations
that involve the minimum interatomic distance, in which
(0,0) → (1,l) and (0,1) → (0,1) is the nearly trespassing path
[see Fig. 4(a)]. The condition for choosing the relaying path
[Fig. 4(b)] is 1α + [

√
1 + (l − 1)2]α < (

√
1 + l2)α . For l = 1,

a nearly trespassing path is allowable because the minimum
distance in this case is 1/

√
2, which is sufficiently larger than
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FIG. 5. Experimental examples of the formation of a 3 × 3 atom
array from a partially filled 7 × 7 array using the Hungarian matching
algorithm, where Ps is the success probability of achieving a filled
target lattice. Histograms of the atom number in the target lattice are
shown below from a total of 250 events.

the trap size. For l = 2, αc ≈ 1.12, and as αc has smaller values
for larger l’s, α > αc ensures the minimum distance not to be
smaller than 1/

√
2, which is the condition for collision-free

matching.

IV. EXPERIMENTAL PROCEDURE

The experimental setup, similar to what is described in
our earlier work [21,22], includes a magneto-optical trap
(MOT) for cold rubidium atoms (87Rb), a dipole-trapping
laser beam programmable with a 2D spatial light modulator
(SLM, Meadowlarks XY spatial light modulator, 512 × 512
pixels, 200 Hz frame rate) in the Fourier domain, a single-atom
imaging system with an electron multiplying charge-coupled
device (EMCCD) and a high numerical aperture lens (NA
= 0.5), and a computing system that calculates possible
atom-relocation paths. Atoms were first cooled and trapped in
the MOT which took 0.5 s. Simultaneously, the dipole-trapping
beams were turned on to prepare an initial array of atoms
that were probabilistically loaded in the collisional blockade
regime [14], with a filling factor of about 50%. Then, the
imaging system read out the filling and vacancy configuration
of the initial atom array, and the computing system calculated
an atom-transport path plan to a completely filled smaller-
size lattice. The matching algorithm, such as the Hungarian
algorithm, was used at this stage. Once the atom guide plan
was finalized, all the atoms to be relocated were simultaneously
transported, while the mask pattern for the SLM was calculated
in real time, which was accelerated with a graphic processing
unit (GPU, Nvidia Titan X). For hologram generation, we used
a modified GS (Gerchberg-Saxton) algorithm [35]. When the
first trial of atom reconfiguration was completed, the actual
array configuration was confirmed through a second readout.
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FIG. 6. Success rate comparison for shortest-move and Hungar-
ian algorithm matching with various α values in the 7 × 7 lattice for
the target 3 × 3 lattice in the central region. The circles and error bars
correspond to the experimental data and the dotted lines show the
simulation results.
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(a) (b) (c)

5μm

FIG. 7. Examples of defect-free atomic array formation: (a) a rectangular ring, (b) a triple X, and (c) the capital letters of the word “atom”
with upper and lower images showing the initial and final configurations, respectively.

If the configuration was incomplete due to moving or collision
loss during the operation, the whole process was repeated until
a defect-free array was achieved. The whole experiment was
performed in a closed feedback loop with up to nine iterations
within the trap lifetime of τ = 18 s.

V. RESULTS AND DISCUSSION

Experimental demonstration of our defect-free atom-lattice
formation using the Hungarian algorithm is shown in Fig. 5.
Representative atom lattice images at various stages are shown
in Figs. 5(a)–5(d). The initial configuration was a partially
filled 7 × 7 square lattice, having three vacancies in the central
3 × 3 target zone, as shown in Fig. 5(a). As indicated by the five
arrows, the neighboring atoms were simultaneously moved to
construct a completely filled central lattice. However, as the
images in Figs. 5(b) and 5(c) show, some atoms in the target
lattice disappeared during transport due to time-dependent
atom loss. To fill the vacancies, neighboring atoms were
additionally moved along the paths indicated with arrows,
until a completely filled 3 × 3 lattice was achieved, as shown
in Fig. 5(d). The atom-site matching in each stage and
the corresponding guiding paths were obtained using the
Hungarian algorithm with α = 1.5. The success probability
Ps , defined as the number of successful events (achieving the
defect-free 3 × 3 target lattice) divided by the total number
of events (250), increased from about 0.59 � 0.2% in the
initial configuration, to 24% after the first relocation, then
50% after the second relocation, and ultimately 61% after the
ninth relocation.

Figure 6 compares the experimental success probabilities
of the Hungarian algorithm with α = 0.5, 1.5, and 3 with that
of the heuristic shortest-move matching. The experimental
data (circles) shows that the success probability to achieve
a defect-free array is notably bigger when the Hungarian
matching algorithm with either α = 1.5 or α = 3 is employed
rather than the heuristic shortest-move algorithm or Hungarian
with α = 0.5. This result is in good agreement with the
analysis in Sec. III, where it was predicted that the former
cases are collision free but the latter cases are not. Note that
the success probability Ps first increases as a function of the
stage number, but decreases in the end, which is attributed
to the fact that the longer travel distance required for the later
stages brings about bigger losses. In the experiment, each atom
move between sites was divided into Nframe = 15 segmented
moves, and each segmented move was driven by the SLM
frame evolution between two stationary frames. The atom

survival probability in each segmented move can be modeled
as P = PtimePmovingPcross, where Ptime = e−t/τ is the survival
probability against the time-dependent loss due to background
gas collision, with τ the trap lifetime, Pmoving = e−βNframed

2

is the survival probability against the moving loss due to
intensity flickering of the optical dipole traps [22], with β

the moving loss coefficient and d the travel distance, and
Pcross = 1 − e−γ d2

min is the survival probability against the loss
due to path collisions. In Fig. 6, the numerical simulation using
the above models (dotted lines) for each relocation stage are
shown. The fitted parameters obtained through curve fitting are
given by τ = 18 s, β = 0.0079/a2, and γ = 84/a2, where a

is the lattice constant. Each data point is statistically averaged
over 250 events, where the error bar represents the standard
error.

Finally, Fig. 7 shows a few examples of atom arrays
formed by the Hungarian matching algorithm. In each of
the demonstrations, the upper images show examples of the
random initial configurations with N ∼ 100 initial sites, and
the lower images show the final configurations following
atom relocation. Each image was from a single shot. Success
rate was 30.6%, 32.6%, and 19.1%, respectively. For array
formation of various geometries of target sites, the Hungarian
algorithm performed well.

VI. CONCLUSION

Three methods of vacancy site filling have been compared.
The advantage of Hungarian matching over the brute-force
method is clear because the calculation time of the latter greatly
exceeds the former as the number of atoms increases. The
heuristic shortest-move method seemingly has an advantage in
short calculation time, but the issue of path collisions becomes
serious, in particular when the vacancy occurs in the central
region of the target lattice. It is concluded that the Hungarian
matching method has at least three advantages over the
heuristic shortest-move method: it provides rigorous solutions,
high success probabilities, and advantages in atom vacancy
healing cases, where the second and third advantages are
attributed to the collision-free path planning of the Hungarian
algorithm.
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