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초 록

강한상호작용을가진중성원자의유연한기하학적구조를제공하는리드버그원자배열은양자컴퓨팅

에 많은 기회를 제공한다. 이 학위논문에서는, 우선 보조원자 (와이어원자)를 사용하여 큐비트 원자 (데이터

원자)간의 결합을 중재하는 방식으로 리드버그 광학게이트를 설계하는 양자 회로 모델 프로그래밍을 제시

한다. 그리고 두가지 새로운 종류의 리드버그 원자 양자 프로그래밍 방식을 제시한다. 하나는 대표적인

NP(비결정론적 다항시간)-완전 문제 인스턴스인 3-충족성(3-SAT) 문제 인스턴스를 리드버그 원자 양자 실

험에 내재적인 최대독립집합(MIS) 문제 인스턴스의 큐비트 배열 구조로 변환하는 프로그래밍이다. 이러한

양자 알고리즘을 리드버그 봉쇄 현상과 단열 양자 프로세스를 통하여 3-SAT 문제 인스턴스를 실험적으로

평가한다. 그리고 다른 하나로 퀜치 에볼루션(QE)과 단열 양자 컴퓨팅(AQC) 실험 데이터에 소프트웨어

결합을 하여 기존 고전적 방식 대비 처리 시간을 크게 줄이고 정확도를 올리는 리드버그 양자 강화 시뮬레

이션 어닐링(QESA)이다. QESA는 시뮬레이션 어닐링(SA)에 비해 목표 근사화 비율에 도달하는 효율적인

성능 이점을 보여준다.

핵 심 낱 말 양자 계산 문제, 리드버그 원자, 양자 와이어, 양자 게이트, 충족성 문제, 최대독립집합 문제,

단열 양자 컴퓨팅, 양자-고전 하이브리드 알고리즘

Abstract

The Rydberg arrangement of atoms, which provides a flexible geometry of neutral atoms with strong

interactions, offers many chances for quantum computing. In this thesis, we first present a quantum cir-

cuit model programming that designs Rydberg optical gates by using auxiliary atoms (wire atoms) to

mediate the coupling between qubit atoms (data atoms). Then, we present two new kinds of Rydberg

atom quantum programming schemes. First, we program to transform a representative nondeterministic

polynomial-time (NP)-complete problem instance, the 3-satisfiability (3-SAT) problem instance, into a

qubit array structure for the maximum independent set (MIS) problem instance intrinsic to Rydberg

atom quantum experiments. These quantum algorithms are experimentally evaluated on 3-SAT prob-

lem instances using Rydberg blockade and adiabatic quantum processes. We then introduce Rydberg

Quantum-enhanced simulated annealing (QESA), a software combination with quench evolution (QE)

and adiabatic quantum computing (AQC) experimental data that significantly reduces processing time

and improves accuracy over classical methods. QESA demonstrates an efficient performance advantage

over simulated annealing (SA) to reach a target approximation ratio.

Keywords Quantum computational problem, Rydberg atom, Quantum wire, Quantum gates, Satisfia-

bility problem, Maximum independent set problem, Adiabatic quantum computing, Hybrid Quantum-

classical algorithm
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Chapter 1. Introduction

Quantum physics is the overarching theory that describes the microscopic nature of physical sys-

tems. Quantum computing, in particular, has attracted attention as a means to innovate computational

power beyond the limits of classical digital computers [1, 2]. As a type of quantum computing, gate-based

quantum computation has been demonstrated in many physical systems, including hardware systems,

linear optics [3, 4], quantum mechanics of superconducting circuits [5, 6, 7], trapped ions [8, 9, 10],

defects in solid materials [11, 12], and neutral atoms [13, 14]. Neutral atoms have been considered for

gate-based quantum computation using interactions between Rydberg atoms [15, 16]. The advantages of

using Rydberg atoms include strong dipole-dipole interactions and laser excitations that can be turned

on and off at high speeds, large arrays of atoms that can be prepared in almost any desired geometry and

topology [17, 18, 19], and stable ground hyperfine states that can be used for long-term quantum informa-

tion. Quantum gates using Rydberg atoms can take advantage of distance-dependent interactions [20] or

the Rydberg blockade effect [21, 22], which prohibits adjacent atoms from being excited to the Rydberg

state. There are many Rydberg atomic schemes for quantum gates and entanglement [23, 24, 25, 26],

which have been experimentally demonstrated [27, 28, 29, 30, 31, 32, 33]. This thesis investigates the

potential of Rydberg atom system as a quantum computer. Rydberg atom system controls individual

atoms with optical tweezers and can accurately manipulate the distance between pairs of atoms. It also

offers graphs with Rydberg blockade property, which causes strong correlations between atoms. This

thesis proposes three types of quantum programming that utilize these properties of Rydberg quantum

systems. Chapter 2 introduces the physical meaning of the Rydberg atom array, the definition of the

maximum independent set (MIS) problem, and the Rydberg experimental setup. In Chapter 3, we show

that various Rydberg quantum gate schemes can be designed with auxiliary atoms (wire atoms) and

optical local atom addressing. By using auxiliary atoms, we have solved the quantum gate problem due

to the Rydberg blockade. In addition to solving the quantum gate, the auxiliary atom helps to over-

come the geometrical limitations by introducing an additional atom, the wire, between two unconnected

atoms, which will be discussed later in constructing the quantum graph. Then, in Chapter 4, we present

quantum algorithms and programming for the transformation of mathematical problems intractable to

classical computers into Rydberg quantum graphs. To solve NP problem instances, we formulate a

quantum programming algorithm for Rydberg atom array that evaluates the satisfiability (i.e., existence

of a solution) of a 3-satisfiability (3-SAT) instance. We present an algorithm that reduces the 3-SAT

problem to a maximum independent set (MIS) problem with Rydberg atom blockade interactions, and

then experimentally obtain satisfiability results for SAT graph instances obtained by adiabatic quantum

computing (AQC). Chapter 5 is on the hybrid quantum-classical programming, which we refer to as

quantum enhanced simulated annealing (QESA). It is essential to decrease the number of iterations of

the quantum adiabatic process to achieve quantum supremacy in current Rydberg quantum systems.

This requires simultaneously improving the quality (noise) and scalability (number of atoms) issues. To

solve this problem, we propose an approach that combines experimental results with software to obtain

high precision with low processing time. We show the results of QESA based on experimental results of

AQC or quench evolution (QE) of Rydberg atom arrays of approximately one hundred atoms. We show

the computational time advantage over classical stand-alone simulated annealing (SA), and in particular,

we present a new correlation between the computational time and Hamming distance of QESA. From
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these results, we also estimate the scalability of QESA in terms of the number of atoms and Hamming

distance. Chapter 6 is the conclusion of the previous chapters on three types of quantum programming.

We present a quantum gate using Rydberg wires, programming that converts NP-complete instances into

a qubit array structure for Rydberg atom quantum experiments, and describe the effectiveness of warm-

start software coupling of preliminary Rydberg quantum experiment results using Hamming distance to

improve performance and accuracy.
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Chapter 2. Review of Rydberg atom Quantum Programming

Quantum programming is the process of designing and executing algorithms that operate on quan-

tum computers [34, 35]. Whereas classical programming is digital, using binary (0 and 1) bits, quantum

programming uses qubits, which represent superpositions and entanglement [34, 35].

The scope of quantum programming can be quite broad, and, particularly in this thesis, we will

discuss three different kinds of quantum programming:

1. Quantum circuit model programming: Design of the universal quantum gates intrinsic to the 2D

ground-Rydberg qubit system consisting of the data and auxiliary qubits.

2. Adiabatic quantum programming: Converting an NP-complete instance into a qubit array structure

to suit the problem so that the Rydberg atomic quantum experiment can be performed.

3. Hybrid quantum-classical programming: Software combination of Rydberg quantum experimental

results using Hamming distance to improve accuracy, which will be discussed later.

In this chapter, we will briefly introduce the basic principles and properties of Rydberg atoms used in

quantum programming, the maximum independent set (MIS) problem, and Rydberg atom experimental

setup.

2.1 Theoretical basic of Rydberg atom arrays

A Rydberg atom is a neutral atom (e.g. Rubidium or Cesium) in which one or more electrons

are excited to a high principal quantum number n (typically, n ≳ 30 [15, 36]), and has the following

properties:

1. Strong, long-range interactions [15],

2. Large electric dipole moments [15],

3. High sensitivity to external fields [36, 37].

Strong dipole-dipole interactions lead to Rydberg blockade, a phenomenon in which the excitation of

one atom prevents the excitation of neighboring atoms [15]. And the high sensitivity to external fields

leads to strong coupling between the ground and excited states by the laser, which facilitates the tran-

sition between states. In quantum computing, where qubits are encoded into the ground and excited

states of an atom, this Rydberg blockade and strong interstate coupling provide high controllability and

entanglement.

In addition, the high sensitivity of a single atom to external fields enables optical tweezer [37], which

traps a single atom in a far-off-resonance optical trap (FORT) created by a far-off-resonant beam at a

targeted location. These optical tweezers provide an environment for creating scalable and reconfigurable

quantum computing [38].

In this section, we describe in detail the following physical properties of the Rydberg atom. First,

we introduce how the high sensitivity to external fields of the Rydberg atom and the strong dipole-dipole
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interaction are reflected in the Hamiltonian of the Rydberg atom system. Then, we describe the Rydberg

blockade, which allows the Rydberg atom system to provide high controllability and entanglement for

quantum computing. Finally, we introduce the Lindblad master equation, a model that describes the

decoherence that occurs in the Rydberg atom system.

2.1.1 Hamiltonian of Rydberg atom system

The quantum Hamiltonian of the Rydberg atom system is represented as follows:

ĤRyd = Ĥg−R + ĤR−R. (2.1)

where Ĥg−R is the term that represents the two-photon transition between the ground and Rydberg

states of each atom, and ĤR−R is the Rydberg-Rydberg interaction term acting between the Rydberg

states of two spatially distant atoms.

In this subsection, ĤRyd is described in two parts: “Two-photon transition between ground and

Rydberg states” and “Rydberg-Rydberg interaction” related to the Rydberg blockade phenomenon.

Two-photon transition between the ground and Rydberg states

The transition between the ground and Rydberg states of a single atom occurs as a two-photon

transition due to the atom-light interaction between the atom and the laser, which is an external field.

This two-photon transition can be explained by a three-level system consisting of a ground state |g⟩, an
intermediate state |i⟩, and a Rydberg state |R⟩, as shown in Fig. 2.1.

And this two-photon transition occurs through the coupling between the |g⟩-|i⟩ state by the laser

beam L1 and the coupling between the |i⟩-|R⟩ state by the laser beam L2. And, for |R⟩ =
∣∣nS1/2,mJ = 1/2

〉
where each coupling by laser beams L1 and L2 can be viewed as a strict one-photon transition in the

two-level system {|g⟩, |i⟩} [15, 39, 40] and an approximate one-photon transition in the two-level system

{|i⟩, |R⟩} (where |R⟩ has a negligible hyperfine splitting) [15, 36, 41], respectively.

This two-level system is represented by the Hamiltonian ĤTwo−level (Eq. (2.3)) with two parameters

one-photon Rabi frequency Ωab and detuning ∆ by the Electric dipole approximation and the Rotating

wave approximation (RWA), since it is a two-level system is a two-level system {|a⟩ , |b⟩} with energy

{ℏωa, ℏωb} (ωb−a = ωb − ωa) and transition dipole µ⃗, where each level is acted upon by a laser in an

electric field E⃗ oscillating with an angular frequency ωL(≡ 2πc/λL) with a wavelength λL(≫ a0) much

larger than the typical atom size (∼ a0, a0 = 5.2918× 10−11 m is Bohr radius):

Ωab ≡ −µ⃗ · E⃗/ℏ (2.2a)

∆ ≡ ωL − ωb−a (2.2b)

ĤTwo−level =
ℏ
2

[
0 Ω∗

ab

Ωab −2∆

]
. (2.3)

Based on this, the Hamiltonian of the three-level system {|g⟩ , |i⟩ , |R⟩} is expressed as Eq. (2.4):

ĤThree−level =
ℏ
2


0 Ω∗

gi 0

Ωgi −2∆m1 Ω∗
iR

0 ΩiR −2(∆m1 +∆m2)

 , (2.4)
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Figure 2.1: Two-photon transition in the three-level System {|g⟩ , |i⟩ , |R⟩} (which are ground-,

intermediate- and Rydberg states), From the Electric dipole approximation and Rotating wave approx-

imation (RWA), there are a strict- and an approximate one-photon transition in each two-level system

{|g⟩ , |i⟩} (red-colored in the left diagram) and {|i⟩ , |R⟩} (blue-colored in the left diagram). And, by the

Adiabatic elimination, These two one-photon transitions in the three-level System {|g⟩ , |i⟩ , |R⟩} leads to

the two-photon transition (purple-colored in the right diagram) between |g⟩ and |R⟩ states.

where (Ωgi,∆m1) ≡ (−µ⃗gi · E⃗L1/ℏ, ωL1 −ωi−g), (ΩiR,∆m2) ≡ (−µ⃗iR · E⃗L2/ℏ, ωL2 −ωR−i) are the (One-

photon Rabi frequency, Detuning) pair of each laser beam acting on the |g⟩-|i⟩ state transition and the

|i⟩-|R⟩ state transition, respectively.

So, the Schrödinger equation for the three-level system is given as follows:

iℏ


ċg(t)

ċi(t)

ċR(t)

 =
ℏ
2


0 Ω∗

gi 0

Ωgi −2∆m1 Ω∗
iR

0 ΩiR −2(∆m1 +∆m2)

 ·


cg(t)

ci(t)

cR(t)

 (2.5)

In Eq. (2.5), if the intermediate detuning ∆m1 is much larger than the other parameters Ωgi,ΩiR, (∆m1+

∆m2) (i.e. |∆m1| ≫ |Ωgi|, |ΩiR|, |∆m1 + ∆m2|), it can be approximated as ċi(t) ≈ 0 by the adiabatic

elimination [42].
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By the Eq. (2.5) and Adiabatic elimination, the following relation is obtained:

2iċi(t) = Ωgicg(t)− 2∆m1ci(t) + Ω∗
iRcR(t) ≈ 0 (2.6a)

ci(t) ≈ Ωgicg(t) + Ω∗
iRcR(t)

2∆m1
(2.6b)

Substituting Eq. (2.6b) to Eq. (2.5), it is clear that Eq. (2.5) can be approximated by the following

two-level Schrödinger equation:

iℏ

[
ċg(t)

ċR(t)

]
=

ℏ
2

[
|Ωgi|2
2∆m1

Ω∗
giΩ

∗
iR

2∆m1
ΩgiΩiR

2∆m1

|ΩiR|2
2∆m1

− 2(∆m1 +∆m2)

]
·

[
cg(t)

cR(t)

]
. (2.7)

The new parameters are the two-photon Rabi frequency Ω, the AC Stark shift ∆AC, and the total

detuning ∆L, defined as follows:

Ω ≡ ΩgiΩiR

2∆m1
(2.8a)

∆AC ≡ |Ωgi|2 − |ΩiR|2

4∆m1
(2.8b)

∆L ≡ ∆m1 +∆m2 (2.8c)

Consequently, the two-photon transition in Eq. (2.7) is approximated as the two-level system

{|g⟩ , |R⟩}, and the Hamiltonian Ĥg−R, which represents the two-photon transition between the ground

and Rydberg states of each atom, is obtained as follows:

Ĥg−R = ℏ
∑
j

(
Ω

2
σ̂x
j −∆n̂j

)
, (2.9)

where ∆ ≡ ∆AC +∆L is the detuning, Ω is the (Two-photon) Rabi frequency, σ̂x
j ≡ |g⟩j ⟨R|j + |R⟩j ⟨g|j

is the Pauli x operator acting on the j-th atom, and n̂j ≡ |R⟩j ⟨R|j is the Rydberg occupation number

operator of the j-th atom.

Rydberg-Rydberg interaction

In this subsection, we will discuss the Rydberg-Rydberg interaction between the Rydberg states of

two atoms spatially distant from each other. Rydberg state is a state in which one or more electrons of

a neutral atom are excited to a high principal quantum number, n (≳ 30), and have large electric dipole

moments [36]. Hence, there is a dipole-dipole interaction between the Rydberg states of atoms A and

B, located at positions R⃗A and R⃗B and distant from each other, which is given as follows:

ÛD−D =
1

4πϵ0

µ⃗A · µ⃗B − 3(µ⃗A · R̂)(µ⃗B · R̂)
d3

, (2.10)

where d is the distance between two atoms A and B, µ⃗A(B) is the electric dipole moment of each atom,

and R̂ = R⃗/d (R⃗ ≡ R⃗A − R⃗B).

This dipole-dipole interaction Ûd−d induces a |rA, rB⟩-|r′A, r′B⟩ transition of the Rydberg state pair

|rA, rB⟩ of atoms A, B. The following perturbative energy shift ∆ErA,rB of Ûd−d is applied between the

two distant atoms:

∆ErA,rB ≈ ∆E(1)
rA,rB +∆E(2)

rA,rB

= ⟨rA, rB | ÛD−D |rA, rB⟩+
∑

r′A ̸=rA,r′B ̸=rB

|⟨rA, rB | ÛD−D |r′A, r′B⟩|2

ErA,rB − Er′A,r′B

(2.11)
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Figure 2.2: Rydberg-Rydberg Interaction UvdW(d) of two atoms A and B at a distance d and the

Rydberg Blockade due to the decoupling of |RR⟩ state by the energy shift +UvdW(d) at the strong

interaction regime (d≪ dB = (C6/Ω)
1/6)

Here, since the orbital function is point symmetric with respect to the origin, the first order pertur-

bation energy is ∆E
(1)
rA,rB = ⟨rA, rB | Ûd−d |rA, rB⟩ = 0. Thus, the perturbative energy shift ∆ErA,rB can

be approximated by the second order perturbation energy ∆E
(2)
rA,rB , which is called the van der Waals

interaction:

∆ErA,rB ≈ ∆E(2)
rA,rB =

∑
r′A ̸=rA,r′B ̸=rB

|⟨rA, rB | ÛD−D |r′A, r′B⟩|2

ErA,rB − Er′A,r′B

= ℏ
C6

d6
, (2.12)

where C6 is the van der Waals interaction coefficient and R is the distance between two atoms A and B.

Consequently, the Hamiltonian ĤvdW(d) of the Rydberg-Rydberg interaction of two atoms A, B at

a distance d is expressed as Eq. (2.13a), and the Hamiltonian ĤR−R representing the Rydberg-Rydberg

interactions between these different atoms is given by Eq. (2.13b):

ĤvdW(d) = ℏ
C6

d6
n̂An̂B , (2.13a)

ĤR−R =
∑
j<k

ĤvdW(rjk) = ℏ
∑
j<k

C6

r6jk
n̂j n̂k, (2.13b)

where rjk is the distance between the j-th and k-th atoms, and n̂j ≡ |R⟩j ⟨R|j is the Rydberg occupation

number operator of the j-th atom.
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2.1.2 Rydberg blockade

Using the Eq. (2.1), Eq. (2.9) and Eq. (2.13b) in the Subsec. 2.1.1, the quantum Hamiltonian of the

Rydberg atom system is finally obtained as follows:

ĤRyd = ℏ

∑
j

(
Ω

2
σ̂x
j −∆n̂j

)
+

∑
j<k

C6

r6jk
n̂j n̂k

 . (2.14)

As shown in Figure 2.2, the energy level of the double-excitation state |RR⟩ is shifted by +UvdW

compared to Ĥg−R by the van der Waals interaction, a Rydberg-Rydberg interaction between atoms A

and B at a distance R from each other.

Also, in the strong interaction regime (Ω ≪ UvdW), where the energy shift of the |RR⟩ state is

much larger than the Rabi frequency, the |RR⟩ state is decoupled from the dynamics of the Hamiltonian

ĤRyd by the energy shift UvdW, which is called Rydberg blockade. The strong interaction regime,

where this Rydberg blockade occurs, and the weak interaction regime, outside of the strong interaction

regime, is based on whether the distance d between two atoms is within the Rydberg blockade distance

dB = (C6/Ω)
1/6 (Fig. 2.2).

2.1.3 Lindblad master equation

The quantum Hamiltonian ĤRyd (Eq. (2.14)) of the Rydberg atom system, described in 2.1.1 and

utilized in Subsection 2.1.2, shows how the “external electric field of the laser” and the “van der Waals

interaction derived from the dipole-dipole interaction between atoms” act on the Rydberg atom system,

and can be used to control the Rydberg atom system.

However, unwanted noise from the Environment, which is external to the System we are focusing

on, causes decoherence in the dynamics of ĤRyd. Therefore, we use the Lindblad master equation

(Eq. (2.15b)), which is formed by adding the Lindblad superoperator L̂(ρ) representing the decoherence

of the System by the Environment to the Schrödinger equation (Eq. (2.15a)), which is a representation

of the dynamics of ĤRyd with respect to the density matrix ρ of the System:

Schrödiger equation:
∂ρ

∂t
=

i

ℏ

[
ρ(t), ĤRyd(t)

]
(2.15a)

Lindblad master equation:
∂ρ

∂t
=

i

ℏ

[
ρ(t), ĤRyd(t)

]
+ L̂(ρ(t)). (2.15b)

And the Lindblad superoperator L̂(ρ) is expressed as a function of the Lindblad jump operator L̂m

(1 ≤ m ≤M ≤ 2N − 1) [43]:

L̂(ρ) =
M∑

m=1

(
L̂mρL̂

†
m − 1

2

{
L̂†
mL̂m, ρ

})
. (2.16)

In the case of a Rydberg atom system, the System is the two-level system {|g⟩ , |R⟩} and the Envi-

ronment is the remaining states including the intermediate state |i⟩ in the two-photon transition, typical

examples of the noise that this Environment contributes to the System are the spontaneous decay of

the intermediate state |i⟩ to the ground state |g⟩ (Fig. 2.3) and the spontaneous decay of the Rydberg

state |R⟩. Since the Rydberg state lifetime of an 87Rb atom (τR ≳ 150 µs) [44] is about 104 times

longer than the lifetime of the intermediate state τi = 1/Γ ≈ 30 ns (Decay rate of the 5P3/2 state of
87Rb: Γ = 2π × 6 MHz), decoherence is primarily related to the spontaneous decay of the intermediate
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Figure 2.3: Three level system with the spontaneous decay of the intermediate state |i⟩.

state |i⟩ (=
∣∣5P3/2

〉
). The Lindblad jump operator L̂Three−level for the three-level system {|g⟩ , |i⟩ , |R⟩}

represents this as follows:

L̂Three−level =


0

√
Γ 0

0 0 0

0 0 0

 =
√
Γ |g⟩ ⟨i| (2.17)

The Lindblad superoperator LThree−level(ρ(t)) resulting from this is given by the Eq. (2.18a), and

the Lindblad master equation for the three-level system is given by the Eq. (2.18b):

LThree−level(ρ(t)) = L̂Three−levelρ(t)L̂
†
Three−level −

1

2

{
L̂†
Three−levelL̂Three−level, ρ(t)

}
, (2.18a)

∂ρ

∂t
=

i

ℏ

[
ρ(t), ĤThree−level(t)

]
+ LThree−level(ρ(t)). (2.18b)
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From Eq. (2.18b), the following relations are obtained:

ρ̇gg =
i

2

[
Ωgiρ

∗
ig − Ω∗

giρig
]
+ Γρii

= Im(Ω∗
giρig) + Γρii, (2.19a)

ρ̇ii =
i

2

[(
Ω∗

giρig +ΩiRρ
∗
Ri

)
−
(
Ωgiρ

∗
ig +Ω∗

iRρRi

)]
− Γρii

= Im(Ω∗
iRρRi − Ω∗

giρig)− Γρii, (2.19b)

ρ̇RR =
i

2
[Ω∗

iRρRi − ΩiRρ
∗
Ri]

= −Im(Ω∗
iRρRi), (2.19c)

ρ̇ig =
i

2
[Ωgi (ρii − ρgg) + 2∆m1ρig − Ω∗

iRρRg]−
Γ

2
ρig

=
i

2
[Ωgi (ρii − ρgg)− Ω∗

iRρRg] + i∆m1ρig −
Γ

2
ρig, (2.19d)

ρ̇Rg =
i

2
[ΩgiρRi − ΩiRρig + 2 (∆m1 +∆m2) ρRg]

=
i

2
[ΩgiρRi − ΩiRρig] + i∆LρRg, (2.19e)

ρ̇Ri =
i

2

[
Ω∗

giρRg +ΩiR (ρRR − ρii)− 2∆m1ρRi + 2 (∆m1 +∆m2) ρRi

]
− Γ

2
ρRi

=
i

2

[
Ω∗

giρRg +ΩiR (ρRR − ρii)
]
+ i∆m2ρRi −

Γ

2
ρRi. (2.19f)

From the conditions of |∆m1| ≫ |Ωgi|, |ΩiR|, |∆m1 + ∆m2| (i.e., |∆m1| ≫ |Ωgi|, |ΩiR| and ∆m1 ∼
−∆m2), we can let ρ̇ii ≈ 0, ρ̇ig ≈ 0, ρ̇Ri ≈ 0 via adiabatic elimination as in Eqs. (2.6), and we get the

relation as in Eqs. (2.20):

ρii ∼ |ΩiR|2ρRR + |Ωgi|2ρgg
4∆2

m1

≈ 0 (2.20a)

ρig ∼ −Ωgi (ρii − ρgg)− Ω∗
iRρRg

2∆m1
+ iΓ

Ωgi (ρii − ρgg)− Ω∗
iRρRg

4∆2
m1

(2.20b)

ρRi ∼
Ω∗

giρRg +ΩiR (ρRR − ρii)

2∆m1
+ iΓ

Ω∗
giρRg +ΩiR (ρRR − ρii)

4∆2
m1

(2.20c)

Accordingly, Eq. (2.18b) can be approximated as Eqs. (2.21) for the two-level system {|g⟩ , |R⟩}:

ρ̇gg ∼ − i

2

[
Ω∗

giΩ
∗
iR

2∆m1
ρRg −

ΩgiΩiR

2∆m1
ρ∗Rg

]
(2.21a)

= − i

2

(
Ω∗ρRg − Ωρ∗Rg

)
(2.21b)

ρ̇RR ∼ i

2

[
Ω∗

giΩ
∗
iR

2∆m1
ρRg −

ΩgiΩiR

2∆m1
ρ∗Rg

]
(2.21c)

=
i

2

(
Ω∗ρRg − Ωρ∗Rg

)
(2.21d)

ρ̇Rg ∼ i
Ω

2
(ρRR − ρgg) +

[
i∆−

Γ
(
|Ωgi|2 + |ΩiR|2

)
8∆2

m1

ρRg

]
ρRg (2.21e)

= i
Ω

2
(ρRR − ρgg) + (i∆− γi) ρRg, (2.21f)

where γi is the individual dephasing rate, defined as following:

γi ≡
Γ
(
|Ωgi|2 + |ΩiR|2

)
8∆2

m1

. (2.22)

Then, the N -atom Rydberg atom system with Eqs. (2.21) is represented by the two-level Lindblad

equation (Eq. (2.23b)), which accounts for the decoherence of the Lindblad superoperator defined by the
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Eq. (2.23a):

L̂ind(ρ) =

N∑
j=1

(
LjρL

†
j −

1

2

{
L†
jLj , ρ

})
, (2.23a)

∂ρ

∂t
=

i

ℏ

[
ρ(t), ĤRyd(t)

]
+ L̂ind(ρ), (2.23b)

where Lj =
√
γi/2σ

(j)
z is the Lindblad jump operator representing the individual dephasing of Eqs. (2.21)

for the j-th atom.

2.2 Maximum Independent Set (MIS) Problem

The amount of resources required by a computational algorithm to solve a given computational

problem, such as the number of steps required for computation, memory usage, etc. is known as Com-

putational Complexity [45]. This computational complexity is an important measure of the possibility

of efficiently solving a computational problem [45], and it plays the following roles:

1. Tractability (Inherent Difficulty) of Problem: An implication of algorithmic limit as the existence

of a tractable (efficiently solvable) algorithm for a given problem [45].

2. Computational limit: Formalization of the kinds and maximum size of problems that can be

solved within limited resources [46].

3. Guide for Algorithm Design and Presenting Cryptography Foundation: A guide to algorithm de-

sign, including resource allocation methods for exact or approximate algorithms [47], and a presentation

of the basics of cryptographic system security that depends on the difficulty of the problem [48].

4. Formalization of Problem Reduction: Providing a formalized way to compare the difficulty of

problems using Problem Reduction [49].

Computational complexity is divided into time complexity and space complexity depending on the

type of resources such as time (number of steps required for computation) and space (amount of memory

required). And a representative example of complexity classes that classify computational complexity is

shown in Table 2.1, and the definitions of complexity classes shown in this table are as follows:

1. P (Polynomial Time): Problems that are solvable by a deterministic Turing machine (DTM) in

polynomial time O(poly(N)) and are considered efficiently solvable [45]. Examples are Sorting,

Finding Shortest Path, etc.

2. NP (Nondeterministic Polynomial Time): Problems that can be solved by a nondeterministic

Turing machine (NTM) in polynomial time O(poly(N)) and whose solution can be verified by a

Deterministic Turing machine in polynomial time [45]. Some examples include Satisfiability (SAT),

Hamiltonian Path, Traveling Salesman, and Maximum Independent Set (MIS).

3. EXPTIME (Exponential Time): The set of problems that can be solved by DTM in exponential

time O(2poly(N)), with solving difficulty equal to or harder than that of an NP problem [45, 46, 50].

Typical examples include Generalized Chess, Checkers, and Go on unbounded boards.
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Table 2.1: Classification of Computational complexity, BPP is the complexity class of decision problems

solvable via a probabilistic Turing machine (PTM), a type of nondeterministic Turing machine (NTM)

Resource Computational model Complexity class Complexity scale

Time

Deterministic Turing machine

(DTM)

P O(poly(N))

EXPTIME O(2poly(N))

Nondeterministic Turing machine

(NTM)

NP O(poly(N))

NEXPTIME O(2poly(N))

BPP O(poly(N))

Space

Deterministic Turing machine

(DTM)

PSPACE O(poly(N)) space)

EXPSPACE O(2poly(N) space)

Nondeterministic Turing machine

(NTM)

NPSPACE O(2poly(N) space)

NEXPSPACE O(poly(N) space)

4. NEXPTIME (Nondeterministic Exponential Time): Problems solvable by NTM in exponential

time O(2poly(N)), including the EXPTIME class [46, 51].

5. BPP (Bounded-error Probabilistic Polynomial Time): Problems that can be solved by a Proba-

bilistic Turing machine (PTM), a type of NTM, in polynomial time with an error probability of

1/3 or less [46, 48].

6. PSPACE (Polynomial Space): Problems that can be solved in DTM using the polynomial mem-

ory space O(poly(N) space), e.g., Quantified Boolean Formula (QBF), some logic games, space-

bounded automata, etc [51].

7. NPSPACE (Nondeterministic Polynomial Space): Problems solvable in NTM using polynomial

memory space O(poly(N) space), and NPSPACE=PSPACE by Savitch’s Theorem [52].

8. EXPSPACE (Exponential Space): Problems that can be solved in DTM using the exponential

memory space O(2poly(N) space), with typical examples including generalized Tiling [53] and First-

Order Logic with Transitive Closure [54].

9. NEXPSPACE (Nondeterministic Exponential Space): Problems that can be solved by NTM

using the exponential memory space O(2poly(N) space), and as in the case of the NPSPACE class,

NEXPSPACE=EXPSPACE by Savitch’s Theorem [52].

Additionally, there is the Bounded-error Quantum Polynomial Time (BQP) class, which is a Quan-

tum Turing machine (QTM, also known as Universal Quantum Computer [55]) version of BPP:

10. BQP (Bounded-error Quantum Polynomial Time): Problems that can be solved by a Quantum

Turing machine (QTM) in polynomial time with an error probability of 1/3 or less, representative

examples are Shor’s Algorithm (Integer Factorng) and Grover’s search algorithm [2, 46].

And these Complexity Classes show the containment relation in Eqs. (2.24), which can be represented

by the diagram in Fig. 2.4:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE (2.24a)

P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE (2.24b)
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EXPSPACE
(=NEXPSPACE)

NEXPTIME

EXPTIME
PSPACE 

(=NPSPACE)

NP
BQP

BPP
P

Figure 2.4: Containment relation among computational complexity classes

In addition, the class of computational problems whose difficulty is NP-class or higher is called the

NP-Hard Class, and the formal definition is as follows:

NP-Hard: A problem A is NP-Hard if A is reducible from L to A in polynomial time for all NP

problems L (i.e., ∀L ∈ NP, L ≤P A⇒ A ∈ NP-Hard)

Notable examples of NP-hard problems are the SAT and the Halting Problem (which is NP-hard

but not in the NP class). The class of NP problems that are NP-hard is called as NP-complete

problems, which are the hardest problems in NP. We will deal with one of these NP-complete problems,

in particular the maximum independent set (MIS) problem, which is a classic graph theory problem in

the field of combinatorial optimization.

2.2.1 Definition and Computational Complexity of the MIS Problem

Given an undirected graph G = (V,E) defined by a set of nodes V and a set of edges E(⊆ V ×V ) that

are the connections between these nodes, an independent set is a subset S(⊆ V ) of nodes such that no

two nodes are neighboring by an edge (i.e. ∀u, v ∈ S, (u, v) /∈ E, namely “independence condition”) [56].

The maximum independent set (MIS) problem, as shown in Fig. 2.5, is the problem of finding the largest

possible size of such an independent set in a given graph, and is formally defined as follows:

MIS Problem: Finding S∗ ⊆ V such that S∗ is an independent set and |S∗| is maximized.
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Figure 2.5: Maximum independent set (MIS) of a connected graph with 12 nodes, The blue-

highlightened nodes are elements of an exact MIS {1, 3, 7, 8, 10}.

Computational Complexity

The MIS problem is NP-hard and also belongs to the NP-complete class, i.e., there is no known

polynomial-time solving algorithm for an arbitrary graph G(V,E) unless P = NP [49]. The time com-

plexity of the best exact algorithm [57], which uses a modified recursive algorithm, is O(20.276|V |), and

on the approximability aspect, for any given graph G(V,E) (whose exact MIS size is |MIS|), there exists
a polynomial-time approximation algorithm such that for all ε > 0, the solution S′ is approximated by

|S′|/|MIS| ≤ |V |ε−1 (i.e., which is in the Poly-APX class) [58, 59, 60]. In other words, the MIS problem

for arbitrary graphs is extremely hard to even approximate in polynomial time [58].

2.2.2 Applications and Advances in Classical Computing of MIS Problem

As mentioned in the definition of the MIS problem in Subsection 2.2.1, the MIS problem is the

problem of finding the largest independent set, which is a set of non-adjacent points. Despite its NP-

completeness, it has many practical applications in real-world systems where non-interference or conflict

avoidance is critical, across computer science, engineering, and natural sciences. Due to this importance

of MIS problem, there is a lot of research on advanced algorithms and methods to solve MIS problem.

Therefore, in this subsection, we will introduce the applications of MIS problem in practical fields and

the advances in classical computing.
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Practical applications of MIS problem

Based on the non-adjacency of independent sets and the feature that MIS is the maximization version

of independent set size, several applications have been proposed in practical fields such as network theory,

circuit design, computer science, data analysis, etc. Examples include:

1. Non-interfering Wireless Networking: In wireless ad hoc or sensor networks, the points that

can communicate simultaneously without interference are an independent set, of which MIS corre-

sponds to optimal communication channel reuse [61].

2. Task Scheduling in Parallel Computing: In task scheduling, the optimization of parallelism

in which tasks do not conflict due to shared resources or data dependence between tasks is a MIS

problem [62].

3. Optimal Design of VLSI and Circuit Layout: An optimal integrated circuit with no shorts

between adjacent elements is an MIS [63].

4. Social Netwrok Analysis: The complement of MIS is minimum vertex cover, which is the set of

the smallest number of nodes that are crucial for understanding the structure of the network and

for monitoring and controlling information propagation [64].

Classical Algorithms

There are multiple classical algorithms - Exact or Approximation and Heuristic Algorithms - to

solve the MIS problem:

1. Exact Algorithms

(a) Brute Force (Exhaustive Search) [49]: Algorithm which checks thes independence of all

2|V | subsets. Its time complexity is O(2|V |).

(b) Backtracking with Pruning [65]: Algorithm which explores solution space via recursive

method and prunes branches where independent set conditions fail or cannot improve current

best.

(c) Robson’s Algorithm [57]: Fastest known exact algorithm which use an advanced recursive

backtracking with clever branching and memoization. Its time complexity is O(20.276|V |).

2. Approximation and Heuristic Algorithms

(a) Greedy Algorithms [66]: An algorithm which repeats choosing a vertex of the lowest degree,

adding it to set, and removing it and its neighbors.

(b) Local Search [67]: It starts with a candidate independent set and tries to swap in better

vertices. But it may get stuck in local optima.

(c) Simulated Annealing [67, 68]: Stochastic local search technique that avoids local minima

by occasionally accepting worse solutions.
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2.2.3 Rydberg atom system: An Intrinsic Quantum Machine for MIS prob-

lem

In Sec. 2.1, we mentioned the high quantum controllability provided by laser pulses through strong

ground-Rydberg coupling of two-photon transitions and strong long-range Rydberg-Rydberg interaction

as features of the Rydberg atom system. Then, in Subsecs. 2.2.1 and 2.2.2, we introduced the maximum

independent set (MIS) Problem, which is a representative example of the most difficult NP-complete

problem in terms of computational complexity. In this subsection, it will be explained why the Rydberg

atom system is an intrinsic quantum machine for solving the MIS problem.

Rydberg Hamiltonian: Natural Encoder of the MIS cost Hamiltonian

By the definition of the MIS Problem in Subsec. 2.2.1, the cost Hamiltonian HMIS(G) of the MIS

Problem for a given graph G(V,E) is given by:

HMIS(G) =
∑
j∈V

(−∆nj) +
∑

(j,k)∈E

Unjnk, (2.25)

where nj = 0, 1 is an occupation number, a binary variable indicating whether node j ∈ V is included

in the independent set S∗ or not, where nj = 1 means that it is included in S∗. ∆ and U are positive

constants with the relation 0 < ∆ < U , which act as the promoting term −∆nj that maximizes the

size of the independent set and the constraint term Unjnk by the definition of the independent set,

respectively [68, 69].

Comparing this to the quantum Hamiltonian ĤRyd of a Rydberg atom system (Eq. (2.14) with

Uj,k ≡ C6/r
6
jk), the Rydberg-Rydberg interaction term Uj,k between the j-th and k-th atoms corresponds

to the constraint term Unjnk in the Eq. (2.25).

ĤRyd = ℏ

∑
j

(
Ω

2
σ̂x
j −∆n̂j

)
+

∑
j<k

Uj,kn̂j n̂k

 . (2.26)

Furthermore, by the Rydberg blockade described in Subsection 2.1.2, nodes within the Rydberg

blockade distance dB = (C6/Ω)
1/6 can only be excited by one node. Then, let j and k be two nodes j

and k neighboring by an edge (j, k) ∈ E, and let them be j-th atom and k-th atom whose distance is

within dB (i.e., rjk < dB), then the Rydberg blockaded states of this Rydberg atom system are all inde-

pendent sets [69]. Moreover, the ground states among these states correspond to MIS and these ground

states can be obtained by adiabatic quantum evolution by proper tuning of Ω and ∆ [68, 70]. Thus, it

can be seen that the Rydberg Hamiltonian ĤRyd (Eq. (2.26)) maps efficiently to the cost Hamiltonian

HMIS (Eq. (5.2)) of the MIS problem.

Reprogrammable graph embedding

By using the property called Rydberg blockade introduced in Subsec. 2.1.2, any given graph G(V,E)

can be programmed as a Rydberg atom array for an arbitrary MIS problem by corresponding nodes and

edges to two atoms that are within dB of each other [71].
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Figure 2.6: Schematic diagram of the experimental setup, The experimental setup consists of total four

main parts: (1) Cold atom apparatus (MOT setup with a vacuum chamber), (2) Optical tweezer system,

(3) Rydberg excitation laser system, (4) Detection apparatus.

Therefore, Rydberg atom array is an intrinsic quantum computational tool that can realize

the edge connectivity of a given MIS problem graph with a property called Rydberg blockade.

2.3 Experimental setup for Rydberg atom Quantum Program-

ming

In the previous sections 2.1 and 2.2, we introduced Rydberg atom array, one of the physical im-

plementation systems of quantum programming, and the MIS problems that can be solved intrinsically

by this Rydberg atom system. In this section, we will introduce the atomic qubit experimental setup,

which is the hardware of quantum computing using Rydberg atom system. First, we will describe the

preparation process of Rydberg atom array and initial state required for the physical implementation of

quantum programming, and introduce the atomic transition between ground and Rydberg states used

for the operation of quantum computing in Rydberg atom system. Finally, we will explain the setup and

methods for measuring the results of quantum computing operations.

The experimental setup for the Rydberg atom quantum machine, as shown in Fig. 2.6, consists of
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a cold atom apparatus, an optical tweezer system, a Rydberg excitation laser system, and a detection

apparatus [19, 72, 73]. The cold atom apparatus and optical tweezer system are used in the preparation

of the Rydberg atom array and initial state (Subsec. 2.3.1), The Rydberg excitation laser system is used

in the process of atomic transition between ground and Rydberg states (Subsec. 2.3.2), and the detection

apparatus is used to measure the operation results of quantum computing (Subsec. 2.3.3).

2.3.1 Preparation of the Rydberg atom array

As mentioned in Section 2.1 and Subsection 2.2.3, quantum programming using Rydberg atom

system is based on an atom array with connectivity through a property called Rydberg blockade between

atomic qubits at designated positions. Therefore, we would like to introduce the process of preparing

atomic qubits required for quantum programming using Rydberg atom system at first. The process of

preparing atomic qubit consists of the following four parts:

1. Cold atom loading via magneto optical trap (MOT) and polarization gradient cooling (PGC) [74],

2. Single atom trapping via the far-off-resonance optical trap (FORT) [75] of an optical tweezer beam,

3. Atom rearrangement [76, 77] to create a defect-free Rydberg atom array,

4. Initial state preparation via optical pumping.

Magneto optical trap and Polarization gradient cooling

To make a Rydberg atom array, cold atoms are necessary, and the setup for this, the cold atom

apparatus, is a magneto-optical trap (MOT). As shown in Figure 2.6, the MOT setup consists of a

vacuum chamber (2.6× 10−10 Torr) containing atoms (rubidium, 87Rb), cooling and repump lasers used

for Doppler cooling and polarization gradient cooling (PGC) [74], and an anti-Helmholtz (AH) Coil

(Figure 2.7 (a)), which generates an atom cloud at a specific location by Zeeman shift due to a position-

dependent magnetic field Bz(∝ z) with zero magnitude at the center of coil. The roles of the AH-coil,

Cooling and Repump laser used in such a MOT setup are as follows:

1. Cooling laser : As shown in Fig. 2.8 (a), for the
∣∣5P3/2, F

′ = 3
〉
state, which is detuned (red-

detuned) by −2.5Γ (Γ = 2π×6 MHz) with a σ+-polarized laser in the 780-nm wavelength band that

was detuned (red-detuned) by Γ = 2π×6 MHz, and the cyclic transition it induced
∣∣5S1/2, F = 2

〉
↔∣∣5P3/2, F

′ = 3
〉
, which leads to Doppler cooling of the atom with a dissipative optical force F⃗MOT (∝

−v⃗) (depicted in Fig. 2.7 (b)) proportional to the velocity v⃗ of the atom [39]. After Doppler cooling,

it is used to perform sub-Doppler cooling, PGC, by changing its detuning.

2. Repump laser : A σ+-polarized laser with a wavelength of 780-nm to compensate the state leakage

due to the spontaneous decay
∣∣5P3/2, F

′ = 2
〉
→

∣∣5S1/2, F = 1
〉
during the cyclic transition of a

cooling laser, and to recover the leaked state in the transition
∣∣5S1/2, F = 1

〉
→

∣∣5P3/2, F
′ = 2

〉
→∣∣5S1/2, F = 2

〉
.
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(a)

(b)

Figure 2.7: Principle of the magneto-optical trap (MOT), (a) MOT setup including anti-Helmholtz

(AH) coil in KAIST ALICE-II, (b) Atom’s energy-position (E-z) diagram for MOT cooling, The MOT

Cooling laser (with the doppler-shifted frequency ωCooling+ k⃗ · v⃗) acts as a dissipative force F⃗MOT (∝ −v⃗)
to an atom. By applying a position-dependent magnetic field Bz(∝ z) by an AH-coil, the shift of energies

of the Zeeman sublevels (blue solid lines) is linear to z.

3. AH-coil : As depicted in Fig. 2.7 (b), The Zeeman sublevel shift, which varies linearly with the

component of the AH-coil center axis (ẑ direction) at each atom position, serves to trap the atoms

cooled to the Doppler limit kBTD/2 (TD = ℏΓ/2kB = 146 µK for the 87Rb D2 line, gold-colored

dashed line in Fig. 2.7 (b)) within a certain z range (within the gold-colored dashed lines in Fig. 2.7).
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(b)(a)

Figure 2.8: Energy level diagram of 87Rb for (a) MOT and optical tweezer, and (b) Optical pumping

and Rydberg Excitation, the inset in (b) represents the situation where the spontaneous decay of the

intermediate state is maximized without the optical pumping.

After Doppler cooling, the AH-coil is turned off in the PGC process.

After this Doppler cooling and PGC, a cold atom source with a temperature around T = 25 µK is

loaded.

Single atom trapping and rearrangement

Once the source of cold atoms is loaded by the MOT setup, by using an optical tweezer system, each

single atom is positioned at the targetted coordinates according to Rydberg atom array construction. As

shown in the Fig. 2.6, the optical tweezer system consists of a spatial light modulator (SLM, Meadowlarks

ODPDM512), a π-polarized off-resonant 820 nm laser (a Ti:sapphire CW laser from Avesta), an objective

lens (Mitutoyo G Plan Apo 50X with a high-numerical aperture NA = 0.5), and a 532 nm pump laser

(Verdi G-18 from Coherent). And how the optical tweezer system works is as follows:

1. Single atom trapping: The position coordinate information of the atom array is converted into

the holographic phase of the SLM via the Gerchberg-Saxton weighted (GSW) Algorithm [76, 78,

79]. A π-polarized off-resonant 820-nm laser with a phase changed by SLM is focused by an

objective lens at the targeted coordinates on the MOT Cloud with a beam diameter 2w0 ∼ 2µm

(w0: beam waist) [19] to create a tightly focused far-off-resonance optical trap (FORT) [75] (Fig.

2.9 (a)). Here, FORT [75] is a dipole trap using the AC Stark Shift (Eq. (2.8b)) mentioned in

Subsec. 2.1.1, where only the term corresponding to the red-detuned laser beam L1 is used (i.e.,

the term corresponding to the laser beam L2 is zero). And derived from this, the trap depth U0 of
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(a) (b)

Figure 2.9: Principle of an optical tweezer, (a) Single atom trapping by the optical tweezer through

a far-off-resonance optical trap (FORT) laser beam, (b) The action of the optical tweezer as the atom

trapping for the ground state |g⟩ and the anti-trapping for Rydberg state |R⟩, respectively.

FORT is as follows:

U0 =
ℏΩ2

FORT

4∆FORT
(2.27a)

=
3πc2Γ

2ℏω3
0

· I(r⃗FORT)

∆FORT
, (2.27b)

where ωFORT = 2π/(λFORT) (λFORT = 820 nm) is the angular frequency of the FORT laser

beam, I(r⃗FORT) is the Gaussian beam intensity of the FORT laser at relative position r⃗FORT

from the center of the FORT (which makes the FORT as a Gaussian trap), and 1/∆FORT (=

1/(3∆FORT,D1
) + 2/(3∆FORT,D2

)) is the reciprocal of the harmonic mean of detunings ∆FORT,D1

and ∆FORT,D2
for the D1 and D2 lines according to Clebsch-Gordan coefficient [40].

2. Atom Rearrangement: After trapping a single atom, the process to check whether a single atom is

trapped in the FORT at each targeted coordinate, and move the trap of the single atom prepared

previously in the nearby area via SLM to the FORT where the atom is not trapped and refill

it [76, 77].

With these two processes, Single atom trapping and Atom Rearrangement, we generate the targeted

atom array.

Initial state preparation

Once the atom array is prepared for the targeted configuration by the optical tweezer system, an

initial state preparation is required to accumulate the distribution of ground hyperfine states of each

single atom toward |g⟩ =
∣∣5S1/2, F = 2,mF = 2

〉
through optical pumping in order to minimize the

dephasing due to the maximization of the spontaneous decay effect from the divergent ground hyperfine
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state population. The optical pumping beam used for optical pumping is from the MOT setup and is as

follows:

1. Detuned Cooling laser beam: σ+-polarized beam for the cyclic transition (Fig. 2.8 (b))
∣∣5S1/2, F = 2

〉
↔∣∣5P3/2, F

′ = 2
〉

2. Repump laser beam: σ+-polarized beam for the transition
∣∣5S1/2, F = 1

〉
→

∣∣5P3/2, F
′ = 2

〉
→∣∣5S1/2, F = 2

〉
2.3.2 Rydberg excitation

In Subsection 2.3.1, we introduced how to prepare a Rydberg atom array consisting of atoms in

the initial state for quantum operation and the experimental setup required for this preparation, which

is a cold atom apparatus and an optical tweezer system. Once the atomic qubit structure is prepared

in the Rydberg atom array configuration, we proceed to the quantum operation of this atomic qubit

structure. The experimental setup that physically implements the quantum operation of the qubit

structure consisting of such a Rydberg atom array is the Rydberg excitation laser system for the two-

photon transition between the ground-state |g⟩ =
∣∣5S1/2, F = 2,mF = 2

〉
and the Rydberg state |R⟩ =∣∣nS1/2, F

′′ = 2,m′′
F = 2

〉
(≈

∣∣nS1/2,mJ = 1/2
〉
⊗|I = 3/2,mI = 3/2⟩ for n ≳ 30 [15, 36, 41]) (in Fig. 2.8

(b) and Subsec. 2.1.1).

As shown in Fig. 2.6, the Rydberg excitation laser system consists of a 780 nm (a homemade external-

cavity diode laser) laser at the one-photon-transition between the ground state |g⟩ =
∣∣5S1/2, F = 2,mF = 2

〉
and the near-resonant intermediate state |i⟩ =

∣∣5P3/2, F
′ = 3,m′

F = 3
〉
and a 480 nm (Toptica TA-

SHG Pro) laser at the approximate one-photon transition between |i⟩ =
∣∣5P3/2, F

′ = 3,m′
F = 3

〉
and

the Rydberg state |R⟩ =
∣∣71S1/2,mJ = 1/2

〉
, whose laser frequencies are stabilized down to a narrow

linewidth of < 30 (2π) kHz by a proportional-integral-derivative (PID) controller (Toptica FALC 110)

and an ultra-low expansion (ULE) cavity (Stable laser systems, finesse 15,000). As described in Fig. 2.8

(b), the 780 nm laser has a circular polarization of σ+, with intermediate detuning on the scale of

∆m1 ≈ 2π × 660 MHz [72], and the 480 nm laser has a circular polarization of σ−. And two control

parameters Ω and ∆ in Eq. (2.9) are modulated with a radio-frequency synthesizer (Moglabs XRF) and

acousto-optic modulators (AOMs) [80, 81]

This Rydberg excitation laser system is responsible for controlling the Rydberg atom system to

perform the quantum operation by tuning Ĥg−R (Eq. (2.9)) mentioned in Subsec. 2.1.1.

2.3.3 Atomic qubit state measurement

After the quantum operation via the Rydberg excitation setup introduced in Subsection 2.3.2, the

detection of whether the atomic qubit state resulting from the quantum operation is ground or Rydberg

state is conducted. As shown in the Fig. 2.6, the detection apparatus is the setup used here consisting

of an electron-multiplying charge-coupled device (EMCCD, Andor iXon Ultra 897) and an electrically

tunable lens (ETL, EL-16-40-TC of Optotune).

Atomic qubit state measurement process consists of Rydberg state repulsion measurement and

imaging detection of trapped ground-state atom:

1. Rydberg state repulsion measurement: The trap depth U0 (Eq. (2.27a)) of the FORT as explained

in Subsec. 2.9, acts as a trap for the ground state |g⟩ and an anti-trapping [82] to repel the Rydberg
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state |R⟩, as described in Fig. 2.9 (b). Based on this, the optical tweezer beam is turned on at each

FORT position again to recapture only a single ground-state atom at each position into the trap.

2. Imaging detection of trapped ground-state atom : After Rydberg state repulsion, the fluorescence

due to the
∣∣5S1/2, F = 2

〉
-
∣∣5P3/2, F = 3

〉
transition of the ground-state single atoms remaining in

the trap is observed with ETL and EMCCD by using a cooling laser beam with changed detuning

as the imaging beam to generate fluorescence imaging data.

From the generated fluorescence imaging data, the retrapped single-atoms with high fluorescence

intensity are detected as ground-state |g⟩ and empty traps with no fluorescence intensity are detected as

Rydberg state |R⟩.
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Chapter 3. Rydberg Wire Gates Design

for Universal Quantum Computation

In this chapter, we present an all-optical quantum gate scheme in a Rydberg atom array where

no ground sub-levels are resorted to, but instead auxiliary atoms (wire atoms) mediating the coupling

between qubit atoms (data atoms) and single-atom addressing operations are used. This scheme uses a

Rydberg atom array as a cluster of data and wire qubits, which uses the Rydberg and ground states as

the two qubit states of a data qubit and the wire atoms between data qubits mediate the interactions

between data atoms via a sequence of single-atom addressing operations. The advantage of this setup

is that the implementation of all gates is fast laser excitation of the ground-Rydberg transitions, which

enables the quantum circuit for a certain computational task (including digital quantum simulation) to

be carried out fast.

This chapter is based on a published paper: S. Jeong, X-F. Shi, M. Kim and J. Ahn “Rydberg Wire

Gates for Universal Quantum Computation,” Front. Phys. 10, 875673 (2022) [83].

3.1 Single-Atom Addressing in a Rydberg-Atom System

We aim to design a quantum gate as a sequence of individual-atom addressing in a Rydberg atom

array, so we consider a two-dimensional (2D) array of atoms, as shown in Figure 3.1 (a). Since in the

Rydberg blockade regime, two adjacent atoms are inhibited from being excited to an anti-blockade state,

|11⟩, the computational space of the two atoms is limited to {|00⟩ , |01⟩ , |10⟩} excluding |11⟩ (the anti-

blockade two-atom state) upon defining the two-level system {|0⟩ , |1⟩} of each atom’s ground state and

Rydberg state. However, general quantum computation requires |11⟩, so we use auxiliary atoms (referred

to hereafter as wire atoms) to mediate the coupling between data atoms. In Fig. 3.1 (a), the data atoms

are represented by red spheres and the wire atoms by gray spheres.

The three-atom system AWB in Fig. 3.1 (a) consists of data atoms A and B, and a wire atom W

that couples A and B. The wire atom is excited to |1⟩ only for data processing of |AB⟩, otherwise it

is left as |0⟩W . Based on that, there are five computational ground states: |00⟩AB |0⟩W , |01⟩AB |0⟩W ,

|10⟩AB |0⟩W , |11⟩AB |0⟩W , and |00⟩AB |1⟩W . The first four base states are the computational basis for

the two data (AB) system, and the last one, |00⟩AB |1⟩W , can be considered a temporal register, as in

Fig. 3.1 (b). There are three available atom addressings by three-qubit gate operations:

W̃ (Θ, ϕ) = e−
i
ℏ
∫
HW dt, (3.1a)

Ã(Θ, ϕ) = e−
i
ℏ
∫
( ℏΩ

2 n̂ϕ·σ⃗A+V nWnA)dt, (3.1b)

B̃(Θ, ϕ) = e−
i
ℏ
∫
( ℏΩ

2 n̂ϕ·σ⃗B+V nWnB)dt, (3.1c)

where Θ and ϕ are the Rabi rotation angle and axis, respectively. The Hamiltonian HW of a single

addressing of W in the Rydberg blockade regime, i.e., d < dB <
√
2d (where d and dB are the interatomic

distance and blockade distance, respectively), of adjacent atoms is as follows:

HW =
ℏΩ
2
n̂ϕ · σ⃗W + V nW (nA + nB) , (3.2)
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Figure 3.1: The Rydberg wire gate scheme: (a) A 2D atomic array is composed of data atoms (red

spheres) and auxiliary (wire) atoms (gray spheres). A two-level system for each atom is used, with

an atomic ground state |0⟩ and a Rydberg state |1⟩. Wire atoms, e.g., W, mediate the coupling be-

tween two neighboring data atoms, e.g., A and B, which are distant from W by a distance d. (b)

The energy level diagram of the three atoms, A, W, and B. We use four computational basis states

|00⟩AB |0⟩W , |01⟩AB |0⟩W , |10⟩AB |0⟩W , |11⟩AB |0⟩W (in the blue dotted squares), and the temporal reg-

ister, |00⟩AB |1⟩W (in the light green dotted squares), in total five accessible states. The other states,

|10⟩AB |1⟩W , |01⟩AB |1⟩W , and |11⟩AB |1⟩W , are inaccessible due to the Rydberg blockade. The figure is

reused from the reference [83], Frontiers Media S.A..

where Ω is the Rabi frequency, n̂ϕ is the rotational axis defined by a laser phase ϕ, V = C6/d
6 is the van

der Waals interaction with coefficient C6, and σ⃗ = (σx, σy, σz) is the Pauli vector and n = (1− σz)/2 is

the excitation number.

We use them for general quantum computations on data AB atoms: W̃ transforms |00⟩AB |0⟩W
into |00⟩AB |1⟩W , preserving all other states and their superpositions. Hence, the W̃ operation is the

inverted controlled rotation gate, where AB are the control qubits and W is the target qubit. The other

three operations are reduced to single-atom and two-atom rotation on the data qubit (AB), given by

Eqs. (3.3):

RA ⊗ IB = ⟨0|W Ã |0⟩W , (3.3a)

IA ⊗RB = ⟨0|W B̃ |0⟩W , (3.3b)

RA ⊗RB = ⟨0|W ÃB̃ |0⟩W , (3.3c)
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where R is the single-qubit rotation and I is the identity.

3.2 Design of Single- and Multi-Qubit Gates

3.2.1 Standard One-Qubit Gates

In this subsection, we design standard one-qubit gates which include Pauli gates X, Y, Z, general

rotation R (Θ, ϕ), Hadamard gate H, and phase gate P via the atom-addressing operations W̃ , Ã, and

B̃ (Eqs. (3.1)).

The Pauli gates rotate the quantum state of one atom with the others remaining unchanged. For

data atoms A and B, Pauli X-, Y-, and Z-gates are as follows:

XA ⊗ IB = eiα ⟨0|W X̃A |0⟩W , (3.4a)

IA ⊗XB = eiα ⟨0|W X̃B |0⟩W , (3.4b)

YA ⊗ IB = eiα ⟨0|W ỸA |0⟩W , (3.4c)

IA ⊗YB = eiα ⟨0|W ỸB |0⟩W , (3.4d)

ZA ⊗ IB = eiα ⟨0|W X̃AỸA |0⟩W , (3.4e)

IA ⊗ ZB = eiα ⟨0|W X̃BỸB |0⟩W , (3.4f)

where X̃A = Ã(π, 0), X̃B = B̃(π, 0), ỸA = Ã(π, π/2) and ỸB = B̃(π, π/2) and α = π/2 is the global

phase. The general rotations are given as follows:

RA(Θ, ϕ)⊗ IB = ⟨0|W Ã(Θ, ϕ) |0⟩W , (3.5a)

IA ⊗RB(Θ, ϕ) = ⟨0|W B̃(Θ, ϕ) |0⟩W . (3.5b)

The Hadamard gate H is a gate that maps the quantum states |0⟩ and |1⟩ to the superposition

states |+⟩ = (|0⟩+ |1⟩)/
√
2 or |−⟩ = (|0⟩ − |1⟩)/

√
2, respectively, and it identical to eiπ/4X

√
Y, thereby

resulting in

HA ⊗ IB = eiα ⟨0|W X̃A

√
ỸA |0⟩W , (3.6a)

IA ⊗HB = eiα ⟨0|W X̃B

√
ỸB |0⟩W , (3.6b)

where
√
ỸA = Ã(π/2, π/2) and

√
ỸB = B̃(π/2, π/2) are the pseudo-Hadamard gates (α = π/2).

The phase gates PA(ϕ) and PB(ϕ), are given by

PA(ϕ)⊗ IB = eiϕ/2 ⟨0|W X̃†
AÃ(π, ϕ/2) |0⟩W , (3.7a)

IA ⊗PB(ϕ) = eiϕ/2 ⟨0|W X̃†
BB̃(π, ϕ/2) |0⟩W . (3.7b)

S and T gates are obtained as SA = PA(π/2), SB = PB(π/2), TA = PA(π/4), and TB = PB(π/4).

The global phase α of the aforementioned gates can be removed by using the global phase gate Ph(α),

defined as in Eq. (3.8):

Ph(α) = ⟨0|W ỸBX̃
†
W W̃ (π, α)Ỹ †

ABX̃
†
W W̃ (π, α)Ỹ †

BX̃
†
W W̃ (π, α)ỸABX̃

†
W W̃ (π, α) |0⟩W , (3.8)

which is a combination of four two-qubit phase rotations, |00⟩ → eiα |00⟩ which is carried out by

X̃†
W W̃ (π, α), |01⟩ → eiα |01⟩ by ỸBX̃

†
W W̃ (π, α)Ỹ †

B , |10⟩ → eiα |10⟩ by Ỹ †
AX̃

†
W W̃ (π, α)ỸA, and |11⟩ →

eiα |11⟩ by Ỹ †
ABX̃

†
W W̃ (π, α)ỸAB , where ỸAB ≡ ỸAỸB .
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Figure 3.2: Quantum circuits of (a) controlled-NOT gate, CXAB , and (b) controlled-phase gate,

CP00(α). The figure is reused from the reference [83], Frontiers Media S.A..

3.2.2 Standard Two-Qubit Gates

In this subsection, we focus on the standard two-qubit gates: the controlled-NOT gate CNOT, the

swap gate SWAP, and the controlled-phase gate CP.

The controlled-NOT gate, CNOT, is a controlled X-gate, CX, which flips the target qubit (the

second qubit) only when the control qubit (the first qubit) is at |1⟩ (i.e., |AB⟩ → |A,A⊕B⟩). With

atom addressing, CXAB and CXBA are given as follows, respectively:

CXAB = ⟨0|W Ỹ †
A

√
Ỹ †
BỸ

2
W

√
ỸBỸA |0⟩W , (3.9a)

CXBA = ⟨0|W Ỹ †
B

√
Ỹ †
AỸ

2
W

√
ỸAỸB |0⟩W , (3.9b)

The sequence of operation in CXAB is as follows:

1. The central Ỹ 2
W acts as an inverted-CZ-gate, flipping only the sign of the coefficients |00⟩AB |0⟩W .

2. Multiplying it by ỸAB on one side and its Hermite conjugate on the other side, we obtain a

controlled Z-gate (Eq. (3.10)), similar to that in Ref. [84].

3. Finally, by multiplying
√
YA and its Hermite conjugate at both ends of Eq. (3.10), it yields CXAB .

CZAB = CZBA = ⟨0|W Ỹ †
ABỸ

2
W ỸAB |0⟩W , (3.10)

The quantum circuit of CXAB is shown in Fig. 3.2 (a). Similarly, the controlled Y -gates is obtained

as follows:

CYAB = ⟨0|W Ỹ †
A

√
X̃†

BỸ
2
W

√
X̃BỸA |0⟩W , (3.11a)

CYBA = ⟨0|W Ỹ †
B

√
X̃†

AỸ
2
W

√
X̃AỸB |0⟩W . (3.11b)

SWAP gate is to perform state swapping of two qubits, i.e., |AB⟩ → |BA⟩, which is also to swap

the coefficients of |01⟩ and |10⟩. In the atom-addressing scheme, the X-gate version of the SWAP gate

is given as follows:

SWAP = ⟨0|W X̃AX̃W X̃ABX̃W X̃†
ABX̃W X̃†

A |0⟩W , (3.12)
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Eq. (3.12) is operated as follows:

1. The state interchange |10⟩AB |0⟩W ↔ |00⟩AB |1⟩W occurs by the first three-pulse combination,

X†
AX̃W X̃†

A.

2. Then, the second combination X̃BX̃W X̃†
B executes the state interchange |00⟩AB |1⟩W ↔ |01⟩AB |0⟩W .

3. Finally, the state interchange |00⟩AB |1⟩W ↔ |10⟩AB |0⟩W by X̃AX̃W X̃A occurs.

Controlled-phase gate, CP(α), sets the local phase of |11⟩ of the AB data qubits. In our atom-

addressing scheme,W -atom addressing W̃ (π, α) turns |00⟩AB |0⟩W into−ieiα |00⟩AB |1⟩W , and W̃ (π, π)W̃ (π, α)

turns |00⟩AB into eiα |00⟩AB , hence CP00(α) putting the local phase of |00⟩ is to be given as follows:

CP00(α) = ⟨0|W X̃†
W W̃ (π, α) |0⟩W . (3.13)

The quantum circuit for CP00(α) is shown in Fig. 3.2 (b). Based on Eq. (3.13), the standard CP(α)

(i.e., CP11(α)) and , CP01(ϕ) and CP10(ϕ) are obtained as follows:

CP(ϕ) = ⟨0|W X̃†
ABX̃

†
W W̃ (π, ϕ)X̃AB |0⟩W , (3.14a)

CP01(ϕ) = ⟨0|W X̃†
BX̃

†
WW̃ (π, ϕ)X̃B |0⟩W , (3.14b)

CP10(ϕ) = ⟨0|W X̃†
AX̃

†
WW̃ (π, ϕ)X̃A |0⟩W . (3.14c)

The CP00(α) in the center of Eq. (3.14a) is multiplied by X̃AB on one side and the Hermite conjugate of

X̃AB on the other, exchanging and re-exchanging the coefficients of |00⟩ and |11⟩, respectively, resulting
in a mapping |11⟩ → eiα |11⟩. And for CP01(ϕ) and CP10(ϕ) in Eq. (3.14b) and Eq. (3.14c), instead of

|11⟩, they are substituted with |01⟩ and |10⟩, respectively.

3.2.3 Arbitrary Two-Qubit State Generation

General two-qubit state generation U is to find a single operation that transforms the initial state

|00⟩AB into an arbitrary two-qubit state, which can be defined as follows:

U |00⟩ = a0 |00⟩+ a1 |01⟩+ a2 |10⟩+ a3 |11⟩ . (3.15)

U ∈ U(22) (a unitary group U(4)) (in Eq. (3.15)) can in principle be composed of single- and two-qubit

gates, it is sufficient to define general rotations and at least one inversion operation on the two-qubit

basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} of the AB atom, which is possible by the Householder decomposition [85].

Inversion operations are the mirrors of two-qubit state vectors with respect to a given plane. For

instance, CZ inverts the state vector for the plane orthogonal to |11⟩, so M̃11 = CZ, and similarly,

M̃00 = CP00(π), M̃01 = CP01(π), and M̃10 = CP10(π).

General rotation is the rotation for a given two-qubit base-pair j, k ∈ {|00⟩ , |01⟩ , |10⟩ , |11⟩}. R̃00,01(Θ, ϕ),

defined as follows:

R̃jk(Θ, ϕ) |j⟩ = cos
Θ

2
|j⟩ − ieiϕ sin

Θ

2
|k⟩ . (3.16)

For example, R̃00,01(Θ, ϕ), R̃00,11(Θ, ϕ), R̃01,10(Θ, ϕ), R̃01,11(Θ, ϕ), and R̃00,01(Θ, ϕ) are the rotations of

the quantum information stored in the base pairs {|00⟩ , |01⟩}, {|00⟩ , |11⟩}, {|01⟩ , |10⟩}, {|01⟩ , |11⟩} and
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{|10⟩ , |11⟩} respectively, which are as follows:

R̃00,01(Θ, ϕ) = ⟨0|W X̃W X̃BW̃ (Θ,−ϕ)X̃†
BX̃

†
W |0⟩W , (3.17a)

R̃00,11(Θ, ϕ) = ⟨0|W X̃W X̃ABW̃ (Θ,−(ϕ+ π/2))X̃†
ABX̃

†
W |0⟩W , (3.17b)

R̃01,10(Θ, ϕ) = ⟨0|W X̃BX̃W X̃ABW̃ (Θ,−(ϕ+ π/2))X̃†
ABX̃

†
W X̃†

B |0⟩W , , (3.17c)

R̃01,11(Θ, ϕ) = ⟨0|W X̃BX̃W X̃AW̃ (Θ,−ϕ)X̃†
AX̃

†
W X̃†

B |0⟩W , (3.17d)

R̃10,11(Θ, ϕ) = ⟨0|W X̃AX̃W X̃B , W̃ (Θ,−ϕ)X̃†
BX̃

†
W X̃†

A |0⟩W . (3.17e)

In Eq. (3.17a), the first two π-pulse operations, X̃†
B and X̃†

W , execute |00⟩AB |0⟩W → |00⟩AB |1⟩W and

|01⟩AB |0⟩W → |00⟩AB |0⟩W , respectively, which implies that the quantum state of B atom is transferred

to the W atom. Then the state vector of W atom is rotated by W̃ (Θ,−ϕ) and delivered back to B atom

by the last two π-pulse operations.

3.2.4 Multi-Qubit Gates

Multi-qubit gates can be decomposed into a series of single-qubit and two-qubit elementary gates.

However, standard three-qubit gates require many elementary gates (e.g., the Toffoli gate requires 15

or 17 elementary gates). In this subsection, we examine the possibility of reducing the number of

gates significantly by using wire-atom arrangements in Toffoli gate and CCZ gate, which are prominent

examples of standard three-qubit gates.

If a simple linear configuration of ABC data atoms and two wire atoms W1 and W2 is used, as

in Fig. 3.3 (a), the pulse-sequence solutions are rather complicated, as in the Toffoli and CCZ gate

examples in Eqs. (3.18):

CCZ = ⟨00|W12

√
ỸC ỸABX̃

†
W2
ỸW1

X̃†
BC

√
X̃W2

X̃2
BC

×
√
X̃†

W2
X̃†

BCX̃W12
Ỹ †
AB

√
Ỹ †
C |00⟩W12

, (3.18a)

TOFF = ⟨00|W12

√
Ỹ †
BỸC ỸABX̃

†
W2
ỸW1

X̃†
BC

√
X̃W2

X̃2
BC

×
√
X̃†

W2
X̃†

BCX̃W12
Ỹ †
AB

√
Ỹ †
C ỸB |00⟩W12

. (3.18b)

However, if the Y -shape configuration of Fig. 3.3 (b) is used instead, where one wire atomW couples

all three data atoms, ABC, simultaneously, then their simple solutions are obtained as extensions of CX

and CZ in Eq. (3.9) and Eq. (3.10). Utilizing the fact that ⟨0|W Ỹ 2
W |0⟩W is the inverted-CCZ, we obtain

the following results:

CCZ = ⟨0|W Ỹ †
ABC Ỹ

2
W ỸABC |0⟩W , (3.19a)

TOFFABC = ⟨0|W
√
Ỹ †
CỸ

†
ABỸ

2
WỸAB

√
ỸC |0⟩W . (3.19b)

In Eqs. (3.19), ỸABC ≡ ỸAỸBỸC and Ỹ †
ABC are applied before and after changing the inverted-CCZ to

CCZ as bit-wise flip and flip-back of the data atoms, respectively. The Toffoli gate TOFFABC for AB

controls and C target (Eq. (3.19b), whose quantum circuit is presented in Fig. 3.3 (c)), the
√
Ỹ †
C C and√

ỸC at both ends are the pseudo-Hadamard and its inverse acting on the target.
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(a)

(c) Toffoli gate

control

wire

target

 

 

control

A

B

CWA B C

(b)

W1 W2

Figure 3.3: (a) A 5-atom chain and (b) an Y-shape atomic array to implement the multi-qubit wire

gates. (c) Quantum circuit of the Toffoli gate TOFFABC for the control atoms A, B and the target

atom C. The figure is reused from the reference [83], Frontiers Media S.A..

3.3 Summary

Rydberg wire gates utilizing auxiliary atoms to couple data atoms are proposed. The universal

set of gates can be realized based on the strong local interaction of neutral Rydberg atoms by coding

information into qubits comprising a ground state and a Rydberg state. These gates are implemented

via fast laser excitation of the Rydberg state, which allows fast operation and rapid entanglement of

well-separated data atoms. Fast entangling operations are basic building blocks of quantum circuits

for large-scale quantum computation, and long-range entanglement enables greatly simplified operations

between distant qubits in the array. The new idea of Rydberg wire gates can lead to new prospects for

neutral-atom quantum science and technology.
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Chapter 4. Rydberg-based Quantum Programming of

Satisfiability Instances

Decision problems are categorized into deterministic polynomial (P) problems and nondeterministic

polynomial (NP) problems based on their computational complexity (Table. 2.1 in Sec. 2.2). P problem

is the problem that can be solved in polynomial time with a Deterministic Turing machine (DTM), which

is the framework of a classical computer [45, 46], and there is an algorithm that can uniquely determine

the next status given the current status. In other words, it is the problem that is efficiently solvable with

classical computing. On the other hand, an NP problem is a problem that can be solved in polynomial

time by a non-deterministic Turing machine (NTM), which, different from a DTM, follows a tree-like

computation path consisting of multiple branches per step. In other words, it is the hard problem that

is verifiable by a DTM in polynomial time [45], but there is no classical algorithm that can efficiently

solve it unless P = NP [46, 86]. And, as mentioned in Sec. 2.2, NP-complete problem is the most

difficult NP problem which is the problem that all NP problems can be reduced by many-one reduction

in polynomial time, i.e., it belongs to NP-hard problems.

Currently, there are considerable efforts to build quantum computers [5, 87, 88], and an important

challenge is to engineer quantum systems that can formulate quantum algorithms for efficiently solving

classically hard computational problems, such as NP-complete problems [89, 90]. And according to the

definition of NP-complete problems, an algorithm that can efficiently solve an NP-complete problem

can be used as a subroutine of an efficient algorithm for solving all other NP problems [45, 46, 49]. In

other words, if a quantum computer can solve these NP-complete problems efficiently, then there is a

potential for all other NP instances to be solved efficiently via polynomial time reduction to NP-complete

problems [91, 92]. Hence, in this chapter, we will introduce some examples of Karp’s 21 NP-complete

problems [93], which are representative NP-complete problems, and how they are transformed into in-

stances of the maximum independent set (MIS) problem, which is one of the NP-complete problems, and

then describe the Rydberg-based quantum programming of the Boolean satisfiability instances (SAT

or B-SAT) and the 3-SAT instances, which are proto-typical NP-complete instances according to the

Cook-Levin theorem [94].

This chapter is based on the published paper: S. Jeong, M. Kim, M. Hhan, J. Park, and J. Ahn,

“Quantum programming of the satisfiability problem with Rydberg atom graphs,” Phys. Rev. Res. 5,

043037 (2023) [72].

4.1 Karp’s 21 NP-complete Problems

A prominent examples of such NP-complete problems are Karp’s 21 NP-complete Problems [93],

and, in this section, we will briefly introduce some examples of Karp’s 21 NP-complete Problems.
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4.1.1 Satisfiability (SAT)

Satisfiability (SAT or B-SAT) is the problem to determine whether a given propositional logic

expression (Boolean expression) Ψ(x1, x2, · · · ) is satisfiable (i.e., whether there exists a Boolean variable

value (x1, x2, · · · ) such that Ψ(x1, x2, · · · ) is true), and is the first problem which was proved to be NP-

complete by the Cook-Levin theorem [94]. The Boolean expression Ψ(x1, x2, · · · ) of the SAT problem

can be written in conjunctive normal form (CNF) [95], i.e., as a conjunction of NC clauses Cj ≡
∨

m lj,m

defined as a disjunction of literals ℓj,m which are Boolean variables or their negations, as follows:

Ψ(x1, x2, · · · ) =
NC∧
j=1

Cj . (4.1)

And SAT problems where the maximum number of literals that make up each clause is k are called

k-SAT problems, and examples include 2-SAT and 3-SAT. 2-SAT is in the P class, and 3-SAT is an

NP-complete problem.

3-SAT

3-SAT problem is a class of SAT problem whose every clause comprising the CNF of a given Boolean

expression consists of at most three literals, and all instances of the SAT problem are reducible to 3-SAT

in polynomial-time [93]. By the definition of 3-SAT, a 3-SAT formula is as follows:

Ψ(x1, x2, · · · , xn) =

NC∧
j=1

Cj (4.2a)

Cj = ℓj,1 ∨ ℓj,2 or ℓj,1 ∨ ℓj,2 ∨ ℓj,3, (4.2b)

where ℓj,1, ℓj,2, ℓj,3 ∈ {xk, x̄k|k = 1, · · · , n} [49, 93].

4.1.2 Set Packing (Equivalent to the Independent Set)

Set Packing is an NP-complete problem in computational complexity theory and combinatorics,

and is one of the 21 NP-complete problems proposed by Karp [93]. Given a finite set S and a list of

subsets of S, the set packing problem asks whether some k subsets of the list are pairwise disjoint (i.e.,

the two sets do not share an element) [93]. More formally, given a finite universe U and a family S of

subsets of U , a set packing is a subfamily C ⊆ S consisting of sets that belong to S and are pairwise

disjoint from each other. The set packing decision problem is to find a set packing C such that |C| ≥ k

for a given pair (U ,S) and integer k [93], and the Maximum Set Packing problem is an optimization

problem to find the set packing C with the largest |C| for a given pair (U ,S) [49].
For example, for a given universe U = {W1,W2,W3,W4, e1, e2, e3, e4, e5, e6, e7, e8} and a subset fam-

ily S = {S1, S2, · · ·S8(⊆ U)}, let S1 = {e1, e4, e5}, S2 = {e1, e2, e6}, S3 = {e2, e3, e7}, S4 = {e3, e4, e8},
S5 = {e8,W1,W4}, S6 = {e5,W1,W2}, S7 = {e6,W2,W3}, S8 = {e7,W3,W4}, then the set packing C of

maximum cardinality in the pair (U ,S) is of two kinds, {S1, S3, S5, S7} and {S2, S4, S6, S8}.

Also, the Set packing problem is equivalent to the Independent set problem, with the one-to-one

polynomial-time reduction that follows:
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Set packing → Independent set:

For the set packing problem of a given collection S,

1. S 7→ a graph G(V,E),

2. S ∈ S 7→ vS ∈ V ,

3. S ∩ T ̸= ∅ 7→ (vS , vT ) ∈ E,

then every independent set I ⊆ V of G(V,E) corresponds to a set packing of S.

Similarly, by this reduction, the Maximum Set Packing problem corresponds to the Maximum in-

dependent set (MIS) problem described in Subsec. 2.2.1, where MIS corresponds to maximum set

packing.

4.1.3 Graph Coloring

Figure 4.1: Graph Coloring of a non-planar graph G(V,E) with ten nodes,

The Graph Coloring problem is the problem of determining whether the node set V can be colored

with k colors (i.e., is k-colorable) such that adjacent points in a given graph G(V,E) are distinguished,

and is formally defined as [49]:

Graph Coloring: Check whether no two adjacent nodes (i.e., u, v ∈ V with (u, v) ∈ E) share the

same color using only k colors (i.e., k-colorable) for a given graph G(V,E).
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For example, the non-planar graph G(V,E) in Fig. 4.1, which contains the complete non-planar subgraph

K5 composed by the node subset W0 = {0, 1, 2, 3, 4} ⊂ V , requires at least five colors.

4.1.4 Exact Cover

The Exact Cover problem is a special case of the Set Packing problem, which is the decision

problem of finding the existence of a set packing C′ ⊆ S such that, for a given total set U and a family

S of subsets of U , the union of subsets S ∈ C′ is U [49, 93]. Formally, it is defined as follows:

Exact Cover: Check whether there is a set packing C′ ⊆ S such that
⋃

S∈C′ S = U , for a given

total set U and a family S of subsets of U .

Here are two examples of the exact cover problem:

Case 1 (Exact Cover exists)

For a given total set U = {x1, x2, · · · , x10} and a subset family S of U , when the subsets S1, S2, S3, S4

belonging to S are equal to Eqs. (4.3),

S1 = {x1, x2, x3, x6} (4.3a)

S2 = {x4, x5, x7, x8, x9, x10} (4.3b)

S3 = {x1, x5, x10} (4.3c)

S4 = {x1, x2, x4, x8} (4.3d)

the relations of Eqs. (4.4) hold:

S1 ∩ S2 = ∅ (4.4a)

S1 ∩ S3 = {x1} (4.4b)

S1 ∩ S4 = {x1, x2} (4.4c)

S2 ∩ S3 = {x5, x10} (4.4d)

S2 ∩ S4 = {x4, x8} (4.4e)

S3 ∩ S4 = {x1} (4.4f)

S1 ∪ S2 = U. (4.4g)

Due to Eq. (4.4g), the exact cover in this case is C′ = {S1, S2}.
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Case 2 (No Exact Cover exists)

For a given total set U = {x1, x2, · · · , x10} and a subset family S of U , when the subsets S1, S2, S3, S4, S5

belonging to S are equal to Eqs. (4.5),

S1 = {x1, x2, x3} (4.5a)

S2 = {x3, x4} (4.5b)

S3 = {x5, x6} (4.5c)

S4 = {x6, x7, x8} (4.5d)

S5 = {x9, x10} (4.5e)

the relation Eqs. (4.6) holds for j, k ∈ {1, 2, · · · , 5}(j < k):

Sj ∩ Sk =


{3} for j = 1, k = 2

{6} for j = 3, k = 4

∅ otherwise

(4.6a)

S1 ∪ S3 ∪ S5 = {x1, x2, x3, x5, x6, x9, x10} (4.6b)

S1 ∪ S4 ∪ S5 = {x1, x2, x3, x6, x7, x8, x9, x10} (4.6c)

S2 ∪ S3 ∪ S5 = {x3, x4, x5, x6, x9, x10} (4.6d)

S2 ∪ S4 ∪ S5 = {x3, x4, x6, x7, x8, x9, x10} . (4.6e)

In this case, by Eqs. (4.6), the exact cover does not exist.

4.1.5 Max Cut

The Max Cut problem is the problem of partitioning a set of nodes V in a given graph G(V,E)

such that the number of edges between two subsets S and V \S is maximized [96]. The formal definition

of this problem is as follows:

Max Cut: Maximize the number of edges (u, v) ∈ E such that u ∈ S and v ∈ V \S, for a given

graph G(V,E).

In the instance of the Max Cut problem for the graph G(V,E) in Fig. 4.2, when the node set V is

partitioned into two subsets A = {1, 2, 4, 6, 10} and B = V \A, the maximum number of connected edges

(i.e., cutedges) between the two partitions A and B is 6, which corresponds to a maximum cut.

4.1.6 Binary Integer Programming (BIP)

Binary Integer Programming (BIP) is a type of Integer Linear Programming (ILP), which is

defined as the problem of determining an x⃗ ∈ {0, 1}N that finds the maximum value of the objective

function c⃗ · x⃗ under the constraint S · x⃗ = b⃗, given an (m×N)- matrix S (N > m) and constant vectors

b⃗ ∈ Rm, c⃗ ∈ RN [97]. The formal definition is as follows:

Binary Integer Programming (BIP):

For x⃗ ∈ {0, 1}N , S ∈ Rm×N , b⃗ ∈ Rm, c⃗ ∈ RN , maximize c⃗ · x⃗ under the constraint S · x⃗ = b⃗.
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Figure 4.2: Maximum cut (Max Cut) of a connected graph G(V,E) with 10 nodes, The red-edges are

the cut edges, i.e., those that cross between the two partitions A = {1, 2, 4, 6, 10} and B = {3, 5, 7, 8, 9}
of V . And the other edges (gray dotted) are not part of the cut.

There are two instances of BIP:

Case 1 (Feasible Constraint System)

Given a matrix S and vectors b⃗, c⃗ as in Eqs. (4.7),

S =


4 6 3 4

1 1 1 1

1 0 0 1

 , (4.7a)

b⃗ =


10

2

1

 , (4.7b)

c⃗ =


9

11

6

9

 . (4.7c)
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under the constraint S · x⃗ = b⃗, x⃗ ∈ {0, 1}4 that maximizes the objective function c⃗ · x⃗ is given by Eq. (4.8):

x⃗ =


0

1

0

1

 or


1

1

0

0

 . (4.8)

Case 2 (Infeasible Constraint System)

Suppose the matrix S and vectors b⃗, c⃗ are given as in Eqs. (4.9):

S =


1 −1 0 0

0 0 1 1

1 0 −1 −1

 , (4.9a)

b⃗ =


−1

1

3

 , (4.9b)

c⃗ =


−1

2

1

1

 . (4.9c)

Then, under the constraint S · x⃗ = b⃗, the relations as in Eqs. (4.10) are obtained:

x1 − x2 = −1, (4.10a)

x3 + x4 = 1, (4.10b)

x1 − x3 − x4 = 3. (4.10c)

For this instance, Eq. (4.10b) and Eq. (4.10c) contradict each other, making the constraint S · x⃗ = b⃗

infeasible, so there is no x⃗ ∈ {0, 1}4 that satisfies this constraint.

4.1.7 Number Partitioning / Undirected Hamiltonian Cycle /

Clique / Clique Cover

Number Partitioning

Number Partitioning is the problem of finding a set S = {s1, s2, · · · , sN} of natural numbers that

can be divided into two disjoint subsets S1 and S2 such that the sums of the elements in S1 and S2 are

the same for each other [49, 93]. This problem is formally defined as follows:

Number Partitioning: Determine whether a set S = {s1, s2, · · · , sN} of natural numbers can be

bipartitioned into two subsets S1 and S2 such that∑
x∈S1

x =
∑
y∈S2

y.
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The following two examples are examples of instances that can and cannot be number partitioned:

Case 1 (Number partition exists)

For S = {3, 1, 1, 2, 2, 1}, S is number partitionable into S1 = {3, 2} and S2 = {1, 1, 2, 1}.

Case 2 (Number partition does not exist)

For S = {4, 7, 2, 5, 3}, since the sum 4 + 7 + 2 + 5 + 3 = 21 of all elements in S is an odd number,

so this S is not possible to be number partitioned.

Undirected Hamiltonian Cycle

The Undirected Hamiltonian Cycle problem is to find a Hamiltonian cycle, a simple cycle that

visits each node v ∈ V exactly once and returns to the starting point, for a given undirected graph

G(V,E) [49, 93]. In Figs. 4.3, the two examples of the undirected Hamiltonian cycle problem for two

graphs: the one in Fig. 4.3 (a) with a Hamiltonianian cycle (0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 →
9 → 0) and the other in Fig. 4.3 (b) with no Hamiltonian cycle due to the bottleneck node 9.

Clique

The Clique problem is the problem of finding a clique C (⊆ G), i.e., a m-complete subgraph

C = Km, whose size is a positive integer m > 0, for a given graph G. Formally, it is defined as follows:

Clique: Find an m-complete subgraph (i.e. a clique whose size is m) C of G for a positive integer

m and a given graph G.

Furthermore, there is a duality that the node set of a clique of a graph G corresponds to the independent

set of its complement graph G. Thus, the Maximum independent set (MIS) problem of a graph G

is dual to the Maximum Clique problem of its complement graph G.

Clique Cover

The Clique Cover problem is the problem of determining, for a given graph G(V,E) and a positive

integer m > 0, whether a node set V can be partitioned into m different cliques. The formal definition

is as follows:

Clique Cover: For a graph G(V,E) and a positive integer m > 0, partition G(V,E) into m

different cliques with respect to the node set V .

For the 15-node graph in Fig. 4.4, a solution to the Clique Cover problem with m = 5 is

{{0, 2, 11, 14}, {1, 5, 7}, {3, 4, 6, 8}, {9}, {10, 12, 13}}, as shown in Fig. 4.4.

Moreover, similar to the case of the Clique problem, the Clique Cover problem for a graph G

is dual to the Graph Coloring problem for its complement graph G (i.e., determining whether G is

m-colorable).
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(a)

(b)

Figure 4.3: Two examples of the Undirected Hamiltonian Cycle problem.

4.2 Mathematical Reduction from NP-complete problem

to MIS problem

Previously, in Sec. 4.1, we introduced several examples of Karp’s 21 NP-complete problems, which

are prominent NP-complete problems. In this section, we will discuss how these NP-complete problems

can be reduced to the Maximum independent set (MIS) problem, which is the NP-complete problem

equivalent to the set packing problem.
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Figure 4.4: Example of the Clique Cover problem for a graph with 15 nodes. Each clique from the

cover is distingushed via five different colors.

4.2.1 3-SAT to MIS

As mentioned in Subsec. 4.1.1, all instances of the SAT problem can be transformed into the 3-SAT

domain by a polynomial-time reduction to 3-SAT problem. Then, the 3-SAT formula given by Eqs. (4.2)

is transformed into the instance of MIS problem over the graph GM (V,E) by the reduction defined by

Eqs. (4.11):

V = {(j, k)|ℓj,k ∈ Cj} , (4.11a)

E = E1 ∪ E2, (4.11b)

E1 = {[(j, k1), (j, k2)]|k1 ̸= k2} , (4.11c)

E2 = {[(j1, k1), (j2, k2)]|k1 ̸= k2, ℓj1,k1 = ℓ̄k2,k2}, (4.11d)

where V is the set of nodes v(j,k) corresponding to literal ℓj,k in j-th clause Cj , and E is the set of

all edges in GM , which is the union of two edge sets E1 and E2; E1 is the set of intra-clause edges

connecting two nodes mapped from literals ℓj,k1 and ℓj,k2 in the same clause Cj , and E2 is the set of

inter-clause edges connecting two nodes mapped from literals that are negation to each other in different

clauses [97, 98]. If the MIS size of the graph GM (V,E) is equal to the number of all clauses in the 3-SAT

formula, then the 3-SAT formula is satisfiable.

4.2.2 Graph Coloring to MIS

As described in Subsec. 4.1.3, the Graph Coloring problem is the problem of determining whether

a given graph G(V,E) can be colored so that adjacent nodes are color distinguishable (i.e., m-colorable)

using only m colors, and the constraints of the graph coloring problem are as follows:

GC1. Each node v ∈ V must be colored by only one color j ∈ {1, 2, · · · ,m}.
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GC2. Adjacent nodes u and v that are connected by an edge (u, v) ∈ E should be colored with

different colors to distinguish them.

Here, the constraint GC1 can be regarded as the MIS problem of the m-complete graph Km assigned

to each node v ∈ V , and GC2 as the Independent Set definition of the graph G(V,E) replicated for

each color j ∈ {1, 2, · · · , k}.
Thus, the objective functions representing constraints GC1 and GC2 are represented by the cost

Hamiltonians ĤGC1 and ĤGC2 as shown in Eqs. (4.12):

ĤGC1 =
∑
v∈V

U k∑
j=1

∑
l>j

n̂v,j n̂v,l −∆

k∑
j=1

n̂v,j

 , (4.12a)

ĤGC2 = U

k∑
j=1

∑
(u,v)∈E

n̂u,j n̂v,j , (4.12b)

where 0 < ∆ < U . Thus, since the cost Hamiltonians ĤGC1 and ĤGC2 do not share any terms with each

other, the total cost Hamiltonian ĤGC for the graph coloring problem can be given by Eqs. (4.13):

ĤGC = ĤGC1 + ĤGC2 (4.13a)

= −∆
∑
v∈V

k∑
j=1

n̂v,j + U

∑
v∈V

k∑
j=1

∑
l>j

n̂v,j n̂v,l +

k∑
j=1

∑
(u,v)∈E

n̂u,j n̂v,j

 . (4.13b)

4.2.3 Exact Cover to MIS

As mentioned in Subsec. 4.1.4, the Exact Cover problem is the problem to determine whether,

given a total set U and its subset family S, it is possible to partition it into disjoint subsets of S. So,

the constraints of the exact cover problem are as follows:

EC1. Subsets Sj , Sk ∈ C which belong to C ⊆ S must be disjoint from each other (i.e.,Sj∩Sk = ∅),

i.e., each element xp ∈ U of the total set U must belong to only one kind of Sj ∈ C.

EC2. The union of all S ∈ C must be the total set U .

Similar to the graph coloring problem, EC1 can be divided into two parts:

EC1-1: The MIS problem of the mp-complete graph Kmp
(mp = |Bp|, where Bp = {Sj |xp ∈ Sj})

assigned to each element xp, similar to GC1

EC1-2: The definition of an Independent Set based on the disjointness of each subset Sj and

Sk chosen in EC1-1, similar to GC2.

And EC2 is the decision problem of determining whether the size of the MIS in EC1 is equal to the

cardinality |U| of the total set.

Accordingly, the cost Hamiltonians ĤEC1−1 and ĤEC1−2 corresponding to EC1-1 and EC1-2 are

given by Eqs. (4.14):

ĤEC1−1 =
∑
xp∈U

U ∑
Sj ,Sk∈Bp;k>j

n̂p,j n̂p,k −∆
∑

Sj∈Bp

n̂p,j

 , (4.14a)

ĤEC1−2 = U
∑

Sj∩Sk ̸=∅;k>j

 ∑
xp∈Sj

∑
xq∈Sk

n̂p,j n̂q,k

 , (4.14b)
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where 0 < ∆ < U . Similar to the graph coloring problem, the total cost Hamiltonian ĤEC for the exact

cover problem is the sum of ĤEC1−1 and ĤEC1−2, expressed as Eqs. (4.15):

ĤEC = ĤEC1−1 + ĤEC1−2 (4.15a)

= −∆
∑
xp∈U

∑
Sj∈Bp

n̂p,j

+U

 ∑
xp∈U

∑
Sj ,Sk∈Bp;k>j

n̂p,j n̂p,k +
∑

Sj∩Sk ̸=∅;k>j

 ∑
xp∈Sj

∑
xq∈Sk

n̂p,j n̂q,k

 . (4.15b)

Finally, according to EC2, an exact cover exists for a given pair (U ,S) if, when comparing the MIS sizes

of the graphs in the ĤEC , the MIS size in the graph from the ĤEC is of size |U| of the set.

4.2.4 Max Cut to MIS

As explained in Subsec. 4.1.5, the Max Cut problem is the problem of bipartitioning a set V of

nodes in a given graph G(V,E) into S and V \S such that the number of edges between the two subsets

of nodes is maximized. Thus, the cost Hamiltonian ĤMaxCut of the Max Cut problem is given by

Eqs. (4.16):

ĤMaxCut =
∑

(u,v)∈E

[n̂u (n̂v − 1) + (n̂u − 1) n̂v] (4.16a)

=
∑

(u,v)∈E

[2n̂un̂v − n̂u − n̂v] (4.16b)

= −
∑
v∈V

wv · n̂v + 2
∑

(u,v)∈E

n̂un̂v, (4.16c)

where n̂v is the occupation number indicating whether node v is in S or not (i.e., if n̂v = 1, then v ∈ S),

and wv is the degree of v, which is the number of edges connected to node v. In other words, the cost

Hamiltonian of the max cut problem is represented by the Quadratic unconstrained binary optimization

(QUBO) problem in Eq. (4.16c) [99, 100], and accordingly, the max cut problem can be transformed

into the QUBO domain and then into the MIS graph of the QUBO problem with data-, offset-qubit and

even-, odd-atom quantum wires [101].

4.2.5 Binary Integer Programming (BIP) to MIS

As introduced in Subsec. 4.1.6, the Binary Integer Programming (BIP) problem is an Integer

Linear Programming (ILP) problem that finds an N -bit vector x⃗ ∈ {0, 1}N that maximizes the value of

an objective function determined by vector c⃗ ∈ RN under the constraints of a linear equation system of

a given matrix S ∈ RN×m and vector b⃗ ∈ Rm:

BIP1. Binary vector x⃗ ∈ {0, 1}N must satisfy the linear equation system S · x⃗ = b⃗.

BIP2. x⃗ should maximize the objective function c⃗ · x⃗.
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The cost Hamiltonians ĤBIP1 and ĤBIP2 accounting for these constraints BIP1 and BIP2 are given by

Eqs. (4.17):

ĤBIP1 =

m∑
j=1

[
bj −

N∑
i=1

Sjin̂i

]2
(4.17a)

= ∥⃗b∥2 − 2

N∑
i=1

win̂i + 2

N∑
i=1

∑
j>i

µij n̂in̂j (4.17b)

∼ −2

N∑
i=1

win̂i + 2

N∑
i=1

∑
j>i

µij n̂in̂j (4.17c)

ĤBIP2 = −
N∑
i=1

cin̂i, (4.17d)

where wi ≡ (STS)ii− (S · b⃗)i, and µ ≡ STS−diag(STS) (where ST is the transpose of S and diag(STS)

is the diagonal matrix with the same diagonal elements of STS). The total cost Hamiltonian ĤBIP of

the BIP problem is the sum of ĤBIP1 and ĤBIP2, which is represented in QUBO form (Eqs.(4.18)),

similar to the max cut problem:

ĤBIP = ĤBIP1 + ĤBIP2 (4.18a)

= −
N∑
i=1

(ci + 2wi)n̂i + 2

N∑
i=1

∑
j>i

µij n̂in̂j . (4.18b)

Similar to Subsec. 4.2.4, the BIP problem can be converted into an MIS problem corresponding to the

QUBO formula Eq. (4.18b) [101].

4.2.6 Number Partitioning / Undirected Hamiltonian Cycle to MIS

In this subsection, among other NP-complete problems introduced in Subsec. 4.1.7, the MIS reduc-

tion for the Number Partitioning and the Undirected Hamilton Cycle problems which are not

dual to the MIS or Graph Coloring problem will be discussed. As mentioned in Subsec. 4.1.7, the

clique and clique cover prolems of a graph G is dual to the independent set and graph coloring of its

complement graph G, respectively.

Number Partitioning to MIS

The Number Partitioning problem is the determination problem to evaluate whether a set S =

{s1, s2, · · · , sN} of natural numbers is bipartitionable two subsets S1 and S2 whose total sums of elements

are same. Thus, the cost Hamiltonian ĤNum−Part of the Number Partitioning problem is given as

Eqs. (4.19):

ĤNum−Part =

 N∑
j=1

sj (2n̂j − 1)

2

, (4.19a)

=

N∑
j=1

s2j + 2

N∑
j=1

∑
k>j

sjsk (4n̂j n̂k − 2n̂j − 2n̂k + 1) , (4.19b)

∼ −
N∑
j=1

sj(M − sj)n̂j +

N∑
j=1

∑
k>j

(2sjsk)n̂j n̂k, (4.19c)
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where M ≡
∑N

j=1 sj is the total sum of elements in S and n̂j denotes whether sj belongs to either S1 or

S2 (i.e., if n̂j = 1, then sj ∈ S1). Similar to Subsecs. 4.2.4 and 4.2.5, the cost Hamiltonian ĤNum−Part is

represented as a QUBO form, which leads to the conversion to MIS problem [101].

Undirected Hamiltonian Cycle to MIS

The Undirected Hamiltonian Cycle problem is the problem to find a Hamiltonian cycle which,

for a given undirected graph G(V,E), visits each node v ∈ V exactly once and comes back to the start.

So, the constraints of the Undirected Hamiltonian Cycle problem are given as followings:

UHC1. Each node vj ∈ V (V = {v1, v2, · · · , vN}) must be uniquely determined by its order

k ∈ ZN (= {0, 1, · · · , N − 1}) in the Hamiltonian cycle.

UHC2. Each ordering k ∈ K(≡ {1, 2, · · · , N}) must be uniquely determined for each node vj ∈ V

(V = {v1, v2, · · · , vN}) in the Hamiltonian cycle.

UHC3. Two nodes whose order is k and (k + 1) must be connected by an edge e ∈ E.

Here, the constraints UHC1 and UHC2 denote that for each ordering k, l ∈ K, different nodes v, w ∈ V

must be uniquely assigned, respectively, and UHC3 enforces that no unedged nodes u, v ∈ V (i.e.,

(u, v) /∈ E) must be assigned to ordering k, (k + 1) ∈ K.

Thus, the cost Hamiltonians ĤUHC1, ĤUHC2 and ĤUHC3 responsible for these constraints UHC1,

UHC2 and UHC3 are given as Eqs. (4.20):

ĤUHC1 =
∑
k∈ZN

U ∑
v∈V

∑
w∈V \{v}

n̂v,kn̂w,k −∆
∑
v∈V

n̂v,k

 (4.20a)

ĤUHC2 =
∑
v∈V

U ∑
k∈ZN

∑
l>j

n̂v,kn̂v,l −∆
∑
k∈ZN

n̂v,k

 (4.20b)

ĤUHC3 = U
∑
k∈ZN

∑
(u,v)/∈E

n̂u,kn̂v,k+1 (4.20c)

where n̂v,k denotes whether the pair (v, k) of the node v ∈ V and the ordering k ∈ ZN is selected (i.e.,

n̂v,k = 1, when (v, k) is chosen).

4.3 Quantum Programming of Satisfiability Instances

Of particular relevance in the context of the present chapter, the 3-SAT problem is reducible to

the maximum independent set (MIS) problem, which is also the NP-complete problem [97, 98], and the

MIS problem can be physically implemented with Rydberg atoms [19, 69]. So, we introduce a quantum

algorithm to formulate the 3-SAT instance with a Rydberg atom system in this chapter, by formulating

a quantum experiment to obtain the MIS solution of the Rydberg-atom graph programmed to algo-

rithmically determine a given 3-SAT instance, i.e., to evaluate the satisfiability of the 3-SAT instance

experimentally.
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4.3.1 3-SAT Reduction to Maximum Independent Set Problems

Instances of 3-SAT problem are transformed into MIS instances via the mathematical reduction de-

scribed in Subsec. 4.2.1. This reduction of 3-SAT instances to MIS instances maps the clauses consisting

of two-literals and three-literals in Eq. (4.2b) to dimers and trimers, respectively, and literal-negation

pairs to inter-clause edges. Ultimately, such an MIS graph GM encodes the 3-SAT problem as a Rydberg

atom array, an assembly of Rydberg dimers and trimers representing each clause, and Rydberg quantum

wires with auxiliary atoms.

Two-Clause 3-SAT Instance

(a) (b) (c)

Figure 4.5: (a) MIS graph L1 reduced from the 3-SAT instance Φ1 in Eqs. (4.21), (b) L2 from Φ2, and

(c) L3 from Φ3, where vertices represent literals (x1, · · · , x5 and their negations), solid edges intra-clause

logics, and dotted edges the inter-clause logics (between literals and their negations).

Figs. 4.5 show examples of MIS graphs for the two-clause 3-SAT instances, denoted by GM s, from

the reduction algorithm in Subsec. 4.2.1. The first graph in Fig. 4.5 (a), L1, is the graph for the 3-SAT

instance, given as follows:

Φ1(x1, x2, x3, x4, x5) = B0 ∧B1 (4.21a)

B0 = x1 ∨ x2 ∨ x3 (4.21b)

B1 = x̄3 ∨ x4 ∨ x5. (4.21c)

where clauses with three literals are mapped to trimers (solid edges) and literal-negation pairs are mapped

to inter-clause edges (dotted edges). In a similar way, for B2 = x̄1 ∨ x̄3 ∨ x4 and B3 = x̄1 ∨ x̄2 ∨ x̄3, we
define two more MIS graphs L2 and L3 for Φ2 = B0 ∧ B2 and Φ3 = B0 ∧ B3, respectively, as shown in

Figs. 4.5 (b) and (c).

Three-Clause 3-SAT Instance

Figs. 4.6 show the MIS graphs of three-clause 3-SAT instances obtained by the reduction algorithm

used in the two-clause cases. G1 in Fig. 4.6 (a) is the graph for the three-clause 3-SAT instance given
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(a) (b) (c)

Figure 4.6: (a) MIS graph G1 reduced from the 3-SAT instance Ψ1 in Eqs. (4.22), (b) G2 from Ψ2,

and (c) G3 from Ψ3, where vertices represent literals (x1, · · · , x6 and their negations), solid edges

intra-clause logics, and dashed edges the inter-clause logics (between literals and their negations). The

figure is reused from the reference [72], APS.

by Eqs. (4.22):

Ψ1(x1, x2, x3, x4, x5, x6) = C0 ∧ C1 ∧ C2 (4.22a)

C0 = x1 ∨ x2 ∨ x3 (4.22b)

C1 = x̄1 ∨ x4 (4.22c)

C2 = x1 ∨ x5 ∨ x6 (4.22d)

where, analogous to Eqs. (4.21), clauses with two or three literals are mapped to dimers or trimers (solid

edges), respectively, and literal-negation pairs are mapped to inter-clause edges (dotted lines). Similarly,

with C ′
1 = x̄1 ∨ x̄2 and C ′

2 = x1 ∨ x̄3 ∨ x6, we can define two more MIS graphs G2 and G3 as shown in

Figs. 4.6 (b) and (c) for Ψ2 = C0 ∧ C ′
1 ∧ C2 and Ψ3 = C0 ∧ C ′

1 ∧ C ′
2, respectively.

4.3.2 Experimental Procedure

Quantum computing of the 3-SAT instance starts from the single-atom array GM prepared with the

initial state |ψGM
(t = 0)⟩ = |0⟩⊗|GM |

(|0⟩ ≡ |g⟩ is the ground state), resulting from the 3-SAT reduction

to MIS (mentioned in Subsec. 4.3.1). And the Hamiltonian of the Rydberg atom array GM is given (with

ℏ = 1 unit) by Eq. (2.25) and Eq. (2.26) is as follows:

ĤGM
(t) =

∑
(j,k)∈E(GM )

Un̂j n̂k −
∑

j∈V (GM )

(
∆(t)n̂j −

Ω(t)

2
σ̂(j)
x

)
, (4.23)

where U is the interaction between edged atoms, Ω and ∆ are the Rabi frequency and detuning, and

n̂j ≡ |1⟩ ⟨1|, σ̂(j)
x are the occupation number and Pauli x-operator defined for the ground (|0⟩ ≡ |g⟩)

and Rydberg (|1⟩ ≡ |R⟩) states of the j-th atom (see the Eq. (2.9)). And according to the constraint

term Un̂j n̂k (U > 0) and the promoting term −∆n̂j (∆ > 0) from the MIS definition (mentioned in

Subsec. 2.2.3), in the limit Ω → 0, many-body ground states of ĤGM
(→ HMIS(GM ) in the Eq. (2.25))

are MIS solutions of GM [68, 69].

Hence, as shown in Fig. 4.7, the control Hamiltonian ĤGM
(t) in Eq. (4.23), we adiabatically change

the control Hamiltonian ĤGM
(t) to ĤGM

(t = tf ) = ĤGM
(Ω → 0,∆ = ∆f > 0). In this process, Ω(t)

and ∆(t) are varied in the following way using the Rydberg excitation laser system (Subsec. 2.3.2):

1. First stage (0 < t < t1): Ω(0 < t < t1) is swept linearly as Ω0(t/t1) and ∆(0 < t < t1) is fixed as

∆i.
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Figure 4.7: The Rabi frequency and detuning for the adiabatic process.

2. Second stage (t1 < t < t2): Ω(t1 < t < t2) = Ω0 is fixed and ∆(t1 < t < t2) is swept linearly from

∆i to ∆f .

3. Final stage (t2 < t < tf ): Ω(t2 < t < tf ) = Ω0 · [(tf − t) / (tf − t2)] is swept linearly and

∆(t2 < t < tf ) = ∆f is fixed.

The final state |ψGM
(t = tf )⟩ resulting from this adiabatic process is approximately the super-

position of the many-body ground states of HGM
(Ω → 0,∆ = ∆f > 0), and accordingly the fi-

nal ground-state atom is detected by atomic qubit state measurement (Subsec. 2.3.3). To obtain

the probability distribution PGM
(x) = |⟨x|ψGM

(t = tf )⟩|2 for all 2|GM | binary atom configurations

|x⟩ = |00 · · · 0⟩ , |00 · · · 1⟩ , · · · , |11 · · · 1⟩, M repeated measurements are performed.

Experimental Setup

The experimental setup for implementing this quantum programming is the Rydberg atom quan-

tum machine described in Sec. 2.3 and reported elsewhere [19, 80, 81, 102]. The distance between all

edged (i.e. nearest-neighbor) atoms is d = 7.0 µm, which is smaller than the Rydberg blockade distance

dB = 9− 10 µm, and the van der Waals interaction between these edged atoms is U = 2π × 8.70 MHz.

Experimental Condition (Two-Clause SAT)

First, we perform experimental test of Rydberg quantum programming of the 3-SAT instance for

three two-clause 3-SAT instances Φ1, Φ2, and Φ3: their corresponding graphs are L1, L2, and L3 in

Figs. 4.5 (a), (b), and (c), respectively, where each three-literal clause is an atomic trimer in a triangular

configuration and the inter-clause logic (between a literal and its negation) is realized as an inter-clause

edge (represented by a dashed line). For example, in Φ1 in Fig. 4.5 (a), x3 in B0 and x̄3 in B1 are edged

in L1.

The experimental graphs, LExp
1 , LExp

2 , and LExp
3 , for the experimental implementation of L1, L2,

and L3 have been constructed as shown in Figs. 4.8 (a), (b) and (c), respectively. The nearest-neighbor
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Figure 4.8: (a) Experimental graph LExp
1 , (b) LExp

2 , and (c) LExp
3 of literal atoms (x1, · · · , x6) and

quantum wire atoms (a1, · · · , a8).

Table 4.1: Atom positions in graphs LExp
1 , LExp

2 , and LExp
3

Graphs Atom positions (x, y) (µm)

LExp
1

x1: (-9.56, -3.50) x2: (-9.56, 3.50)

x3: (-3.50, 0.00) x̄3: (3.50, 0.00)

x4: (9.56, 3.50) x5: (9.56, -3.50)

LExp
2

x1: (-9.56, -3.50) x2: (-9.56, 3.50)

x3: (-3.50, 0.00) x̄1: (9.56, -3.50)

x4: (9.56, 3.50) x̄3: (3.50, 0.00)

a1: (-10.44, -10.44) a2: (-3.50, -11.33)

a3: (3.50, -11.33) a4: (10.44, -10.44)

LExp
3

x1: (-9.56, -3.50) x2: (-9.56, 3.50)

x3: (-3.50, 0.00) x̄1: (9.56, -3.50)

x̄2: (9.56, 3.50) x̄3: (3.50, 0.00)

a1: (-10.44, -10.44) a2: (-3.50, -11.33)

a3: (3.50, -11.33) a4: (10.44, -10.44)

a5: (-10.44, 10.44) a6: (-3.50, 11.33)

a7: (3.50, 11.33) a8: (10.44, 10.44)

edges including “normal” edges (solid line edges) are implemented by the strong interaction of atoms at a

distance d smaller than the Rydberg blockade distance dB =9.00µm, while physically distant inter-clause

edges, such as x1-x̄1 in L2, x1-x̄1 and x2-x̄2 in L3 use Rydberg quantum wires for implementation [19, 81].

In Fig. 4.8 (a), two atom trimers of B0 (left) and B1 (right) are closely placed for LExp
1 = L1, respectively,

where atoms x3 and x̄3 are at distance d. In Fig. 4.8 (b), the long edge between x1 and x̄1 of LExp
2 is

implemented via the Rydberg quantum wire of the four auxiliary atoms denoted by {a1, · · · , a4}. In

Fig. 4.8 (c), the two long edges x1-x̄1 and x2-x̄2 in LExp
3 are implemented by the two Rydberg quantum

wires of the four auxiliary atoms in {a1, · · · , a4} and {a5, · · · , a8}, respectively, which mediates a Rydberg

blockade between two distant literal atoms [19, 103, 104]. The resulting atom positions are listed in

Table 4.1. For the analysis of the experimental data, the Rydberg quantum wire compilation method [81]

is used, which imposes the anti-ferromagnetic atom chain conditions |a1a2a3a4⟩ and |a5a6a7a8⟩ = |0101⟩
or |1010⟩ on all the collected experimental data. The many-body ground states of the three graphs
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Table 4.2: Many-body ground states of LExp
1 , LExp

2 , and LExp
3 graphs

Graphs State representation
Many-body ground states

∣∣∣LExp
1,2,3

〉
of ĤLExp

1,2,3
(Ω → 0)

in their MIS phase

LExp
1 |x1x2x3; x̄3x4x5⟩

3
10 (|001; 001⟩+ |001; 010⟩+ |010; 100⟩+ |100; 100⟩)
+ 2

5 (|010; 001⟩+ |010; 010⟩+ |100; 010⟩+ |100; 001⟩)

LExp
2

|a1a2a3a4⟩
⊗ |x1x2x3; x̄1x̄3x4⟩

1√
3
|0101⟩ ⊗

[
1√
6
(|010; 010⟩+ |100; 001⟩)

+ 1
6

(√
15 |010; 001⟩+

√
7 |001; 001⟩

)
+ 1√

18
|100; 010⟩

]
+ 1√

3
|1010⟩ ⊗

[
1√
6
(|001; 001⟩+ |010; 100⟩)

+ 1
6

(√
15 |010; 001⟩+

√
7 |010; 010⟩

)
+ 1√

18
|001; 100⟩

]
+ 1√

3
|1001⟩ ⊗

[
1√
2
|010; 001⟩+ 1

2 (|001; 001⟩+ |010; 010⟩)
]

LExp
3

|a1a2a3a4⟩ ⊗ |a5a6a7a8⟩
⊗ |x1x2x3; x̄1x̄2x̄3⟩

√
2
14 |0101⟩ ⊗ |0101⟩

⊗ 1√
2
(|010; 001⟩+ |100; 001⟩)

+
√

3
14 |0101⟩ ⊗ |1010⟩

⊗ 1√
3
(|001; 010⟩+ |100; 001⟩+ |100; 010⟩)

+
√

3
14 |1010⟩ ⊗ |0101⟩

⊗ 1√
3
(|001; 100⟩+ |010; 001⟩+ |010; 100⟩)

+
√

2
14 |1010⟩ ⊗ |1010⟩

⊗ 1√
2
(|001; 010⟩+ |001; 100⟩)

+ 1√
14

|1001⟩ ⊗ |0101⟩ ⊗ |010; 001⟩
+ 1√

14
|1001⟩ ⊗ |1010⟩ ⊗ |001; 010⟩

+ 1√
14

|0101⟩ ⊗ |1001⟩ ⊗ |100; 001⟩
+ 1√

14
|1010⟩ ⊗ |1001⟩ ⊗ |001; 100⟩

tested, LExp
1 , LExp

2 , and LExp
3 , are presented in Table 4.2.

The parameter values used by the adiabatic process are as follows: Initial and final detunings

∆i = 2π × −3.5 MHz and ∆f = 2π × 2.5 MHz, total processing time tf = 1.73 µs, sweep start and

end time points t1 = tf/6 and t2 = 5tf/6, the two-photon Rabi frequency at peak Ω0 = Ω0iΩi1/2∆m =

2π×1.92 MHz (corresponding to the Rydberg blockade distance rB = 9.0 µm), where Ω0i = 2π×114 MHz

and Ωi1 = 2π × 22.2 MHz are the one-photon Rabi frequencies of the |0⟩ − |i⟩ and |i⟩ − |1⟩ transitions,
respectively, and ∆m = 2π × 660 MHz represents intermediate detuning. This adiabatic process was

repeated for M = 537, 4026, and 3379 iterations for the one-, two- and three-wire graphs LExp
1 , LExp

2 ,

and LExp
3 , respectively, and the results were measured.
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Experimental Condition (Three-Clause SAT)

Additionally, we perform experimental tests of Rydberg quantum programming on three instances

of 3-SAT, Ψ1, Ψ2, and Ψ3, which are three instances of three-clause 3-SAT with a two-literal clause

added: G1, G2, and G3 in Figs. 4.6 (a), (b), and (c), respectively, with the addition of an atomic dimer

for the two-literal clause.

Figure 4.9: (a) Experimental graph GExp
1 , (b) GExp

2 , and (c) GExp
3 of literal atoms (x1, · · · , x6) and

quantum wire atoms (a1, · · · , a4). The figure is reused from the reference [72], APS.

Table 4.3: Atom positions of GExp
1 , GExp

2 , GExp
3 , and GAlt

1 . The table is reused from the reference [72],

APS.

Graphs Atom positions (x, y, z) (µm)

GExp
1

x1: (-1.51, -0.97, 0) x2: (4.01, -5.28, 0)

x3: (-2.49, -7.90, 0) x̄1: (-1.70, 6.03, 0)

x4: (4.09, 9.97, 0) x1: (-8.47, 7.80, 0)

x5: (-12.35, 1.97, 0) x6: (-15.46, 8.24, 0)

GExp
2

x1: (-1.51, -0.97, 0) x2: (4.01, -5.28, 0)

x3: (-2.49, -7.90, 0) x̄1: (-1.50, 6.03, 0)

x̄2: (4.09, 9.97, 0) x1: (-8.47, 7.80, 0)

x5: (-12.35, 1.97, 0) x6: (-15.46, 8.24, 0)

a1: (9.69, -1.20, 0) a2: (9.71, 5.80, 0)

GExp
3

x1: (-1.51, -0.97, 0) x2: (4.01, -5.28, 0)

x3: (-2.49, -7.90, 0) x̄1: (-1.50, 6.03, 0)

x̄2: (4.09, 9.97, 0) x1: (-8.47, 7.80, 0)

x̄3: (-12.35, 1.97, 0) x6: (-15.46, 8.24, 0)

a1: (9.69, -1.20, 0) a2: (9.71, 5.80, 0)

a3: (-9.05, -10.36, 0) a4: (-13.50, -4.93, 0)

GAlt
1

x1: (-7.20, 0.03, 0) x2: (-13.44, 3.60, 0)

x3: (-13.44, -3.60, 0) x̄1: (0, 0, 0)

x4: (3.60, 0, 6.24) x1: (3.60, 0, -6.24)

x5: (3.60, 0, -13.44) x6: (9.84, 0, -9.84)
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In the same way as in the case of Figs. 4.5 and Figs. 4.8, the MIS graphs G1, G2, and G3 in Fig. 4.6

are physically implemented as the experimental graphs GExp
1 , GExp

2 , and GExp
3 in Figs. 4.9: In Fig. 4.9

(a), for Ψ1, the atomic trimers C0 (top)-C1 (bottom right) and C1 (bottom right)-C2 (bottom left) are

placed close together so that atoms x1 of C0 (each of which is also in C2) and x̄1 of C1 are located at

distance d. Thus, x1 of C0 and C2 are edged by x̄1 of C1. In Fig. 4.9 (b), the long edge between x2

and x̄2 of GExp
2 is implemented as a Rydberg quantum wire consisting of two auxiliary atoms denoted

by {a1, a2}. Also, in Fig. 4.9 (c), the two long edges x2-x̄2 and x3-x̄3 of GExp
3 are implemented as two

Rydberg quantum wires with auxiliary atoms {a1, a2} and {a3, a4}, respectively. The positions of the

atoms in the experimental graphs GExp
1 , GExp

2 , and GExp
3 in these Figs. 4.9 (a-c) are listed in Table 4.3,

along with GAlt
1 , which will be discussed in Sec. 4.5, and are constructed using the following conditions

in the two-dimensional (x, y) plane, which is the focal plane of the optical tweezer:

• Unwanted (unedged) interatomic interactions should be minimized such that the edged pairs of all

atoms, including auxiliary atoms, are at an interatomic distance d = 7.0 µm, which is smaller than

the Rydberg blockade distance dB = 10.0 µm.

For these conditions, the following is how to optimize the two-dimensional position of atoms in the

experimental graph:

1. Numerically find the locations of all atoms (literal and quantum wire atoms) in GExp
3 that minimize

the overlap integral F of the unit disk of all atoms with no edges while preserving the condition of

atoms with edges.

2. Then, GExp
1 , GExp

2 are obtained as graph minors of GExp
3 .

In this case, the overlap integral is defined as the following Eq. (4.24):

F = π
∑

(i,j)∈E

π

∫ d
2

|r⃗ij |
2

(
d2

4
− r2

)
dr +

π√
8

∑
(i,j)/∈E

∫ d√
2

|r⃗ij |
2

(
d2

2
− r2

)
dr ·Θ(

√
2d− |r⃗ij |), (4.24)

where r⃗ij is the displacement vector from the i-th atom to the j-th atom, Θ(x) is the Heaviside step

function (1 for x > 0, 0 for x < 0), and the minimum allowable distance between un-edged atoms is set

to
√
2d. The first term is the overlap volume of two unit spheres of edged atoms, which is minimized so

that all pairs of edged atoms are as close as possible. The second term is the overlap of two unit spheres

of radius
√
2d of unedged atoms, which is minimized such that |r⃗ij | >

√
2d for all pairs of unedged atoms.

And, the many-body ground states of these GExp
1 , GExp

2 , and GExp
3 graphs are listed in Table 4.4, being

represented in symmetric base states defined by

|S1⟩ =
1√
2
(|001; 01; 100⟩+ |010; 01; 100⟩) , (4.25a)

|S2⟩ =
1√
2
(|001; 01; 001⟩+ |001; 01; 010⟩) , (4.25b)

|S3⟩ =
1√
2
(|001; 10; 001⟩+ |001; 10; 010⟩) , (4.25c)

|S4⟩ =
1√
2
(|010; 01; 001⟩+ |010; 01; 010⟩) , (4.25d)

|S5⟩ =
1√
2
(|001; 10; 001⟩+ |001; 10; 010⟩) , (4.25e)

|S6⟩ =
1√
2
(|100; 01; 001⟩+ |100; 01; 010⟩) . (4.25f)
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Table 4.4: Many-body ground states of GExp
1 , GExp

2 , and GExp
3 graphs. The table is reused from the

reference [72], APS.

Graphs State representation
Many-body ground states

∣∣∣GExp
1,2,3

〉
of ĤGExp

1,2,3
(Ω → 0)

in theirs MIS phase

GExp
1 |x1x2x3; x̄1x4;x1x5x6⟩

√
49
200 (|S2⟩+ |S4⟩) +

√
9
50 (|S1⟩+ |S6⟩)

+
√

3
50 |100; 01; 100⟩+

√
9

200 (|S3⟩+ |S5⟩)

GExp
2 |x1x2x3; x̄1x̄2;x1x5x6⟩ ⊗ |a1a2⟩

√
1
50 |S3⟩ ⊗

(√
18
10 |01⟩+

√
63
10 |10⟩

)
+

√
3

500 |S5⟩

⊗ |01⟩
+
(√

197
500 |S2⟩+

√
107
500 |S6⟩

)
⊗ |10⟩
+
(√

131
1000 |001; 01; 100⟩+

√
93

1000 |100; 01; 100⟩
)

⊗ |10⟩

GExp
3 |x1x2x3; x̄1x̄2;x1x̄3x6⟩ ⊗ |a1a2⟩ ⊗ |a3a4⟩

√
1

1000 |001; 10; 001⟩
⊗
(√

46 |01⟩+
√
53 |10⟩

)
⊗ |01⟩

+
√

46
1000 |010; 10; 001⟩ ⊗ |01⟩ ⊗ (|01⟩+ |10⟩)

+
√

17
1000 |010; 10; 010⟩ ⊗ |01⟩ ⊗ |10⟩

+
(√

121
1000 |001; 01; 001⟩+

√
65

1000 |001; 01; 100⟩
)

⊗ |10⟩ ⊗ |01⟩
+
√

46
1000 |100; 01; 010⟩ ⊗ |10⟩ ⊗ |10⟩

+
(√

4
25 |100; 01; 001⟩+

√
3
25 |100; 01; 100⟩

)
⊗ |10⟩ ⊗ (|01⟩+ |10⟩)

For the experimental preparation of the three instances of the three-clause 3-SAT thus prepared,

the ∆/Ω0 - U/Ω0 phase diagrams of the experimental graphs GExp
1 , GExp

2 , and GExp
3 , shown in Figs. 4.10

(a), (b), and (c), respectively, are divided into nine partitions according to the number of excited literal

atoms:

• Partition I (∆ < 0): This is the domain where all literal atoms are in the ground state.

• Partitions II and III: Smaller segments squeezed between I and IV, where only one and two literal

atoms are excited, respectively.

• Partition IV: The domain where three literal atoms are excited, which is targeted for MIS solution.

This domain is 0.01U < ∆ < 0.99U for GExp
1 , 0.05U < ∆ < 0.98U for GExp

2 , and 0.03U < ∆ <

0.95U for GExp
3 .

• Partitions V-VIII: Regions where 4, 5, 6, and 7 atoms are excited, respectively.

• Partition IX: All literal atoms are excited.

Therefore, we set (U/Ω0,∆/Ω0) = (8.70, 5), denoted by the diamond in the Partition IV, as the optimal

experimental point. Then, the quantum adiabatic control path based on the Ω−∆ phase diagram [105,
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Figure 4.10: The ∆/Ω0 - U/Ω0 phase diagrams of 3-SAT instances with NC = 3: (a) G1, (b) G2,

(c) G3.; Diamond point: Experimental condition (U/Ω0,∆/Ω0) = (8.70, 5.0) for MIS solution, that is,

each clause has only one MIS element and all clauses are excited.; There are nine partitions I-IX by the

number of excited literal atoms. I: all literal atoms in ground state, II, III: only one or two literal atom

excited respectively, IV: three literal atoms excited state which are targetted for MIS solution, V-VIII:

four, five, six or seven atoms excited state respectively, IX: all literal atoms excited state

0 5 10-5
0

0.5

1

1.5

2

A
nti-blockaded  Phases

MIS Phase

OBD

Figure 4.11: (a) Ω-∆ Phase diagram of Ĥ(GExp
1 ) with the control path is shown with an arrow from

the paramagentic phas via order-by-disoder (OBD) to the MIS phase. The phase diagrams of Ĥ(GExp
2,3 )

are similar. The figure is reused from the reference [72], APS.

106] in Fig. 4.11 was constructed by following the arrow in Fig. 4.11 to solve Eq. (4.23) from ĤGM
(∆ =

−0.7∆0,Ω = 0) to ĤGM
(∆ = ∆0,Ω = 0), and the control parameters are as follows: Initial and final

detuning ∆i = −0.7∆0 and ∆f = ∆0, total processing time tf = 2.88 µs, sweep start and end time points

t1 = tf/10 and t2 = 9tf/10, and two-photon Rabi frequency at peak Ω0 = Ω0iΩi1/2∆m = 2π × 1 MHz

(corresponding to rB = 10.0 µm), where Ω0i = 2π × 93 MHz and Ωi1 = 2π × 14 MHz, and ∆m =

2π × 660 MHz.

After this adiabatic control, measure the resulting atomic qubit states to record the experimental
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MIS solution. Repeat this procedure M = 5235, 5000, and 8000 iterations for the graphs GExp
1 , GExp

2 ,

andGExp
3 , respectively, to obtain the probability distribution of all binary spin configurations of all atoms.

4.4 Experimental Results

4.4.1 Two-Clause SAT Instance

We experimented with the MIS version of the 3-SAT instances {Φ1,Φ2,Φ3} shown in Figs. 4.5 (a-c),

respectively. The probability distributions of the theoretical ground states (see Table 4.2) of the 3-SAT

instances Φ1,Φ2 and Φ3 are shown in Figs. 4.12 (a), (b), and (c), respectively. As shown in Figs. 4.8

(b) and (c), for Φ2 and Φ3, wire atoms are used to mediate the Rydberg blockade between distant

literal-negation pair atoms because the atoms connected by the inter-clause edge are farther than the

Rydberg blockade distance [19, 103, 104, 107, 108]. Accordingly, simulation results filtered to reflect only

the anti-ferromagnetic wire atomic state and the blockade literal atomic state are shown in Figs. 4.12

(d), (e), and (f), respectively. The results of the literal atom experiments with a state preparation and

measurement (SPAM) error (P (1|0) = 0.015 and P (0|1) = 0.1), mitigated by the maximum-likelihood

method [109], are shown in Figs. 4.12 (g), (h), and (i), respectively. In Figs. 4.12 (g-i), the orange bars

are the probabilities of the literal atom solution state, the light navy bars are the probabilities of the

other literal atom states, and the x- and y-axes represent the microstates of the literal atoms in each

clause:

1. Φ1 (LExp
1 in Fig. 4.12 (g)):

(a) Literal atomic solution state: |x1, x2, x3; x̄3, x4, x5⟩ = |010; 100⟩, |010; 010⟩, |010; 001⟩, |100; 100⟩,
|100; 010⟩, |100; 001⟩, |001; 010⟩ and |001; 001⟩.

(b) The highest peak is |x1, x2, x3; x̄3, x4, x5⟩ = |010; 010⟩ and the second highest peak is |001; 010⟩.

2. Φ2 (LExp
2 in Fig. 4.12 (h)):

(a) Literal atomic solution state: |x1, x2, x3; x̄1, x̄3, x4⟩ = |010; 010⟩, |010; 001⟩, |010; 100⟩, |100; 010⟩,
|100; 001⟩, |001; 001⟩ and |001; 100⟩.

(b) The highest peak is |x1, x2, x3; x̄1, x̄3, x4⟩ = |010; 001⟩ and the second highest peak is |001; 001⟩.

3. Φ3 (LExp
3 in Fig. 4.12 (i)):

(a) Literal atomic solution state: |x1, x2, x3; x̄1, x̄2, x̄3⟩ = |010; 001⟩, |010; 100⟩, |100; 001⟩, |100; 010⟩,
|001; 010⟩ and |001; 100⟩.

(b) The highest peak is |x1, x2, x3; x̄1, x̄2, x̄3⟩ = |001; 010⟩ and the second highest peak is |010; 001⟩.

The SAT problem is the decision problem that evaluates satiability, i.e., the existence of a solution

for which the logical expression is true, and the MIS reduction of the SAT instance evaluates the

satiability of the SAT instance by observing whether there is a MIS element in each dimer or trimer.

Therefore, to evaluate the solution probability summation that indicates the satiability of the 3-SAT

instance in the 3-SAT experiment, in Figs. 4.12, we filter to account for only the anti-ferromagnetic wire

atomic state and the blockade literal atomic state with the following conditions:
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(b)(a) (c)

(e)(d) (f)

(h)(g) (i)

Figure 4.12: (a)-(c) Theoretical microstates probabilities from Table 4.2; (d)-(f) Simulation data of the

microstates probabilities; (g)-(i) Experimental data of the microstates with anti-ferromagnetic states [81],

except for anti-blockade literal atom basis (renormalized). (a),(d) and (g) are the results for the graph

L1, (b),(e) and (h) are for the graph LExp
2 , (c), (f), and (i) are for the graph LExp

3 . In (g)-(i), state

preparation and measurement errors P (1 | 0) = 0.015 and P (0 | 1)=0.1 are considered by the maximum

likelihood method [109].

1. First, we discard any anti-blockade state in which two or more literal atoms within a single clause

are excited to the |1⟩ state from the population.

2. Then, we also rule out inter-clause anti-blockade states (e.g., |x1, x̄1⟩ = |11⟩) from the population.

3. Finally, we only count the anti-ferromagnetic wire atomic states |a1, a2, a3, a4⟩, |a5, a6, a7, a8⟩ =

|0101⟩, |1010⟩ by the Rydberg quantum-wire compilation method [81].

The sum of the 3-SAT satisfaction probabilities evaluated by filtering with the above conditions are

87.1%, 95.0%, and 84.7% in graphs LExp
1 , LExp

2 , and LExp
3 , respectively. It is estimated that the difference
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between the simulation results and the experimental results is due to the laser beam pointing tilt problem,

i.e., the direction of the laser beam pointing is slightly asymmetric with the literal atom arrangement,

which causes the Rabi frequency of some atoms to be higher than the expected Rabi frequency value

and the others to be lower. In the one-wire case (Fig. 4.8 (a)), the x4 atom has a higher Rabi frequency

than the x5 atom; hence, the x4 atom is more excited than the x5 atom since the Rydberg blockade

distance of each atom is unequal. In the three-wire case (Fig. 4.8 (c)), the x1 and x̄1 atoms are subject

to a lower Rabi frequency than the x2 and x̄2 atoms. Therefore, the |x1, x2, x3; x̄1, x̄2, x̄3⟩ = |001; 010⟩
and |010; 001⟩ states are measured more frequently than the |001; 100⟩ and |100; 001⟩ states (Fig. 4.12

(i)), in contrast to the ideal simulation results (Fig. 4.12 (f)).

4.4.2 Three-Clause SAT Instance

Figs. 4.13 (a), (b), and (c) are the experimental results forGM = GExp
1 , GExp

2 , andGExp
3 , respectively,

where the x-axis shows the experimentally most-likely probabilities for all binary configurations of the

literal atoms in the |1⟩-state. Here, applying the filtering used in the case of the two-clause instances

in Subsec. 4.4.1, all anti-blockade literal atom configurations (which are unlikely) are omitted for clarity

and the maximum-likelihood probability calculation [109] assumes the experimentally measured SPAM

error [82] P (1|0) = 3.9% and P (0|1) = 7.9% . We also used the Rydberg quantum-wire compilation

method [81], which imposes the anti-ferromagnetic wire atomic states |a1, a2⟩ and |a3, a4⟩ = |01⟩ or |10⟩
among the acquired experimental data. In Figs. 4.13 (a-c), the orange bars are the 3-SAT solution states

with one excited atom in each clause, and the gray bars are the non-solution states. For example, in

Fig. 4.13 (a), for GExp
1 , the maximum peak (i) of |x1, x2, x3; x̄1x4;x1, x5, x6⟩ = |001; 01; 001⟩ is a 3-SAT

solution, while the peak (ii) of |001; 00; 001⟩ with two atoms excited in C0 and C2 but none in C1 is a

non-solution state. Similarly, in Figs. 4.13 (a-c), most of the dominant peaks are identified as 3-SAT

solutions. For comparison, the insets in Figs. 4.13 (a-c) show the experimental error sources such as

spontaneous decay of intermediate states (see Subsec. 2.1.3) and laser phase noise, which are taken into

account by the Lindblad master equation (Eq. (2.23b)) and numerical simulations of the same physical

process traced with the Lindblad master equation. The difference between simulation and experiment

is mainly due to the distance error between the atom and the laser beam center, which results in a

non-uniform Rabi frequency of the atom in Eq. (4.23). Numerical simulation is performed to compare

the experimental results of the experimental graphs GExp
1 , GExp

2 , and GExp
3 . To take into account the

spontaneous decay from the intermediate state |i⟩, the Lindblad master equation (Eq. (2.23b)), the

intermediate detuning in the experiment and the individual dephasing rate at the Rabi frequency is

estimated to be γ = 2π × 30 kHz. The laser phase noise is then considered in the numerical calculation

using the Monte-Carlo method, based on the fact that the spectral density of the measured noise is

approximately 104 rad2/Hz in the MHz range. We also take into account the inhomogeneity, where

the Rabi frequency of an individual atom is 85 - 99.8% of the Rabi frequency at the laser beam center

due to the finite diameter of 50 µm and the variation of the atom position (δx = 0.1µm, δy = 0.1µm,

δz = 0.6µm) [19].

With the experimentally obtained probabilities shown in Figs. 4.13 (a-c), we can evaluate the satis-

fiability of the 3-SAT instances Ψ1,2,3 based on whether they are solved correctly, i.e., whether the total

probability of the MIS solution state is properly measured. In Fig. 4.13 (a), the sum of the probabilities

in the orange bars for GExp
1 is 81%, and consequently, the satisfiability of Ψ1 is rated as probabilistically

very high. Similarly, the satisfiability of Ψ2 and Ψ3 acquired from the experiments GExp
2 , and GExp

3 are
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Figure 4.13: (a) Maximum likelihood probabilities of GExp
1 experiments, where the x-axis denotes literal

atoms in |1⟩ in each binary configuration. (b) GExp
2 experiments. (c) GExp

3 experiments. For example, the

peak (i) corresponds to |x1x2x3;x4;x5x6⟩ = |001; 1; 001⟩, (ii) |001; 0; 001⟩, (iii) |x1x2x3;x5x6⟩ = |001; 01⟩,
and (iv) |x1x2x3;x6⟩ = |001; 1⟩. Insets in (a-c) show numerical simulations with γ = 30 (2π) kHz of laser

phase and dephasing noise taken into account. The figure is reused from the reference [72], APS.
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evaluated as probability 78% and 74%, respectively.

4.5 Discussion

4.5.1 3D Atom allocation suggested for the Improvement

of the Experimental Ground State

0 0.25 0.5 0.75 1
0.8

0.82

0.84

0.86

0.88

0.9

(2D)

(3D)

Figure 4.14: Ground state fidelity |⟨G1|ψf ⟩|2 according to the structural deformation from GExp
1 to

GAlt
1 with respect to a normalized rotation angle α. The figure is reused from the reference [72], APS.

The experiments in Subsection 4.4.2 can be improved by considering a three-dimensional Rydberg

atom graph. The Hamiltonian ĤGM
in Eq. (4.23) neglects long-range interactions as an approximation,

so a three-dimensional MIS graph can be constructed for higher many-body ground state probabilities.

In Fig. 4.14 computes the fidelity |⟨G1|ψf ⟩|2, where |G1⟩ is the analytic many-body ground state of

ĤGExp
1

(Ω → 0) (see Table 4.4 for details), and |ψf ⟩ is the final many-body state estimated numerically

after quasi-adiabatic evolution under experimental conditions (without considering decoherence). For

the experimental graph GExp
1 in 2D, the fidelity is estimated to be 81% due to the contribution of long-

range residual Rydberg interactions between atoms beyond the Rydberg blockade distance. The average

strength of the residual interaction in the atomic arrangement for GExp
1 is ⟨Ures⟩/2π = 0.64 MHz, and its

distribution is asymmetric. However, the structure of GExp
1 can be transformed into an alternative graph

GAlt
1 with a more symmetric geometry (see Table 4.3 for atom positions). As shown in Fig. 4.14, the

structure transformation is performed by rotating the clauses C0, C1, and C2 with respect to the edge at

the literal atom x̄1 (the central atom), respectively, and these geometric changes are parameterized by

the normalized rotation angle α (α = 0 at GExp
1 , and 1 at GAlt

1 ). For the graph GAlt
1 , the average residual

interaction strength is reduced to ⟨Ures⟩/2π = 0.40 MHz, and the ground state fidelity |⟨G1|ψf ⟩|2 is

improved to 90% after the same quasi-adiabatic evolution. Thus, the three-dimensional atom allocation

has more degrees of freedom and thus is expected to improve the experimental performance, which is

shown by the improvement in ground state fidelity |⟨G1|ψf ⟩|2 by the structural deformation with respect
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to the normalized rotation angle α shown in Fig. 4.14.

4.5.2 Scalability: Total number of Atoms and Experimental time budget

required for the Quantum programming of 3-SAT Instance

While all MIS graphs are in principle implementable in three-dimensional space via quantum

wires [19], the scalability issue of the Rydberg atom approach to the 3-SAT instance is a worthwhile

discussion. Hence, in this subsection, we address the following two scalability requirements for 3-SAT

quantum programming: “Total number of atoms” and “Experimental time budget”.

Total number of atoms required for 3-SAT instance

4 6 8 10 12 14 16101

102

103

104

Figure 4.15: Estimation of the required number of atoms for MIS graphs mapped from 3-SAT instances.

The lower bound is estimated from 3-SAT instances with no negation literal pairs and restricted to 3NC

(gray dashed line). The upper bound is calculated from 3-SAT instances with maximal negation literal

pairs (orange dots) and scaled to 4.88N1.8
C (solid line). It is also compared with the scaling result when

the “crossing lattice” scheme is used (blue dotted line). The figure is adapted and reused from the

reference [72], APS.

First, we estimateNA, the total number of atoms required for general 3-SAT instances. For a Boolean

function with NC clauses, the lower bound on the total number of atoms required is NA ≳ 3NC , which is

the case where there is no literal-negation pair (black dashed line in Fig. 4.15). The upper bound is the

case of maximal literal-negation pairs, which is an MIS graph with maximal inter-clause interaction. To

physically implement such a graph, auxiliary atoms are required to be used in either the “crossing lattice”

scheme [110] or the “quantum wire” scheme [19], which have been recently proposed and experimentally
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demonstrated, respectively. In the “crossing lattice” scheme, each node is transformed into a chain

of atoms on a 2D surface, and the interactions between nodes are implemented by “crossing gadgets”

consisting of up to 8 atoms. Thus, the upper bound on the number of atoms required is estimated to be

36N2
C for a 3NC-node non-unit disk graph with arbitrary connectivity. For the “quantum wire” scheme,

we numerically estimate the upper bound on the number of atoms for the implementation of MIS graphs

under the assumption that all inter-clause interactions are implemented with quantum wires consisting

of an average of four atoms. As a result, as shown in Fig. 4.15, the upper bound on the total number of

atoms scales to ∼ 4.88N1.8
C , obtained from the fitting curve (solid line) of the calculated values, which is

compared to the case of the “crossing lattice” scheme (blue dotted line). Thus, in the “quantum wire”

scheme, the total number of atoms required is estimated as an upper bound by a scaling of N1.8
C for the

largest literal-negation pairs and as a sublinear scaling of O(N0.86±0.04
C ) with respect to NC for cases

with a maximum degree of 6 in 3D [59, 60].

Next, we estimate the experimental time budget to tackle a large-scale 3-SAT problem. The prob-

ability of successfully obtaining the solutions of the 3-SAT problem after M experimental iterations is

given as follows:

Ps(p,M) =

M∑
j=1

(1− p)j−1p = 1− (1− p)M , (4.26)

where p is the ground state probability of the corresponding MIS graph with NA atoms. Based on the

experimental scaling p ∼ 1.04−NA of a state-of-the-art experimental platform [68], the ground state prob-

ability of an MIS graph of the size NA = 400 is estimated to be p(NA = 400) ∼ 10−7. In this case, the

number of iterations required to achieve, for example, Ps > 20% is given byM > log(1− 0.2)/ log(1− p),

which is roughly M ∼ 106 experimental iterations. Therefore, for the typical iteration rate of 2-3 Hz

on current experimental platforms, an MIS graph experiment with NA = 400, which can serve 3-SAT

instances with approximately 12-140 clauses, would take 1 week.

4.6 Summary

We introduced Karp’s NP-complete problems and examined theoretical methods for converting SAT,

set packing, exact cover, max cut, and binary integer programming problems into maximum independent

set (MIS) problem. Among these NP-complete problems, we propose the process of encoding and solving

the 3-SAT instance, which is the task of determining the satisfiability of a Boolean expression, via

Rydberg atom interaction, with theoretical and experimental results. The proposed Rydberg 3-SAT

algorithm achieves this by formulating a general Boolean function using three types of building blocks

(Rydberg atoms dimers, trimers, and quantum wires). Then, the satisfiability of the function is measured

by experimental search for ground states within a structured Rydberg atom array. This implementation

of the 3-SAT instance via Rydberg atom graphs has the potential to tackle a variety of decision-based

computational instances involving NP-hard instances.
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Chapter 5. Rydberg Hybrid Quantum-Classical

Programming

This chapter introduces hybrid quantum programming, called quantum-enhanced simulated anneal-

ing (QESA). While classical computers take an enormous amount of time to solve complex computa-

tional problems, quantum computing has the potential to solve them faster with its quantum proper-

ties [2, 111, 112]. However, current quantum systems are struggling to achieve both accuracy and qubit

scalability. In order to achieve quantum supremacy, it is necessary to achieve scalability with low noise

and reduce the iteration number of quantum adiabatic processes. To resolve this problem, we propose

an approach that combines quantum experimental results with software programming to obtain high

precision with short processing time. Among the various physical systems used in quantum comput-

ing [15, 113, 114, 115, 116], the Rydberg atom array has recently emerged as a promising platform due

to its scalability, high qubit connectivity, and dynamic reconfigurability [69, 116, 117, 118, 119]. In

particular, it offers outstanding features such as an intrinsic Hamiltonian that maps naturally to the

maximum independent set (MIS) problem.

Here, we solve the MIS problem with the QESA method utilizing Rydberg atoms. We define the

approximation ratio α as a metric and compare the processing time spent to reach α with the counterpart

standalone simulated annealing (SA) method. The framework of adiabatic quantum computing (AQC)

Rydberg atom array used as an experimental result is considered to be an efficient solving scheme in

quantum computing, and many applications to MIS graphs have been documented [19, 60, 68, 70, 72,

73, 101, 120, 121, 122].

In addition, a hybrid quantum-classical algorithm that combines quantum experimental results

with classical computing has recently been introduced [123]. In this chapter, in contrast to the previous

papers, we identify the figure of merit that correlates to the performance of QESA and demonstrate the

superiority of QESA over SA with a quantitative performance estimation.

And, we demonstrate the advantages of QESA using experimental results from adiabatic quantum

computing (AQC) using Rydberg atom arrays (using previously reported datasets [120]) and quench

evolution (QE) (using newly run experiments on a QuEra Aquila machine [125] accessed via the Amazon

Bracket service), focusing on systems with a scale of about 100 atoms. We show the computational

time advantage over conventional standalone simulated annealing (SA) and, in particular, present a new

correlation between the computational time and Hamming distance for QESA. We show that QESA out-

performs SA by utilizing a quantum experimentally optimized Hamming distance distribution, whereas

SA starts with a non-optimized distribution. From these results, we examine the scalability of QESA in

terms of the number of atoms and Hamming distance, and numerically estimate its potential to efficiently

solve larger MIS problem within the constraint of available classical computational resources.

This chapter is based on a submitted paper: S. Jeong, J. Park, and J. Ahn, “Quantum-enhanced

simulated annealing using Rydberg atoms,” (2025) [124].
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5.1 Approximation ratio

Before explaining the concept of QESA, we first introduce a metric for performance evaluation,

called approximation ratio α (Eq. (5.1)). α is defined to compare the performance of standalone SA and

QESA.

α ≡ |{i ∈ V |ni = 1}| − |{(i, j) ∈ E|ninj = 1}|
|MIS|

, (5.1)

where |{i ∈ V |ni = 1}| counts the number of nodes in the independent set, |{(i, j) ∈ E|ninj = 1}| counts
the number of edges connecting pairs of occupied nodes that violate the independence condition (see

Subsec. 2.2.1), and |MIS| denotes the size of the MIS of the graph. Thus, α considers two performance

criteria:

(1) How close the total occupation number is to the MIS solution,

(2) How many edges violate the independence condition in the spin configuration.

This is a modification of the optimality gap [126, 127] used for comparison with ground energy.

Figure 5.1: An easy illustration of calculating the approximation ratio α (Eq. (5.1)).

Fig. 5.1 is an easy example to illustrate α. It is a graph with an MIS solution size of 3, consisting

of 7 vertices and 12 edges, with nodes n1, n2, · · · , n7. Suppose the nodes with the color “1” (red) in

the obtained solution are n1, n3, and n4 as shown in Fig. 5.1. In this case, the number of nodes is 3.

However, the number of edges that violate the independence condition of the spin configuration due to

simultaneously turning on to “1” at one edge (n1, n4) is 1. Therefore, the value of α in this case is 2/3.

Even if the number of nodes lit to “1” is coincidentally the same as the MIS solution, such as in this case,

the approximation ratio α has a lower value if there are edges that violate the independence condition.

The approximation ratio α defined here is used as an evaluation metric for the Rydberg MIS result, SA,

and QESA, which will be evaluated in the later sections.
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5.2 Quantum-enhaced Simulated Annealing (QESA)

The routine of quantum-enhanced simulated annealing (QESA) is depicted in the QESA flow di-

agram of Fig. 5.2 and consists of four steps. First, in the Quantum Computing step, a Rydberg-atom

experiment (AQC or QE) is performed to obtain quantum experimental result data for the MIS problem.

The AQC and QE schemes are described later. In the Simulated Annealing (SA) Initialization step, the

SA process is initialized using the quantum results. The quantum result data at this step contains er-

rors. To mitigate these errors, the next step, Iterative Annealing, repeatedly runs the SA process using

occupation flip and swap operations until a preset final temperature is reached. Finally, in the last step

of QESA, we extract the resulting QESA solution after the SA process ends. Next, we explain the cost

Hamiltonian HMIS for the MIS problem:

HMIS =
∑
j∈V

(−∆nj) +
∑

(j,k)∈E

Unjnk. (5.2)

where the occupation number nj = 0, 1 is a binary variable related to node j ∈ V . nj = 1 indicates that

node j belongs to the independent set, and nj = 0 if it is excluded. The constants ∆ and U are positive

with 0 < ∆ < U . The term ∆nj lowers the energy when nj = 1, which promotes the inclusion of node j

into the independent set. The term Unjnk penalizes the inclusion of any two connected nodes j and k

in the independent set by an edge, raising the energy to enforce the independence condition. Typically,

the parameters are normalized by setting ∆ = 1. For specific graph structures, such as a king’s graph (a

graph representing the legal moves of a king on a chessboard), a value of U = 11 is chosen for a strong

penalty of including adjacent nodes in the independent set [68]. HMIS(s) in Eq. (5.2) is the energy for a

spin configuration s = (n1, n2, · · · ), which is minimized to HMIS(s) = −|MIS|.
The quantum part of the QESA task utilizes adiabatic quantum computing (AQC) or quench evolu-

tion (QE). In AQC experiments, the quantum system is driven quasi-adiabatically, resulting in a gradual

change in ĤRyd in Eq. (2.26) over time. According to the quantum adiabatic theorem, if the evolution

is slow enough, the system remains in the ground state of the time-varying Hamiltonian. By measur-

ing the atomic state at the end of this evolution, a result corresponding to the low-energy state of the

HMIS can be obtained, which provides an approximate solution to the MIS problem. Ω(t) is typically

chosen to be on the order of 2π × 1 MHz and ∆(t) is changed from −2π × 4.0 MHz to 2π × 2.0 MHz

over time. In this case, we use the Rydberg state
∣∣n = 71, S1/2

〉
. For diagonally neighboring atoms,

the interaction strength is U(n = 71, r = 8.5µm) = 2π × 2.7 MHz, and for laterally neighboring atoms,

U(n = 71, r = 6.0µm) = 2π × 21.7 MHz.

Fig. 5.3 (a) shows an example of AQC experiment results for a 100-atom MIS graph with an 11×18

atom array. QESA incorporates Rydberg AQC into SA by leveraging experimental data from thousands

of graphs with 60 to 115 atoms, as shown in Fig. 5.3 (a), where the black and red nodes represent the

ground state and Rydberg state, respectively.

On the other hand, QE experiments are implemented on the QuEra Aquilla machine [125] by a

single-atom Rabi frequency pulse with the following conditions: Rydberg state
∣∣n = 70, S1/2

〉
arranged

so that the interaction strength is U(n = 70, r = 7.5(1) µm) = 2π×4.8(4) MHz for diagonally neighboring

atoms and U(n = 70, r = 5, 3(1) µm) = 2π × 39(4) MHz for laterally neighboring atoms, the resonant

Rabi oscillation (∆ = 0) with Rabi frequency rise/fall time tr = 50 ns and Ω = 2π × 1 MHz, tQ =

π/[
√

⟨deg(G)⟩ · Ω], where ⟨deg(G)⟩ is the average node degree in the graph G. This QE approach is

inspired by the previously reported graph-degree dependence of the revival time for MIS state preparation

in quasi-1D chain quantum quench [128]. Different from AQC, the QE method is expected to offer the
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Figure 5.2: QESA flow diagram
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(a)

(b)

Figure 5.3: (a) AQC experimental data on an 11× 18 atom array, (b) Approximation ratio change of

SA (orange) and QESA (blue).

many-body correlations required for solving MIS problems even at large scalable problem sizes, since it

does not contain system size-dependent errors arising from the energy landscape structure of the problem.

At the end of the experiment, the first step of the QESA procedure, the atomic states are measured.

The measured experimental data is provided as a “warm start” input for the subsequent simulated

annealing (SA) step [123]. The update rule for this SA step follows the previously reported “Rydberg

Simulated Annealing” protocol [68]. This rule includes three main operations:
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1. A free node can be added to the independent set. If node i is not occupied (ni = 0) and none of

its neighbors are occupied (nj = 0 for all (i, j) ∈ E), then node i is proposed to be included in the

set by setting ni = 1.

2. Algorithm can swap the occupation between nodes. When node i is occupied (ni = 1), its occu-

pation can be swapped with one of its neighboring nodes. Specifically, for each neighboring node

j, it can propose to swap the occupation of ni and nj with a probability of 1/8, resulting in the

transition ni, nj → nj , ni.

3. Finally, a node can be removed from the independent set. If neither of the above two options is

applicable, node i is proposed for removal by setting ni = 0.

When an update is proposed, the change in the cost Hamiltonian HMIS associated with the MIS prob-

lem is calculated. The proposed state is then accepted or rejected according to the Metropolis-Hastings

criterion [129, 130] at the current temperature T . If the proposed state has lower energy, the operation

proceeds; otherwise, with a high probability, the system remains unchanged, resulting in the pass opera-

tion. After each update, the temperature T is gradually decreased according to a predefined schedule and

the algorithm runs the next iteration. The Iterative Annealing step is terminated when the temperature

reaches the final value of T = 1/β = 0.03 [68], and the resulting QESA solution is extracted.

Fig. 5.3 (b) shows the evolution of the approximation ratio α over time for a standalone SA (orange)

and QESA (blue). We can see that the value of α increases over time. Each standalone SA starts with a

random spin configuration where the total occupation number is the same as the AQC or QE result, and

the approximation ratio increases as the epoch proceeds, where epoch refers to a step in the progression

of SA runs. In contrast to SA, QESA starts from an AQC result. Through the QESA operation, this

result converges more closely to the MIS solution. As shown in Fig. 5.3 (b), QESA outperforms SA

in terms of approximation ratio, and the performance gap increases significantly, especially for graphs

whose MIS solution is difficult to find. The mean approximation ratio and standard deviation (shaded

area) are also shown in Fig. 5.3 (b).

5.3 Results

Figs. 5.4 show the average approximation ratio ⟨α⟩ results of the QESA run and the standalone

SA run according to the routine previously described in Sec. 5.2, based on the quantum experiment

(AQC or QE) results. In both figures in Fig. 5.4, the y-axis shows the performance of QESA, and the

x-axis shows the results of standalone SA starting from a randomized configuration (n1, n2, · · · ) whose

total occupation number is the same as the quantum experiment (i.e., the same total sum of occupation

numbers,
∑

i ni, as in the quantum experiment). Fig. 5.4 (a) shows the evolution of α over the progres-

sion (in Epoch#/N) of the AQC-based QESA method (using the archived AQC dataset [120]) applied

to various experimental graphs chosen from the dataset, compared to the pure classical standalone SA

(based on a random spin configuration with the same total occupation number as the AQC data) for

the same graphs. Also, Fig. 5.4 (b) shows the evolution of α as the QE-based QESA method (using QE

experiments implemented on the QuEra Aquila platform [125] accessed via the Amazon Bracket service)

on the same graph set as in Fig. 5.4 (a), compared to the results of a pure classical standalone SA (with

the same arbitrary spin configuration condition based on QE data instead of AQC) for the same graphs.

In the results in Figs. 5.4 (a) and (b), a significant number of data points (97.5% for AQC and 91.9%
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Figure 5.4: (a) Comparison of QESA vs. SA for AQC datasets. The approximation ratio (α) is plotted

for AQC-based QESA (the y-axis) and compared with randomly initialized SA for the chosen graphs

(the x-axis). A total of 924 graphs (atom arrangements) from the AQC datasets (#8,#9, #10, and

#11) [120], with sizes N = 60, 80, and 100 (number of vertices N ≡ |V |), are analyzed and represented

by circular, diamond, and pentagram scatter plots, respectively. Starting from the initial input (gray

scatter plot), the SA algorithm progresses through epochs of 0.5N (blue scatter plot), N (orange scatter

plot), and 2N (green scatter plot). As the number of epochs (Epoch#) increases, α improves, indicating

better MIS approximations. (b) Comparison of QESA vs. SA for QE datasets. The same analysis is

conducted for the above graphs using QE experiments. In (a) and (b), the size of the ellipses is the

standard deviations σ(α), representing the spead of α.
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for QE) lie above the y = x line. Similarly, for Epoch#/N = 0.5, 1, and 2, a significant proportion of

the data points are above the y = x line: 98.1%, 95.5%, and 87.1% for the AQC results, and 97.0%,

88.7%, and 69.9% for the QE results. This demonstrates that QESA consistently outperforms pure clas-

sical SA for both types of QESA. These outcomes highlight the advantage of incorporating the Rydberg

atom experiment results as a “warm start” that increases the chance that the SA algorithm can con-

verge to higher-quality solutions for MIS problem compared to starting from a randomized configuration.

(a)

(b) (c)

Figure 5.5: (a) The mean and standard deviation of Epoch#/N to reach the target approximation ratio

αt per number of vertices N . (b-c) The scatter plots of the probabilities pA(QESA) and pA(SA) where

the average approximation ratios ⟨α⟩ of QESA and SA reach the target αt = 0.92 at Epoch#/N = 2.

And, to analyze the performance gap between QESA and SA shown in Fig. 5.4, we plot the per-

formance of QESA and SA as a function of initial approximation ratio α in Fig. 5.5 for a total 1200

kinds of graphs with N = 60− 115 in Exp#10 of Ref. [120]. Fig. 5.5 (a) shows the mean and standard

deviation of Epoch#/N required to reach the target approximation ratio αt on the right y-axis. The

x-axis represents the top percentile of the initial approximation ratio αi of the AQC data or SA, and the

left y-axis is the ratio of the average Epoch#/N of SA and QESA. As shown in Fig. 5.5 (a), it is observed

that the larger αi, the smaller the Epoch#/N required to reach the target αt, where the ratios of the

average Epoch#/N of SA and QESA are 1.56 for the top percentile q = 100% and 2.25 for q = 10%.

For each top percentile q, αi for QESA is 0.62, 0.69, and 0.77 for q = 100%, 50%, and 10%, respectively,
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while αi for SA is 0.31, 0.40, and 0.50 for q = 100%, 50%, and 10%, respectively. Figs. 5.5 (b) and

(c) show the probabilities pA(QESA) and pA(SA) that the QESA and SA results satisfy α ≥ 0.92 at

Epoch#/N = 2. Fig. 5.5 (b) is for the top 20-100% cases and Fig. 5.5 (c) is for the top 20% cases, and

the percentage of cases where pA(QESA) is better than pA(SA) is 97.9% for the top 20% cases (Fig. 5.5

(c)) compared to 88.2% for the top 20-100% cases (Fig. 5.5 (b)).

5.3.1 Degeneracy Density and Hardness Parameter of SA and QESA

(a) (b)

SA: 0%
QESA : 1.58%

Figure 5.6: For Epoch#/N = 10, (a) Approximation error distribution per degeneracy density (ρ ≡
log

(
D|MIS|

)
/N , D|MIS| is the number of MIS states) for SA (blue color) and QESA (orange color). The

probabilities for α > 0.99 are 10.58% (SA) and 19.17% (QESA) for each. As the degeneracy density

increases, the approximation error decreases for both SA and QESA. (b) Approximation error (1 − α)

distribution per hardness parameter (HP≡ D|MIS|−1/(|MIS|·D|MIS|), |MIS| is the size of MIS andD|MIS|−1

is the count of IS with the size |MIS| − 1) for (c) SA and (d) QESA. For the higher hardness parameter

zone (HP > ⟨HP⟩, ⟨HP⟩ = 2.8243 is the mean HP) , the number of MIS graphs where the approximation

ratio > 0.98 is more at QESA case than the SA case.

There are two parameters in the graph that represent properties related to the difficulty of the

MIS problem: the degeneracy density and the hardness parameter [68]. The degeneracy density is

ρ ≡ log
(
D|MIS|

)
/N , where D|MIS| is the number of MIS states and N is the number of nodes. The larger

the number of MIS states in a graph, the larger ρ is, which in turn means that the larger ρ is, the easier

it is to find a MIS solution for a given graph. The hardness parameter is HP ≡ D|MIS|−1/(|MIS| ·D|MIS|),

where |MIS| is the size of the MIS and D|MIS|−1 is the number of independent sets of size |MIS| − 1. A

larger HP indicates a harder MIS problem, since there are fewer transition paths to the MIS state.

Figs. 5.6 (a) and (b) show the distribution of approximation error (1 − α) as a function of the

degeneracy density ρ and the hardness parameter HP for SA and QESA results for 1200 graphs which

are used in Figs. 5.5. The probability for α > 0.99 is 9.46% (SA) and 19.29% (QESA), respectively. For

degeneracy densities ρ ≤ 0.035, the SA results show no approximation ratios greater than 0.99, while

the QESA results show a degeneracy density lower bound of ∼ 0.02 for approximation ratio α > 0.99.

Also, for the higher hardness parameter regime (HP > ⟨HP⟩(= 2.8243, which is the mean HP)), the

probability for α > 0.98 is 0% (SA) and 1.58% (QESA).
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5.3.2 Relationship between performance of QESA and Hamming distance

In this section, we focus on evaluating the computation time of QESA, denoted by Epoch#(QESA),

required to achieve a target approximation ratio (e.g., αt = 0.95), and compare it to the computation

time of pure classical standalone SA, denoted by Epoch#(SA). Hence, we use the ratio of Epoch# of

SA and QESA as a performance measure of QESA over SA. Furthermore, based on multiple instances

of using Hamming distance as a robust metric for performance evaluation and enhancement of various

heuristic optimization algorithms (e.g., particle swarm optimization (PSO) [131, 132, 133], A∗ search

algorithms [134] and hypergraph matching problems [135]), we identified the Hamming distance between

the initial spin configuration s and the target spin configuration t, HD ≡ |{j ∈ 1, · · · , N |sj ̸= tj}|, as a
figure of merit.

(a)

(b)

Figure 5.7: The relationship between Epoch# for αt = 0.95 and HD/N is depicted in two parts:

(a) Epoch# ratio between SA and QESA models for 1200 graphs with N = 60 − 115, 93 graphs with

N = 140, and 154 graphs with N = 170. The QESA model’s monotonic behavior fits well to the black

line y = 1/ [c1 · (exp(β ·HD/N)− 1)], with c1 = 0.1602, β = 6.738 and an adjusted R2
adj = 0.9838, as

detailed in the inset for HD/N = 0.05− 0.35. (b) Epoch# ratio between SA and QESA for 924 graphs

from Figs. 5.4 (a,b), with error bars representing AQC (black) and QE (blue).

In this respect, in Figs. 5.7 (a) and (b), we plot the ratios Epoch#(SA)/Epoch#(QESAModel) and

Epoch#(SA)/Epoch#(QESA) for αt = 0.95 as a function of HD/N (Hamming distance normalized by

the graph size N), respectively. The former ratio is based on a modeled QESA, which is detailed below.

The required Epoch# of SA is modeled as Epoch#(SA) = c1e
βm∗

[136, 137]. In this case, m∗ can be
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approximated by HD/N , hence in Eq. (5.3), we model this ratio as a function y(HD/N):

y(HD/N) =
1

c1 · (exp[β ·HD/N ]− 1)
, (5.3)

where c1 = 0.1602, β = 6.738 and an adjusted coefficient of determination R2
adj = 0.9838, which explains

over 98% of the variability in the data. The modeled QESA results in Fig. 5.7 (a) are obtained via the

following procedure:

1. Sample the SA spin configurations that reached αt = 0.95 from the set of 1200 experimental

graphs [120] of N = 60 − 115 in Exp#10, 93 graphs of N = 140, and 154 graphs of N = 170

and determine the epoch differences for the initial points αi = 0.85, 0.88, and 0.91 for N =

60, 65, 70, · · · , 115, 140, 170.

2. Sort these epoch differences by HD for each N .

3. Compute the epoch performance ratio Epoch#(SA)/Epoch#(QESAModel), denoting the ratio of

epochs for SA to those for QESA for each αi, in accordance with these sorts of epoch differences.

In Fig. 5.7 (b), comparing the Epoch#(SA)/Epoch#(QESA) of AQC and QE (black and blue error

bars, respectively) with the QESA model (Eq. (5.3)), it is observed that the epoch performance ratios of

both AQC and QE closely follow the black fitting line of the QESA model. In addition, the zoomed-in

plots for HD/N = 0.05− 0.35 in the insets of Figs. 5.7 (a) and (b) show that Eq. (5.3) characterizes the

average epoch performance ratio. This result indicates that QESA is advantageous due to the reduced

computational time of QESA with a shorter quantum mechanically warm-started HD/N compared to

randomly started SA.

5.3.3 Correlation between the Hamming distance and Initial Approximation

ratio

(b)(a)

Figure 5.8: (a-b) The relation between the normalized Hamming disance HD/N and the initial approx-

imation ratio αi, (a) Count Distribution of HD/N for each fixed αi = 0.6, 0.72, 0.81 and 0.9 from the

QESA modeling results, (b) Epoch#(SA)/Epoch#(QESAModel) as a function of HD/N and αi.
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In Figs. 5.5 and Figs. 5.7, we presented the behaviors of QESA’s performance as a function of the

initial approximation ratio αi and the Hamming distance HD/N , respectively. As a result, the average

epoch performance ratio of QESA tends to increase as αi is larger and HD/N is smaller, in particular,

it fits well with the monotonic behavior of modeling y(HD/N) (Eq. (5.3)) based on HD/N .

Hence, in this subsection, we examine the correlation between the Hamming distance HD/N and

the initial approximation ratio αi regarding how the change of αi leads to the tendency of QESA’s epoch

performance shown in Fig. 5.5 (a). Figs. 5.8 (a) and (b) show the relationship between HD/N and αi and

the relationship between these two variables and QESA’s epoch performance, respectively, for αt = 0.95.

Fig. 5.8 (a) shows the distributions of HD/N for QESA modeling results of the same αi. It shows that

the mean HD/N decreases for distributions with larger αi, which indicates the correlation that the higher

αi, the smaller the bit difference between the current independent set state and the target optimal state.

In Fig. 5.8 (b), the average QESA Epoch performance ratio behavior when both the two variables

HD/N and αi are taken into account is shown. In other words, Fig. 5.8 (b) simultaneously shows the

relationship between the QESA Epoch performance ratio and HD/N and αi as shown in Figs. 5.5 and

Fig. 5.7, respectively, which shows that the correlation between HD/N and αi as shown in Fig. 5.8 (a)

leads to a decrease in the mean HD/N when αi increases, which in turn leads to an increase in the Epoch

performance of QESA when αi increases as shown in Fig. 5.5 (a). Therefore, it shows that the tendency

of QESA’s performance with the initial approximation ratio αi in Fig. 5.5 (a) is due to the negative

correlation between αi and HD/N and the relationship between Hamming distance HD/N and QESA’s

performance in Fig. 5.7.

5.4 Discussion

In this section, we discuss the issue of scaling with the number of atoms for using QESA. SA with

inputs whose distribution of Hamming distances is widely spread is time-consuming since it examines

all the many paths to incrementally increase αi. In contrast, since QESA starts with a source with a

partial error on a solution, it only pursues paths with shorter Hamming distances and thus reaches the

solution faster. In other words, QESA can be regarded as a strict subset of SA with a warm start from a

source with a shorter Hamming distance. Therefore, we can describe QESA via Hamming distance and

SA analysis. Simulated annealing (SA) is a stochastic, iterative optimization algorithm that aims to find

the optimal value of a cost function (in this case, HMIS (Eq. (5.2))).

The probability of successfully finding the MIS is expressed as

PMIS,SA = 1− exp
(
−aHP−1/N · Epoch#(SA)

)
, (5.4)

where HP is the hardness parameter of the given graph; for King’s graphs, it is examined as lnHP ∼
√
N . [68] Consequently, the epoch-to-solution (ETS) [138] for the SA algorithm, denoted by ETSMIS,SA,

is given by

ETSMIS,SA = aN ×HP ∼ aNeb
√
N , (5.5)

where a is a coefficient associated with the normalized Hamming distance HD/N (inversely proportional

to the epoch performance ratio in Eq. (5.3)), and b is a parameter related to HP of the graph. This

exponential scaling with
√
N implies that as N increases, the number of iterations required for the

algorithm to converge grows significantly.
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Figure 5.9: Scalability of graph size N for αt = 0.99 within a limited processing time of one day on PC.

Each color means SA (blue) case (blue) and cases with different ⟨HD/N⟩: 0.32 (orange), 0.21 (yellow)

0.15 (purple) and 0.07 (green). (Inset: Measured average processing time required to reach αt = 0.99

for N = 60, 70, · · · , 110, 140 and 170.) The required processing time is estimated as aN × b
√
N × cNd

based on Equation 5.5 and the epoch performance ratio in Figure 5.7, where a0 = 5.0508, b = 1.0738,

c = 25.44 µs, d = 0.76 and a0/a = 1, 1.15, 1.74, 2.63 and 9.94 for SA and ⟨HD/N⟩ = 0.32, 0.21, 0.15 and

0.07 cases, respectively. From these estimations, the upper bounds Nc of graph size within the one-day

limit are predicted to be 5,312 for SA and as 5,484, 6,023, 6,584, and 8,655 for ⟨HD/N⟩ = 0.32, 0.21,

0.15 and 0.07 cases, respectively.

We assume that the average processing time per epoch, tstep, scales as a function of N :

tstep = cNd, (5.6)

where the parameters c and d are determined by the specifications of the PC. Consequently, the total

processing time for target αt, denoted as tprocessing, is obtained as the product of Eqs. (5.5) and (5.6):

tprocessing ≡ tstep × ETSMIS,SA

= aN × b
√
N × cNd. (5.7)

The scalability of tprocessing is drawn in the inset in Figure 5.9, as HD/N varies and N increases for

αt = 0.99. For N = 60 to 170, tprocessing shows performance gaps of 1.15, 1.75, 2.63, and 9.94 times

compared to the SA case, with ⟨HD/N⟩ = 0.32, 0.21, 0.15, and 0.07, respectively. In Figure 5.9, a,

73



related to HD/N , is fitted as a = 5.05, 4.39, 2.89, 1.92, 0.51 forthe SA case and ⟨HD/N⟩ = 0.32, 0.21,

0.15, and 0.07. b, related to HP, is fitted as 1.0738, with R2
adj values of 0.9981, 0.9929, 0.9758, 0.9625

and 0.8276 for SA case and ⟨HD/N⟩ = 0.32, 0.21, 0.15, and 0.07, respectively. c and d are related to the

PC computing environment and fitted with values of 25.44 µs and 0.76, respectively, yielding R2
adj values

of 0.9826. The PC operational environment is MATLAB R2023a with an AMD Ryzen Threadripper

3960X 24-Core processor, NVIDIA GeForce RTX 3080 GPU, and 64.0 GB of RAM. It is assumed that

the RAM does not significantly influence the extrapolation.

We now attempt to estimate the maximum graph size Nc that can be processed when tprocessing is

constrained by a finite PC operation time, such as within 1 day. Extrapolating the numerically fitted

scaling as Figure 5.9, Nc =5,312 is expected for SA alone. However, for the QESA approach, Nc could

increase to 5,484, 6,023, 6,584 and 8,655, for graphs having initial Hamming distances, HD/N = 0.32,

0.21, 0.15 and 0.07, respectively. This suggests that QESA is capable of handling larger problem in-

stances than the SA algorithm alone.

(a) (b)

Figure 5.10: Distribution comparsions between the post-processing method (blue-colored) in Ref. [68]

and QESA (orange-colored) for the approximation ratio α results, using the (a) AQC-based and (b)

QE-based inputs utilized as the “warm start”s of QESA in Figs. 5.4 (a) and (b), respectively.

Furthermore, we compare the post-processing method [68] with the QESA method. Figs. 5.10

(a) and (b) show the approximation ratio α distributions of the AQC and QE experimental results with

warm-start, respectively. The orange color is the QESA method, and the blue color is the post-processing

method. The mean values of the QESA case are 0.95 (AQC) and 0.94 (QE), while the mean values of the

post-processing method are 0.88 (AQC) and 0.83 (QE). In addition, the distribution of α is concentrated

within a sharper interval in QESA, while the post-processing method has a wider distribution. This is due

to the occupation swap process in QESA, which results in a spin exchange between the neighboring |0⟩
and |1⟩, i.e., the QESA iterative loop finds the optimal configuration via spin swapping, which increases

α. In contrast, the post-processing does not include this occupation swap process, so there is no spin

swapping between the neighboring |0⟩ and |1⟩, which limits the increase in α.
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5.5 Summary

In this chapter, we highlight the computational time advantages of QESA using MIS experimental

results from adiabatic quantum computing (AQC) (using a previously reported dataset [120]) and quench

evolution (QE) (using newly run experiments [125] on the QuEra Aquila machine) on Rydberg atom

arrays with approximately 100-atom scale. QESA shows a computational time advantage over classical

standalone simulated annealing (SA). In particular, as a principle, we present a new correlation between

the computation time of QESA and the Hamming distance. By analyzing the epoch time dependence of

SA on Hamming distance, we found that QESA outperforms SA by leveraging the quantum-optimized

Hamming distance distribution, as opposed to SA’s non-optimized Hamming distance distribution. In

other words, SA, which uses inputs from widely distributed Hamming distances, is time-consuming since

it examines all of the many paths that incrementally increase α. However, since QESA starts from a

warm start with partial errors on the solution, it only pursues paths with short Hamming distances

and thus reaches the solution faster. This is possible since QESA experimental results are less likely to

be on the path to a non-MIS solution than an SA start with the same initial approximation ratio αi.

Furthermore, QESA modeling estimates the scalability of N values such that α can reach 0.99 within a

given time when using a “warm start” prepared with the expected HD/N .

The dataset is available on the figshare data repository [139]:

• Dataset collection in figshare (https://doi.org/10.6084/m9.figshare.c.7639259.v1).

And the dataset consists of following three categories used for this chapter:

1. Codes (https://doi.org/10.6084/m9.figshare.28260860.v1),

2. Data (https://doi.org/10.6084/m9.figshare.28254581.v1),

3. Figures (https://doi.org/10.6084/m9.figshare.28256084.v1).
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Chapter 6. Conclusion

In this thesis, by utilizing the properties and configurations of neutral Rydberg atoms, the im-

plementation and effectiveness of Rydberg quantum programming using optical gates and satisfiability

(SAT) problem, and a hybrid programming approach combining quantum experiments and software, are

introduced and explored.

First, we design multiple sets of Rydberg universal optical gates by utilizing auxiliary atoms (wire

atoms) to mediate coupling between qubit atoms (data atoms). We show that quantum gates can be

designed based on the single-atom addressing coding of lasers and the strong local interaction of neutral

Rydberg atoms. Then, we propose two kinds of Rydberg atom quantum programming schemes. The

first one is programming that converts a mathematical problem into a qubit array structure to fit a

maximum independent set (MIS) problem, which uses the Rydberg blockade property of the Rydberg

atom upon transition to the ground state during adiabatic quantum computing (AQC). We present

a quantum algorithm that programs 3-SAT instances which are proto-typical NP-complete instances

requiring many steps to solve sequentially in classical computing and then into an array of qubits in

the MIS domain. The arrays assembled by this 3-SAT reduction algorithm undergo quantum adiabatic

experiments, and the results of these ground state demonstrate solving instances with the satisfiability

evaluations of 84-95% (for three two-clause instances) and 74-81% (for three three-clause instances),

significantly higher than the random guessing. According to the Cook-Levin theorem, all NP problems

can be transformed into SAT, so this SAT quantum algorithm programmed with Rydberg atoms can be

of great help.

It is difficult to improve both quality (noise) and scalability (the number of atoms) in a Rydberg

quantum system, so to decrease the number of iterations of the quantum adiabatic process, we program

Rydberg quantum-enhanced simulated annealing (QESA), which combines quench evolution (QE) and

adiabatic quantum computing (AQC) experimental data with simulated annealing (SA) algorithms to

improve accuracy and time. In this thesis, we demonstrate that QESA efficiently reaches the target

approximation ratio αt compared to SA. Using the experimental results of around 100 Rydberg atoms

as a warm start, QESA outperforms SA. The gap in performance is strongly correlated with the Ham-

ming distance between the target and the initial point. The scalability of the number of atoms N ,

which is difficult to handle in experiments, is estimated by modeling: when the normalized Hamming

distance HD/N ∼ 0.05 for αt = 0.95, the performance difference between SA and QESA is evaluated as

Epoch#(SA)/Epoch#(QESA) ∼ 15. We hope that this research helps to advance quantum computing

by utilizing Rydberg atoms in the future.
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