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초 록

본 연구는 시간 및 주파수 공간 상에서 재단 된 펨토초 레이저 펄스, 즉 빛을 이용하여 이와 상호작용

하는 원자의 양자 상태의 시간 변화를 원하는 방향으로 이끌어 가는데 대한 내용을 다루고 있다. 본

연구에서와 같이 빛과의 상호작용을 이용하여 양자 시스템의 상태 변화를 제어하는 방법을 양자 제어

(”quantum control” 혹은 ”coherent control”)라고 하며 그 상호작용의 세기에 따라 적용가능한 제어

원리에다소차이가있다. 레이저펄스의세기가약하여원자와의상호작용이약한경우그상호작용은

양자섭동이론으로 설명이 가능하며 레이저 펄스에 의한 양자 상태 사이의 전이 확률은 1% 이하이다.

이 경우 양자 제어의 기본적인 목표는 주어진 레이저 펄스를 재단하여 원하는 전이의 확률을 최대화

하는 것이며 이를 위해서는 레이저 펄스를 이루는 수많은 주파수 요소들의 위상을 재단하여 각각의

주파수요소에대응되는여러전이경로사이의간섭을보강간섭이되도록만들어주어야한다. 이러한

양자 제어의 경우 일반적으로, 주어진 펄스와 같은 혹은 더 적은 에너지를 갖는 재단된 레이저 펄스로

수배 수십배의 전이 확률을 얻는 것이 가능하다. 본 연구에서는 이와 같은 양자 제어의 원리를 루비듐

다이아몬드 시스템에 적용하여 바닥 상태에서 가장 높은 들뜬 상태로의 전이를 최대화 시키는 방법을

찾고자 하였다. 가능한 전이 경로들을 그 위상에 따라 분류하면 총 8개의 블록으로 나눌 수 있다는

것을확인하였으며각각의블록에해당하는레이저펄스스펙트럼에적절한위상을가해줌으로써전이

확률을 극대화 하는 실험을 수행하였다. 이러한 원리는 분자의 광결합/광해리와 같이 빛이 개입하는

상태변화 확률의 극대화나 분광학을 이용한 물질간의 구별 등에 적용될 수 있다.

레이저 펄스의 세기가 강한 경우 원자내의 2준위 양자 시스템에서 각 상태의 확률이 펄스의 세기

에 따라 0과 1사이를 오가는 완전한 확률의 전이가 일어날 수 있으며 이를 일으키는 대표적인 현상이

라비진동이다. 이때수많은원자로이루어진원자구름에서라비진동이일어나는경우레이저펄스의

공간적인 분포가 일정하지 않기 때문에 구름 속 각 원자들의 라비 진동이 서로 다른 주기로 일어나게

된다. 따라서 구름 전체의 라비 진동은 주기가 다른 여러 사인파를 합쳐놓은 모양이 되며 라비 진동을

확인할수없게된다. 이러한공간적으로진동이평균화되는문제를원자구름과레이저빔을가우시간

함수로 가정하고 원자 구름과 레이저 빔의 지름 사이 비를 변수 n으로 삼아 연구하였다. 수치 계산으로

얻은 구름 전체의 라비 진동 곡선의 형태는 변수 n과 일대일 대응됨을 확인하였으며 자기광포획장치에

잡힌 원자 구름을 가우시안 분포로 만들고 수행한 실험 결과 가우시안 함수를 사용한 모델이 실제 원자

구름에서 일어나는 공간 평균 효과를 잘 설명하고 있음을 확인할 수 있었다.

공간평균효과를설명할수있는가우시안함수모델을사용하면 2준위시스템에서확률의완전한

진동을 보이는 현상들을 실험적으로 분석할 수 있다. 이를 토대로 확률의 완전한 진동을 일으키는 또

다른 물리적인 현상인 주파수영역상 혹은 시간영역상에서 구멍이 뚫린 첩펄스에 대해 연구하였다. 첩

(chirp)펄스란펄스의순간주파수가시간에따라선형으로변화하는펄스를말하며순간주파수가천천히

변화하는 첩펄스는 2준위 양자시스템을 바닥상태에서 천천히 끌어올려 들뜬상태로 완전히 전이시키는

단열 과정을 일으킨다. 첩펄스에 주파수영역상 혹은 시간영역상에서 구멍을 뚫음으로써 원래의 첩펄

스가 일으키는 단열과정 중간에 개입하여 라비 진동을 일으킬 수 있으며 이러한 경우 라비 진동과 단열

과정의 상호관계가 레이저 펄스의 세기에 의해 달라지게 되어 양자시스템에 펄스 세기에 따른 확률의

진동이 일어난다. 주파수영역상 구멍이 뚫린 첩펄스의 경우 2준위 시스템의 전체 시간변화는 블록 구

(Bloch sphere)상의 세 회전인 Rx(Θ1)Rz(Θ2)Rx(Θ1)의 형태로 정리되었으며 시간영역상 구멍이 뚫린



첩펄스는 Rz(Θ2)Ry(Θ1)Rz(Θ2)의 형태로 정리되었다. 두 경우 모두 레이저 펄스의 세기에 따라 Θ1과

Θ2가 달라지게 되어 일어나는 확률의 진동을 실험적으로 확인할 수 있었다. 이러한 방법을 다준위 시

스템에적용할경우첩펄스에서다준위시스템의각전이에대응되는주파수공간상혹은시간공간상의

위치에 구멍을 뚫음으로써 다준위 시스템에서 일어나고 있는 단열 과정에 개입할 수 있다. 이러한 구

멍들은 펄스의 세기변화에 따라 켜지고 꺼지는 스위치와 같은 역할을 할 수 있으며 따라서 전이 경로를

원하는 방향으로 이끌어가는 것이 가능하다.

핵 심 낱 말 펄스 재단, 양자 제어, 결맞음 제어

Abstract

Quantum control of alkali atoms in ensemble is studied by using broadband pulse shaping schemes in

both spectral and time domain. In the weak field regime, interference between two two-photon excitation

passages of a four-level system of the rubidium atom in a diamond configuration was considered. Eight

spectrum blocks were classified by inherent phase jumps of transition probability amplitude components

and a condition for maximal constructive interference was predicted by second order time dependent per-

tubation theory. Experiments carried out with spectrally phase-coded laser pulses show good agreement

with the theoretical prediction.

In the strong field regime, quantative analysis on ensemble averaged Rabi oscillation was conducted

to investigate spatial inhomogeneity of interaction. By using the ultrafast laser interaction with the cold

atomic rubidium vapor spatially confined in a magneto-optical trap, the oscillatory behavior of the atom

excitation is probed as a function of the laser pulse power. Theoretical model calculation predicts that

the oscillation peaks of the ensemble averaged Rabi flopping fall on the simple Rabi oscillation curve of

a single atom and the experimental result shows good agreement with the prediction. We also test the

three-pulse composite interaction Rx(π/2)Ry(π)Rx(π/2) to develop a robust method to achieve a higher

fidelity population inversion of the atom ensemble.

Based on quantative analysis of inhomogeneity of interaction, dynamics of a two-level system in-

duced by a chirped pulse with a spectral hole and a temporal hole were respectively explored in both

theoretically and experimentally. When a spectral hole is made, the pulse is called a chirped zero-area

pulse. By a chirped zero-area pulse, CPR and CPI of a two-level system takes place even there is no

resonant spectrum. Theoretical investigation showed that the dynamics can be modeled by a three-step

evolution, R−ϕ(Θ2)Rz(Θ1)Rπ+ϕ(Θ2), where the first and the third are by Rabi oscillation and the second

is an adiabatic evolution. The CPR and CPI dynamics is turned out to be a result of interplay between

adiabatic evolution and Rabi rotations: CPI and CPR occur when adiabatic evolution makes two rabi

rotations completely constructive or destructive. On the other hand, when a temporal hole is made on a

chirped pulse, the system only begin with a superposition state shows probability oscillation, even to 0

or 1. The probability oscillation for this case is also by interplay between adiabatic evolution and Rabi

rotation: the adiabatic evolution applies phase on a superposition state and the Rabi rotation mixes it.

The probabilities of 0 or 1 occur when the interference is maximized. The studies on a chirped pulse

with a temporal hole and a spectral hole showed that the hole can be a new control method of quantum

control in strong field regime.

Keywords pulse shaping, quantum control, coherent control
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Chapter 1. Introduction

The term “quantum control”, controlling an interaction between light and a quantum system and

steering the evolution of the system toward an aimed direction, have been a desire of my whole research.

From the very beginning of quantum mechanics, light has been a powerful tool and provided many impor-

tant clues for exploring quantum nature. In early studies of light-matter interaction, measurement and

observation of phenomena were crucial, and hence, excitation and evolution of a system were seperately

treated. However, as our understanding becomes deeper, a brilliant idea, photo-assisted manipulation of

chemical reaction appeared. This idea, which utilized excitation by light to manipulate evolution of a

system, was the beginning of quantum control [1].

The first subject of quantum control was selective photo-assisted dissociation of molecules. Suggested

scheme used two colors of narrow band laser pulses or continuous wave lasers to induce excitation from

two different vibrational state. It was shown that dissociation yield can be changed by adjusting relative

phase between two laser light, which alters interference between two vibrational states [2]. However,

this scheme turned out to be imperfect since molecular vibrational dynamics can be occured in sub-pico

second regime. In these circumstances, adopting femtosecond laser was a matter of course to maintain

coherence all along the interaction. Introducing femtosecond laser brought great advantages to quantum

control schemes. Decoherence of a quantum system is prevented during interaction, and moreover, wide

bandwidth of several THz can cover multiple transitions of the system in the same time. Advances of pulse

shaping techniques realized manipulation of phase and amplitude of the broadband spectrum [3, 4] and

interference among multiple transition passages was controlled by shaped femtosecond pulses. These

control schemes are usually studied in perturbative regime and focussed on enhancement of a target

multiphoton transition probability [5, 6]. By using such control schemes, different substances can be

clearly distingshed. Due to the difference on energy level structure, an optimal pulse for a specific

substance is not optimal or worse for others, which gives better contrast of transition probability than

unshaped pulse case. In that regard, spectroscopic and microscopic application to distinguish materials

was suggested and successfully demonstrated in [7, 8].

After studies on the quantum computation using states of atoms, ions an artificial atoms as qubits

emerged, control in strong field regime became an important issue. In this regime, complete probabil-

ity inversion (CPI) and complete probability return (CPR) can occur. Although most of phenomenas

inducing CPI and CPR, such as Rabi oscillation, composite pulse excitation and adiabatic passage

techniques [9], have been studied for several decades, improved schemes for fast, precise and specilized

manipulation of qubit states still have great possibility [10].

In this dissertation, we study control of quantum state evolution of alkali atoms in ensemble by using

the laser pulses shaped in both frequency and time domain. Previous related works, from interference

control in weak field regime to CPI dynamics in high field regime, will be reviewed in chapter 2. In

chapter 3, we consider theoretical foundations of atom-pulse interaction. In weak field regime, interaction

between a femtosecond pulse and an atom can be treated with time dependent perturbation theory.

Transition of lowest possible order becomes dominant and analytic discussion is possible. When the

lowest possible order transition involves multiple photons, interference among transition probability

amplitude components sensitively react to spectral phase of the pulse. Thus, by shaping spectral phase

of the pulse via pulse shaper, we can control the transition probability in such case. However, if pulse
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energy is large enough, approximation using first few terms of perturbation series is no longer valid.

CPI dynamic such as Rabi oscillation or adiabatic passage technique can be obtained from full solution

of time dependent Schrödinger equation. For experimental observation of CPI and CPR dynamics, a

cold, dense and spatially confined atomic ensemble trapped in magneto optical trap (MOT) was used.

In chapter 4, properties of our MOT is discussed.

My studies of quatum control starts from dynamics in weak field regime, which can be simply treated

by pertubation theory. In chapter 5, manipulation of two-photon transition probability by controlling

interference between two two-photon excitation passages is experimentally demonstrated in diamond

shaped energy level configuration of a rubidium atom. In addition, reduction of hyperfine states into

fine structure states is also discussed.

Since both laser beam and an atomic ensemble have spatial distribution, spatially averaged CPI and

CPR dynamics of an ensemble is quite differ from single particle case. For quantative analysis of this

problem, model calculation and experimental results of spatially averaged Rabi oscillation is considered in

chapter 6. Also, enhancement of robustness on ensemble averaged oscillation via a designed train of pulses

is demonstrated. In chapter 7, CPI and CPR dynamic by a new type of pulse, chirped zero-area pulse,

is considered. A zero-area pulse, a resonant pulse with zero temporal pulse area, induces CPR, or no

excitation. In our study, a zero-area pulse was produced by making a resonant spectral hole at a resonant

pulse. Even though it has no resonant frequency component, numerical calculation result showed that

a chirped zero-area pulse can induce both CPI and CPR. Theoretical analysis conducted in adiabatic

basis showed that CPI and CPR dynamic caused by interplay between adiabatic evolution and Rabi

oscillation, which can be used as a new quantum control scheme. From the dynamics induced by chirped

zero-area pulse, great possibilities of quantum control under adiabatic basis is revealed. In adiabatic

basis, the base vector itself is time varying and its time-dependent change gives nonadiabatic coupling

between two adiabatic states. And by making a temporal hole at the moment of zero instataneous

detuning, rapid change of the base vector, which leads Rabi rotation of the system, can be achieved.

In chapter 8, nonadiabatic coupling introduced by a temporal hole on a chirped pulse and probability

oscillation of a two-state by it are considered.
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Chapter 2. Review of quantum control

The term “quantum control” or “coherent control” refers certain schemes which aim to control a

quantum evolution to a desired direction, mainly using programmed broadband laser pulses. Generally,

as well as the fundamental parameters of the pulse such as electric field amplitude and central frequency

of the pulse, phase and amplitude of each spectral component of broadband pulses also can be shaped

to manipulate transitions. Note that defined by Fourier transform relation, any arbitrary pulse shape

in time domain can be made by manipulation of phase and amplitude in spectral domain. And for such

shaping in spectral domain, pulse shaping apparatus such as spatial light modulators and acousto optic

devices are used. In this chapter, we briefly review several previous works of quantum control. We shall

start from the review of pulse shaping schemes for experimetal realization of quantum control. Then,

we first see the control schemes of multi photon transition in weak field regime, which can be described

by the lowest order term of time-dependent pertubation theory, or Dyson series expansion. And finally,

the dynamics which envolving complete solution of time dependent Schrödinger equation, such as Rabi

oscillation and adiabatic probability transfer, will be considered.

2.1 Pulse shaping apparatus

For the sort of experiments utilizes CW laser or RF pulses, the modulation in µs to ns regime

is required to control the electric field in time-domain. The modulation using AOM (acousto-optic

modulator) or EOM (Electro-optic modulator) can cover such temporal regime and gives satisfactory

results. However, for our broadband pulse with temporal width of sub-ps regime, temporal modulation

in fs regime is required to control the temporal profile. No electronics can catch up such fast event. Thus,

rather than direct shaping of the pulse in time-domain, pulse shaping in spectral domain was considered

and realized. Nowadays, two typical pulse shaping schemes are widely used, one is a scheme using 4f

geometry formed by a pair of gratings and a pair of cylindrical mirror, and the other utilizes acouto-optic

device. Details of both schemes will be discussed below.

2.1.1 Apparatus utilizing spatially mapped spectral component: SLM

To acquire access for each spectral component and apply manipulation on each, we first need to

seperate spectral components of a pulse. Typically, a 4f system formed by a pair of gratings and a pair of

cylindrical mirrors is used for spatial seperation of the spectral components. When a broadband pulse is

diffracted by a grating, each spectral component of the pulse is divided by grating equation d sin θ = nλ,

where d is groove size of the grating. A cylindrical mirror with focal length f is placed after f from

the grating to collimate bundle of radiations of diffracted frequency components. And each frequency

component is focussed on a plane after f from the cylindrical mirror. Thus, the pulse at the plane after f

from the cylindrical mirror is on a frequency domain, where the spectrum is spatially mapped. Note that

at Fourier plane, the frequency components of the pulse can be assumed as a bundle of CW radiations

with narrow spectral width. So, by placing appropriate mask on a Fourier plane, we can manipulate

each spectral component of the pulse. After the manipulation, the spectral components combined by the

other cylindrical mirror and grating, which are separated by f in propagation direction. Fig. 2.1 shows
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Figure 2.1: Schematic of the 4f system setup. 4f system formed by a pair of gratings and a pair of

cylindrical mirrors makes frequency components of the pulse spatially mapped Fourier plane. Gray

dashed line indicates Fourier plane.

a schematic of the 4f system setup, where the gray dashed line indicates Fourier plane of the 4f system.

For convinient and effective pulse shaping, the mask placed at Fourier plane can be replace by a

active device, which is called SLM (spatial light modulator). A typical SLM consists of three layers,

an array of liquid crystals lies in the middle and two layers of glass coated by conductive film covers

the liquid crystal array. The liquid crystal is formed by long, rod-like molecules. When electric field

is applied to a liquid crystal, it rotates to be aligned with electric field and the refractive index for a

certain polarization direction is changed. Thus, by individually adjusting applied voltage on each liquid

crystal, it can be used as an active phase mask. Furthermore, To achieve simulataneous shaping of both

amplitude and phase, one needs two SLMs and a pair of polarizer[4]. The response time of a SLM is

typically order of 10 ms, the time requires for reorientation of the liquid crystals.

2.1.2 Acousto-optic pulse shaper

An acousto-optic programmable dispersive filter (AOPDF) is a pulse shaping device, which utilizes

a quasi collinear acousto-optic interaction[11, 12]. Consider optical radiation of frequency ω with a

polarization aligned in fast ordinary axis traveling inside of an acousto-optic medium. When acoustic

wave of frequency Ω meet the optical radiation inside an acousto-optic medium and phase-matching

condition is satisfied, the optical radiation is diffracted to slow extraordinary axis by acousto-optic

interaction. We can define a parameter α from phase matching condition, given by

α = ∆n
V

c
(2.1)

where V is the speed of sound inside medium and c is the speed of light, and ∆n is the refractive index

difference between ordinary and extraordinary axis. Using the parameter α, the optical frequency ω and

the acoustic frequecy Ω satisfying phase-matching condition have the relation

Ω = αω. (2.2)

Therefore, each frequency component of a broadband pulse has its coupled acoustic frequency defined

by α. And the pulse diffracted into slow extraordinary axis can be expressed by

Ẽout(ω) ∝ Ẽin(ω)S̃(αω), (2.3)

4



Figure 2.2: Schematic and working principle of the AOPDF. The incident optical pulse polarized

along ordinary axis is diffracted by acousto-optic interaction when the phase-matching condition is

satisfied. Diffracted shaped output pulse is polarized along extraordinary axis. Figure from [12]

(https://doi.org/10.1364/OL.25.000575).

where S̃(αω) is the spectral electric field of the acoustic wave. Also, Eq. (2.3) can be rewritten as

Eout(t) ∝ Ein(t) ∗ S(t/α), (2.4)

where ∗ is a convolution symbol. So, for an acouto-optic device calibrated with respect to α, S̃(α)(ω)

or S(t/α) can be calculated by using the information about initial pulse shape and desired pulse shape.

Since AOPDF utilizes acoutic wave for pulse shaping, it is especially outstanding for pulse shaping into

smooth and continuous shape, for instance, chirping. The acousto-optic crystal used in our AOPDF

(Dazzler, Fastlite) is TeO2 with d = 2.5 cm.

2.2 Quantum control in weak field regime

In weak field regime, transition probability amplitude of one-photon transition in a two level system

with resonant frequency ω0 can be described by the equation

c(1) =
µ

~
E(ω0), (2.5)

where E(ω0) is spectral electric field amplitude of ω0, µ is a transition dipole moment between two states.

As shown in Eq. (2.5), one-photon transition in weak field regime has no possibility of control other than

electric field. Thus, quantum control in weak field regime is focused on multiphoton transitions.

Now, let’s consider the simplest case of multiphoton transition, two-photon transition in a ladder sys-

tem. The transition probability amplitude from a ground state |g〉 to a final state |f〉 via an intermidiate

state |i〉 is given by a equation in spectral domain as

c
(2)
f = −πµfiµig

~2
E(ωfi)E(ωig) + i

µfiµig
~2

℘

∫ ∞
−∞

E(ω)E(ωfg − ω)

ωig − ω
dω, (2.6)

where E(ω) is the spectral electric field component of ω, ωnm is a resonent frequency of the transition

between two states |n〉 and |m〉, µnm is a transition dipole moment between two states |n〉 and |m〉 and ℘

denotes the Cauchy principle value calculation. Note that Eq. (2.6) comes from the Fourier transform of

the second order term of dyson series. The first term in Eq. (2.6), which describes a two-photon transition
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Figure 2.3: Quantum interference control in a three level ladder system via phase window. (a) De-

scription of π/2 phase window. The window was scanned through spectral range of the laser pulse. (b)

Experimental result. Fluorescence from 5D state population was measured as a function of the phase

window position. About 600% of enhancement was obtained at maximum. (c) Comparison of temporal

electric field between transform limited case (dotted line) and optimal pulse (solid line). Figure from [6]

(https://doi.org/10.1103/PhysRevLett.86.47).

by two on-resonant frequency components, is usually called a ’resonant term’. Similarly, the second term

in Eq. (2.6), which describes a sum of all possible frequency pairs obeying energy conservation, i.e.,

ωfg = ω1 + ω2, is called a ’nonresonant term’.

Silberberg and his coworkers showed a good experimental demonstration of the interference con-

trol [6] in a rubidium atom, where three states |5S1/2〉 = |g〉, |5P3/2〉 = |i〉 and |5D〉 = |f〉 form a

three level ladder type system with λig = 780 nm and λfi = 776 nm. They focussed on destructive

interference of the nonresonant term and showed that transform limited pulses are not optimal to make

two-photon transition between |g〉 and |f〉 in such a system. For better explaination of the interference

control, we shall write the spectral electric field E(ω) as E(ω) = A(ω)eiΦ(ω) where A(ω) is amplitude

and Φ(ω) is phase. If applied pulse is transform limited, i.e., has a constant spectral phase Φ(ω) = c, the

resonant term is pure real while the nonresonant term is pure imaginary. Also, as shown in Eq. (2.6), a

π phase discontinuity or a sign change occurs on nonresonant term at the ωig, a resonant frequency of

the transition between the ground state |g〉 and the intermediate state |i〉. Thus, if the three-level ladder

system is driven by a transform limited pulse, the two-photon transition probability is small because of

destructive interference and not aligned probaility amplitude component.

To maximize the two-photon transition probability, Silberberg and coworkers tried two approaches.

One is directing the interference to a constructive one by manipulating phases of transition probability

amplitude components. For this, they scanned Φ(ω) = π/2 spectral phase window of about 4 nm width,

which is described in Fig. 2.3 (a), through spectral range of the pulse by using spatial light modulator

(SLM). Fig. 2.3 (b) shows the experimental result of the phase window scanning, which shows about

600% of maximum enhancement compared with transform limited case when the phase window centered

at ωfg/2, 778 nm. Another approach is eliminating one of the two components which destructively

6

https://doi.org/10.1103/PhysRevLett.86.47


Figure 2.4: Quantum interference control in a three level ladder system via spectral blocking. (a)

Description of variable slit located at the Fourier plane of pulse shaping apparatus. Blocked spectral

region was varied by adjusting slit width. (b) Experimental result. Fluorescence from 5D state population

was measured as a function of the cutoff frequency. About 100% of enhancement was obtained at

maximum. (c) Comparison of temporal electric field between transform limited case (dotted line) and

optimal pulse (solid line). Peak electric field of the pulse was reduced by a factor of 38. Figure from [6]

(https://doi.org/10.1103/PhysRevLett.86.47).

interfere with the other. This time, a variable slit was placed on Fourier plane of the pulse shaping

apparatus and width of the slit was varied to block certain outer part of the spectrum. This time, about

100% of transition probability enhancement was observed when the cutoffs are located at ωig and ωfi

as shown in Fig. 2.4 (b). Note that at the point of maximal probabilities, peak intensities of laser pulses

were reduced in both schemes, to 71% and 2.6 % of transform limited case respectively. These are quite

striking result because when the bandwidth of the pulse is kept constant, a transform limited pulse has

maximal electric field. Silberberg and his coworkers showed that removing that destructive interference

is much more important to maximize two-photon transition in three-level system rather than increasing

electric field of driving pulse.

In our lab, J. Lim applied similar scheme to a V type system of rubidium, which consists of a ground

state 5S1/2 and two excited state 5P1/2 (D1) and 5P3/2 (D2) [13]. Dr. Lim utilized two-dimensional

Fourier transform spectroscopy to seperately observe inter-excited state two-photon transition of V type

system. Fig. 2.5 (a) shows the phase window used in control experiment and experimetal result. Max-

imum transition probability was obtained when 3π/2 was applied to the phase window. In this work,

transition probability amplitude components were categorized into three terms, A, B, and C, based on

their inherent phases. Phase of each term at marked points of the plot is shown in phasor diagrams,

Fig. 2.5 (b), (c) and (d).

In above quantum control schemes, the approaches to control the transition probabilities are based

on the equation, Eq (2.6), since the two-photon transition in three level system is quite simple to

make analytic analysis. However, if the target of control is more complex, for example, dissociation
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Figure 2.5: Quantum interference control of inter-excited state two-photon transition in a three level

V-type system via phase window. (a) Measured inter-excited state transition probability as a function

of phase applied on the phase window. Phase of the windowed region (shown in inset) was varied from

0 to 2π. (b-d) Phasor diagram corresponds to each marked point of (a). Maximal transition probability

occured when all transition probability amplitude terms, A, B and C, are inphase, as shown in (c).

Figure from [13].

of molecules, the adaptive control scheme can be used [cite]. The adaptive quantum control scheme

needs a feedback loop which consists of a pulse shaping apparatus, a evolutionary algorithm and an

appropriate detector. For each cycle of experiment, evolutionary algorithm modifies shape of the pulse

and measured change of the target transition driven by the modified pulse is used as a feedback of the

evolutionary algorithm. And after many cycles of the experiment, target transition becomes more and

more efficient. The adaptive control scheme is very powerful since we can apply the scheme even if the

detailed dynamics of the system is unknown. However, the analysis of the resulting maximal pulse shape

is also very hard and can’t give intuitive understanding. In my research, I focussed on quantum control

in analytic approaches, which can be expanded and applied to similar type of system.

2.3 Quantum control in strong field regime

2.3.1 CPI and CPT in two-level system

If the electric field amplitude of the pulse becomes larger, solution of the Schödinger equation can-

not be approximated by few terms. In a two-level system driven by such high electric field, complete

probability inversion (CPI), where an initial state |g〉 completely becomes a final state |e〉, and complete

probability return (CPR), where an initial state |g〉 completely remains in a final state |g〉 after the inter-

action, can be occured. The most famous dynamics which can induce CPI and CPR is Rabi oscillation,

first discovered in the context of nuclear magnetic resonance (NMR) [14, 15] and later extended to atomic

physics and quantum optics [16, 17]. In the presence of a resonant driving field E(t) = A(t) cos(ω0t), a
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Figure 2.6: (a) Comparison between exterimental results of Rabi oscillation (black circle) and rapid

adiabatic passge (red square) of single quantum dot. RAP shows robustness of CPI after threshold

pulse area Θ > π. (b) Calculation result of transition probability of a quantum dot as functions of

pulse area Θ and linear frequency chirp. (c) Experimental result of transition probability as a function

of chirp with fixed pulse area area Θ = 2π. CPI is shown when |φ′′ | > 30 ps2. Figure from [29]

(https://doi.org/10.1103/PhysRevLett.106.166801).

two-state quantum system undergoes a cyclic change of

P (|e〉) = sin2(Θ/2), (2.7)

where the pulse area Θ is given by

Θ =

∫
dt
µ

~
A(t), (2.8)

with µ is a transition dipole moment and A(t) is the envelope of the electric field. As shown in Eq. (2.7),

the CPI of the system occurs when Θ = (2n− 1)π, and the CPR of the ststem occurs when Θ = (2n)π

with n = 1, 2, 3 · · · . This generic feature of Rabi oscillation is universally found in a vast variety of

material systems ranging from atoms and molecules [18, 19, 20] to quantum wells and dots [21, 22],

superconducting quantum devices [23], and Bose-Einstein condensates [24], etc.

Another example of the phenomena which can induce CPI is adiabatic evolution. In quantum

mechanics, an evolution is called adiabatic when it is slow enough to keep the state as an eigenstate of

the Hamiltonian at every moment during process [9]. Famous examples of the adiabatic CPI techniques

are stimulated Raman adiabatic passage (STIRAP), which uses slow electric field ramping of ∼ µs regime
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to achieve adiabatic condition [25, 26], and stark chirped rapid adiabatic passage (SCRAP), which uses

slowly varying Stark shift of the state energy in ∼ ns regime [27]. Here, ’slowly varying’ means relatively

slow change comparing to the interaction time.

For broadband pulses, slowly varying instantaneous frequency can cause adiabatic evolution of the

system, which is called rapid adiabatic passage (RAP) since this kind of adiabatic interaction is usually

much faster than the life time of the state [28]. When high linear chirp is applied to the broadband pulse,

instantaneous carrier frequency of the pulse is modulated as a linear function of time. For a linearly

chirped broadband pulse with instantaneous carrier frequency ω(t) = ω0 + αt, two eigenstate of the

interaction between two-level system and the pulse is given by

|Ψ+(t) > = sin(θ(t))|g > +cos(θ(t))|e > (2.9)

|Ψ−(t) > = cos(θ(t))|g > −sin(θ(t))|e >, (2.10)

where mixing angle θ(t) is defined by

θ(t) =
1

2
tan−1

(
Ω(t)

∆(t)

)
(2.11)

Ω(t) =
µ

~
A(t) (2.12)

∆(t) = ωeg − ω(t). (2.13)

To see the basic concept of the dynamics, let us assume that the center frequency of the pulse is the

resonant frequency of the transition, ωeg = ω0 and the pulse is a Gaussian pulse A(t) = E0 exp[−t2/τ2],

which is centered at t=0. Then, if the frequency modulation by linear chirp α is positive, we have

Ω(t→ −∞)

∆(t→ −∞)
= +0

Ω(t→ −0)

∆(t→ −0)
= ∞

Ω(t→ +0)

∆(t→ +0)
= −∞

Ω(t→∞)

∆(t→∞)
= −0.

According to the time dependent change of Ω(t)/∆(t), the mixing angle starts from θ(t→ −∞) = π/2,

changes through θ(t → 0) = π/4 and finally becomes θ(t → 0) = 0. Thus, if the evolution is adiabatic,

|g〉 becomes |e〉 after the evolution along |Ψ+(t)〉 and |e〉 becomes |g〉 after the evolution along |Ψ−(t)〉,
which results CPI of the system. The adiabatic condition of the interaction can be examined by the

adiabaticity function [28], which is given by

f(t) =
1

2

|Ω̇(t)∆(t)− Ω(t)∆̇(t)|
[
√

Ω2 + ∆2]3
. (2.14)

The evolution is adabatic when f(t) � 1, which requires large electric field and linear chirp. However,

in RAP, unlike the Rabi oscillation, CPI always takes place beyond certain thresholds of electric field

and linear chirp. Moreover, even if the center frequency of the laser pulse is detuned, CPI by RAP also

occurs unless the resonant frequency of the transition located outside of the laser pulse spectrum. The

robustness of the CPI by RAP gives great advantage to make CPI of inhomogeneous ensemble. A good

example is quantum dots. Since the artificial systems have unexpected error, resonant frequency of each

quantum dot is slightly different from desired one. Therefore, if we try to make CPI of the ensemble of
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Figure 2.7: Comparison between the excitation dynamics by a single pulse (left) and 7 pulse train

(right). For (a) and (b), blue solid line and dots are calculation and experimental results of Rabi

oscillation, respectively. Red dashed line and dots are calculation and experimental results of adi-

abatic process, respectively. The adiabatic process in (a) is RAP by a single chirped pulse and

in (b) is PAP (piecewise adiabatic passage) by piecewisely chirped 7 pulse train. Figure from [31]

(https://doi.org/10.1103/PhysRevLett.100.103004)

quantum dots by Rabi oscillation, each quantum dot experiences respective detunings, which results in

imperfect CPI of each quantum dot. However, if the ensemble of quantum dots is driven by a linearly

chirped pulse, robustness of the RAP can induce consistent CPI to all individual quantum dots [29, 30].

Another interesting result involing adiabatic evolution by chirping is studied by Milner and coworkers [31].

Instead of a single chirped pulse, they made a train of 7 ultrashort pulses, which are programmed to

be chirped piecewisely. They theoretically shown that the adiabaticity function f(t) can be kept small

enough during total time evolution even for a train of pulses. They also experimentally shown that the

piecewisely chirped pulse can mimick the adiabatic evolution by a single chirped pulse. Fig. 2.7 shows

there experimental result, which shows that comparison between the excitation dynamics by a single

chirped pulse (left) and a piecewisely chirped pulse train (right).

The robustness of RAP also has advantage on spatially averaged interaction, which will be discussed

following subsection.

2.3.2 Spatially averaged interaction

Because of spatial profile of laser electric field, particles in an ensemble experiences position depen-

dent difference of electric field amplitude. When the interaction is in weak field regime, this makes no

difference comparing to single particle case because the dependence on electric field can be expressed

by only a single degree of polynomial, for example, E2(ω) for two-photon transition. However, dynam-

ics in higher field regime must be described by infinite series on E(t), for instance, Rabi oscillation is

sin2(
∫
E(t)dt). Thus, spatial profile of laser field and ensemble cause spatially averaged dynamics which

can result complete wipe out of the behavior. Several experimental techniques attempted to overcome
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Figure 2.8: Diagram of a setup designed to reduce spatial averaging by limiting detection region.

Excited state populations from only small central volume of interaction can be ionized and detected by

a tightly focussed probe beam. Figure from [31] (https://doi.org/10.1103/PhysRevLett.100.103004)

such spatial averaging effect and we shall review three of those here. Uniformization of laser beam’s

spatial profile is the one of the solutions. J. Lim and his coworkers of our lab made flattop beam by

using set of refractive optical elements [32] and observed two-photon Rabi oscillation of rubidium atoms.

Weidemüller and his coworkers also made a flattop beam using diffractive optics and utilized it for per-

forming Rabi oscillation of a Rydberg state of atoms [33]. Another solution is limitation of detection

area. In this method, excited state populations in an ensemble are ionized by a probe beam. Therefore,

even if Rabi oscillation is driven by a wide pump beam, detection area can be limited by a small probe

beam. Milner and his coworkers used such a method to observe Rabi oscillation induced by femtosecond

pulses [31]. Fig. 2.8 shows their detection scheme. Spatially confined ensembles like hot vapors in a

microcell or cold atoms trapped in MOT also can be a solution. Recent results of our lab used a small

cold atomic cloud to conduct intensity sensitive experiment such as ultrafast Ramsey spectroscopy and

single qubit quantum gate operations [34].

Although ensembles have been widely used for experiments, however, organized quantitative analysis

of ensemble averaged Rabi oscillation still have not been done yet. In chapter 6, we conduct quantative

analysis of the spatially average Rabi oscillation.
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Chapter 3. Theoretical backgrounds

3.1 Electric field notation

In this section, We discuss electric field notation and phase convension which will be used for entire

dissertation. Starting from spectral electric field, phase convension of the spectral electric field will be

discussed using concept of the linear chirp.

For a broadband laser pulse, we can define a spectral electric field E(ω) with its spectral amplitude

A(ω) and spectral phase Φ(ω) as

E(ω) = A(ω)eiΦ(ω), (3.1)

where sign of the the spectral phase is defined as + and the phase term is then given by eiΦ(ω), not

e−iΦ(ω). Time domain electric field is given by Fourier transform relation. We define Fourier transform

relation between spectral domain electric field E(ω) and time domain electric field E(t) as

E(t) =

∫ ∞
−∞

E(ω)e−iωtdω (3.2)

E(ω) =

∫ ∞
−∞

E(t)eiωtdt, (3.3)

where E(t) is defined as a Fourier transform of E(ω) and E(ω) is defined as an inverse Fourier transform

of E(t).

The spectral phase Φ(ω) is usually written in a series form as

Φ(ω) = c0 + c1(ω − ω0) +
c2
2!

(ω − ω0)2 + · · · , (3.4)

where ω0 is a center frequency of the spectral phase, commonly set to the center frequency of a broadband

pulse. Each proportional constant, cn, in Eq. (3.4) gives unique property on a transformed time domain

electric field. For example, c0 is a overall constant phase. It has no effect on envelope of the time-domain

electric field but changes phase difference between carrier and envelope of the pulse, which is usually

called Carrier-Envelope Phase (CEP). c1 describes spectral phase linearly depends on the frequency,

which affects on temporal center of the time-domain envelope.

A pulse whose spectral phase has quadratic dependence on ω, Φ(ω) = c2
2 ω − ω0, is called linearly

chirped pulse. Time domain electric field of a linearly chirped pulse can be obtained by Fourier transform

of the spectral electric field,

E(ω) = E0exp

[
− (ω − ω0)2

∆ω2

]
exp

[
i
c2
2

(ω − ω0)2
]
. (3.5)

And transformed time domain electric field is given by

E(t) =
E0∆ω√

2

√
τ0
τ

exp

(
i
φ

2

)
exp

(
− t

2

τ2

)
exp

[
−i
(
ω0t+

2c2t
2

τ4
0 + 4c22

)]
= Ã(t)exp [−iω(t)t] , (3.6)

where τ0 = 2
∆ω , τ = τ0

√
1 +

4c22
τ4
0

, φ = tan−1
(

2c2
τ0

)
and a time-dependent effective carrier frequency ω(t)

is ω(t) = ω0 + 2c2
τ4
0 +4c22

. As shown by ω(t), a linearly chirped pulse is a pulse which has a frequency sweep

linearly depending on time.
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Note that the phase sign of Eq. (3.1) and Fourier transform relation in Eq. (3.3) are defined as a

convension, without losing generality. Since physical meaning of positively (negatively) chirped pulse

is a pulse whose instantaneous frequency increases (decreases) as a function of time, our convension of

phase sign and Fourier transform relation is intended to make sign of ∆ω(t) = ω(t)−ω0 = 2c2
τ4
0 +4c22

equals

to the sign of its parameter c2 for convenience. If the phase term of Eq. (3.1) is given as e−iΦ(ω), Fourier

transform relation of Eq. (3.3) must be reversed to match chirp signs as above.

3.2 Femtosecond Rabi oscillation

When a two level system interacts with an oscillating electric field, probabilities of ground state |0〉
and excited state |1〉 show oscillatory behaviors as functions of time. This probability oscillation is called

Rabi oscillation, named in honor of Nobel laureate Isidor Isaac Rabi. To see the dynamics of the Rabi

oscillation, we start from the following Hamiltonian in Schrödinger picture

H =

(
0 µE(t)

µE(t) ~ω0

)
, (3.7)

where ω0 is a resonant frequency for the transition between two states, µ =
∫
dV 〈1|er|0〉 is a transition

dipole moment, E(t) is a time dependent electric field, and µE(t) describes electric dipole interaction

between the system and electric field. Here, size of our two level system, i. e., an atom, is assumed

as much smaller than wave length of electric field. Thus, position dependence of the electric field is

eleminated and this approximation is called dipole approximation. Then, the time evolution of the

system is then given by schrödinger equation

i~
∂

∂t
|ψ〉 = H|ψ〉, . (3.8)

However, it is more convenient to describe time evolution of the system in interaction picture [35].

Hamiltonian in Eq. (3.7) can be seperated into two part as

H = H0 + V

=

(
0 0

0 ~ω0

)
+

(
0 µE(t)

µE(t) 0

)
, (3.9)

and the time evolution equation in Eq. (3.8) can be rewritten as

i~
∂

∂t
|ψ〉I = i~

∂

∂t

(
eiH0t/~|ψ〉

)
= −H0e

iH0t/~|ψ〉+ eiH0t/~(H0 + V )|ψ〉

= eiH0t/~V e−iH0t/~eiH0t/~|ψ〉

= VI |ψ〉I , (3.10)

where |ψ〉I = eiH0t/~|ψ〉 is a state ket in interaction picture. Thus, we can find interaction picture

Hamiltonian VI from Schrödinger picture Hamiltonian H by

VI = eiH0t/~V e−iH0t/~

=

(
1 0

0 eiω0t

)(
0 µE(t)

µE(t) 0

)(
1 0

0 e−iω0t

)

=

(
0 µE(t)e−iω0t

µE(t)eiω0t 0

)
. (3.11)

14



An electric field of a laser pulse centered at the resonant frequency of the system ω0 is given by

E(t) = E0A(t) cos(ω0t)

=
E0

2
A(t)

(
e−iω0t + eiω0t

)
, (3.12)

where A(t) is a temporal envelope of the pulse. For a Gaussian pulse, A(t) = e−t
2/τ2

. Then, the time

evolution of the system is given by Eq. (3.10) and Eq. (3.11) as

i~

(
ċ0(t)

ċ1(t)

)
=

1

2

(
0 µE0A(t)

(
1 + e−i2ω0t

)
µE0A(t)

(
1 + e2iω0t

)
0

)(
c0(t)

c1(t)

)
. (3.13)

Here, fast oscillation described by the e±i2ω0t terms in Eq. (3.13) is rapidly averaged out and can be

neglected. The approximation which ignores such a fast oscillation is called rotating wave approximation

(RWA) [36]. Under the RWA, Eq. (3.13) becomes,

i~

(
ċ0(t)

ċ1(t)

)
=

1

2

(
0 µE0A(t)

µE0A(t) 0

)(
c0(t)

c1(t)

)
. (3.14)

Since the matrix of Eq. (3.14) in different time commute, we can find the time evolution operator UI(t, t0)

of the state as

|ψ(t, t0)〉I = UI(t, t0)|ψ(t0)〉I

UI(t, t0) = exp

[
−i
∫ t

t0

1

2~

(
0 µE0A(t′)

µE0A(t′) 0

)
dt′

]
. (3.15)

Let us define pulse area Θ(t) and Θ(t, t0) as

Θ(t) = lim
t0→−∞

∫ t

t0

1

~
µE0A(t′)dt′

Θ(t, t0) =

∫ t

t0

1

~
µE0A(t′)dt′ = Θ(t)−Θ(t0). (3.16)

Then,

UI(t, t0) = exp

[
−i

(
0 Θ(t, t0)/2

Θ(t, t0)/2 0

)]
, (3.17)

and using diagonalization of matrix(
0 Θ(t, t0)/2

Θ(t, t0)/2 0

)
=

1√
2

(
−1 1

1 1

)(
−Θ(t, t0)/2 0

0 Θ(t, t0)/2

)
1√
2

(
−1 1

1 1

)
, (3.18)

and finally we have(
c0(t)

c1(t)

)
=

(
cos(Θ(t, t0)/2) −i sin(Θ(t, t0)/2)

−i sin(Θ(t, t0)/2) cos(Θ(t, t0)/2)

)(
c0(t0)

c1(t0)

)
, (3.19)

which describes Rabi oscillation by a resonant pulse. Note that the Rabi oscillation depends on the half

of the pulse area Θ(t, t0).
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3.3 Multiphoton absorption in weak field regime

Time dependent pertubation theory says that in the interaction picture the transition probability

amplitude from initial state |g〉 to final state |f〉 driving by a time dependent interaction VI(t) can be

expanded in series as

c
(0)
f = δfg

c
(1)
f = − i

~

∫ t

t0

dt1 < f |VI(t1)|g >

= − i
~

∫ t

t0

dt1e
iωfgt1Vfg(t1)

c
(2)
f =

(
− i
~

)2∑
m

∫ t

t0

dt1

∫ t1

t0

dt2 < f |VI(t1)|m >< m|VI(t2)|g >

=

(
− i
~

)2∑
m

∫ t

t0

dt1

∫ t1

t0

dt2e
iωfmt1Vfm(t1)eiωmgt2Vmg(t2) (3.20)

...,

which is called Dyson series [35]. Here, time dependent probability Pf of the state |f〉 is given by sum

of the series as

cf =
∑
k

c
(k)
f

Pf = |cf |2 , (3.21)

where cf , sum of the series, is called a transition probability amplitude. As in Eq. (3.7), we can represent

interaction between the atom and an electric field as Vpq = µpqE(t), where µpq =
∫
dV < p|er|q > (here

e is a unit charge), is a transition dipole moment between two states |p > and |q >. Note that kth

order term c
(k)
f in Eq (3.21) describes a transition which consists of k distinct interactions or involves k

photons. In weak field regime, the lowest possible order of transition between |f > and |g > becomes

dominant. Representing Eq. (3.21) in spectral domain will be suitable for intuitive understading. Here,

c
(2)
f will be considered as an example of such a transform. Starting from c

(2)
f of Eq. (3.21), using Fourier

transform relation in Eq. (3.4), we have

c
(2)
f =

(
− i
~

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′eiωfmt
′
µfmE(t′)eiωmgt

′′
µmgE(t′′)

=

(
− i
~

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2e
i(ωfm−ω1)t′µfmE(ω1)ei(ωmg−ω2)t′′µmgE(ω2)

= −
∑
m

µfmµmg
~2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2

∫ t

t0

dt′E(ω1)E(ω2)
ei(ωfg−ω1−ω2)t′ − ei(ωfm−ω1)t′ei(ωmg−ω2)t0

i(ωmg − ω2)

= −
∑
m

µfmµmg
~2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2E(ω1)E(ω2)

×
[
ei(ωfg−ω1−ω2)t − ei(ωfg−ω1−ω2)t0

i(ωfg − ω1 − ω2)i(ωmg − ω2)
− ei(ωfm−ω1)t − ei(ωfm−ω1)t0

i(ωfm − ω1)i(ωmg − ω2)
ei(ωmg−ω2)t0

]
. (3.22)

Using contour integral and residue theorem, Eq. (3.21) becomes

c
(2)
f = −π

∑
m

µfmµmg
~2

E(ωfm)E(ωmg) + i
∑
m

µfmµmg
~2

℘

∫ ∞
−∞

E(ω)E(ωfg − ω)

ωmg − ω
dω.
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Eq. (3.23) describes two photon transition probability amplitude between |g〉 and |f〉 with intermediate

states |m >s.

In addition, Rabi oscillation described in a series form would be helpful to figure out how a weak

field regime can be defined. Starting from Eq. (3.21), using a two level system consist of a ground state

|g〉 and excited state |e〉 with a resonant frequency ω0 and a transition dipole moment µ, we have

c
(0)
f = δfg = 0

c
(1)
f = − i

~

∫ t

t0

dt1 < f |VI(t1)|g >

= − iµ
2~

∫ t

t0

dt1

(
ei(ω0+ω0)t1 + ei(ω0−ω0)t1

)
A(t1)

= − iµ
2~

∫ t

t0

dt1
(
ei2ω0t1 + 1

)
A(t1)

c
(2)
f =

(
− i
~

)2∑
m

∫ t

t0

dt1

∫ t1

t0

dt2 < f |VI(t1)|m >< m|VI(t2)|g >= 0

c
(3)
f =

(
− i
~

)3∑
m1

∑
m2

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 < f |VI(t1)|m2 >< m2|VI(t2)|m1 >< m1|VI(t3)|g >

=

(
− i
~

)3 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 < f |VI(t1)|g >< g|VI(t2)|f >< f |VI(t3)|g >

=

(
− iµ

2~

)3 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3
(
ei2ω0t1 + 1

)
A(t1)

(
1 + e−i2ω0t2

)
A(t2)

(
ei2ω0t3 + 1

)
A(t3)

..., (3.23)

where the state of the system is initially |ψ(t0)〉 = |g〉 and the electric field of the laser pulse is centered at

ω0. For Eq. (3.23), we have used the relation 〈f |VI(t)|f〉 = 〈g|VI(t)|g〉 = 0. Then, using RWA, Eq.(3.23)

becomes,

c
(2n)
f = 0

c
(2n+1)
f =

(
− iµ

2~

)2n+1 ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ t2n

t0

dt2n+1A(t1)A(t2) · · ·A(t2n+1). (3.24)

Since integrand of Eq. (3.24) is physically invariant under exchanging order of variables, we have

c
(2n+1)
f =

1

(2n+ 1)!

(
− iµ

2~

)2n+1 ∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dt2n+1A(t1)A(t2) · · ·A(t2n+1)

=
1

(2n+ 1)!

(
− i

2

)2n+1

Θ(t, t0)2n+1, (3.25)

where (2n+ 1)! is a permutation of 2n+ 1 variables and Θ(t, t0) is the pulse area defined in Eq. (3.16).

Finally, time dependent transition probability amplitude in Eq. (3.21) is given by sum of the series as

cf = −i
∞∑
n=0

(−1)n

(2n+ 1)!

[
Θ(t, t0)

2

]2n+1

= −i sin

(
Θ(t, t0)

2

)
, (3.26)

which is identical to the result of Eq. (3.19).

The result of Eq. (3.26) shows that the Rabi oscillation can be regarded as a summation of all

possible interactions between a system and a electric field. From this result, we can conclude that the

criteria of weak field regime is justified by the pulse area Θ(t, t0)� 1, not the electric field E(t)� 1.
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3.4 Population inversion by linearly chirped electric field

3.4.1 Interaction Hamiltonian of a linearly chirped pulse

In this section, we discuss about mathematical fomulation of a linearly chirped pulse and evolution

of a atomic system interacting with a linearly chirped pulse. We start from the result of Eq. (3.6),

E(t) =
E0∆ω√

2

√
τ0
τ

exp

(
i
φ

2

)
exp

(
− t

2

τ2

)
exp

[
−i
(
ω0t+

2c2t
2

τ4
0 + 4c22

)]
= Ã(t)exp [−iω(t)t] , (3.27)

where τ0 = 2
∆ω , τ = τ0

√
1 +

4c22
τ4
0

, φ = tan−1
(

2c2
τ2
0

)
and a time-dependent effective carrier frequency ω(t)

is ω(t) = ω0 + 2c2
τ4
0 +4c22

t. As shown by ω(t), a linearly chirped pulse is a pulse which has time-dependent

frequency sweep, specifically linear on time. Interaction between linearly chirped pulse and the atomic

system is described by a Hamiltonian of

H =

(
0 µE(t)

µE∗(t) ~ωe

)
, (3.28)

where E(t) is the time-domain electric field given in Eq. (3.27). Transform to appropriate interaction

picture is very helpful for eliminating the time-dependence. After rearranging matrix, we have

H = H0 + V

=

(
0 0

0 ~ω(t)

)
+

(
0 µE(t)

µE∗(t) ~∆(t)

)
, (3.29)

where ∆(t) = ωe − ω(t) is time dependent detuning. Corresponding interaction Hamintonian is given as

VI = exp

[
iH0t

~

]
V exp

[
−iH0t

~

]
=

(
0 µE(t)exp[−iω(t)t]

µE∗(t)exp[iω(t)t] ~∆(t)

)
. (3.30)

Here, we can apply rotating wave approximation(RWA) to eliminate fast oscillation, which can’t be

observed at our time window. Also, without losing of generality, we can include constant phase φ of Ã(t)

into basis. Finally, the interaction picture equation after RWA is given as(
Ċg

Ċe

)
=
−i
~

(
0 1

2µA(t)
1
2µA(t) ~∆(t)

)(
Cg

Ce

)

= −i

(
0 1

2Ω(t)
1
2Ω(t) ∆(t)

)(
Cg

Ce

)
, (3.31)

where Ω(t) = µA(t)/~.

3.4.2 Adiabatic population inversion by a linearly chirped pulse

The characteristic equation of interaction Hamiltonian in Eq. (3.31) is

λ2 −∆(t)λ− 1

4
Ω2(t) = 0, (3.32)
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and corresponding eigenvalues and eigenstates are

λ±(t) =
∆(t)±

√
∆(t)2 + Ω2(t)2

2

=
∆(t)± Ω′(t)

2
, (3.33)

where Ω′(t) =
√

∆(t)2 + Ω2(t) is a generalized Rabi frequency. From the following equations, Eq. (3.34)

and Eq. (3.35),

C±,g(t)

C±,e(t)
=

Ω(t)

∆(t)± Ω′(t)
, (3.34)

tan

(
θ

2

)
=

sin(θ)

1 + cos(θ)

cot

(
θ

2

)
=

sin(θ)

1− cos(θ)
, (3.35)

eigenstates corresponds to λ±(t) is given as

|Ψ+(t) > = sin(θ(t)/2)|g > +cos(θ(t)/2)|e > (3.36)

|Ψ−(t) > = cos(θ(t)/2)|g > −sin(θ(t)/2)|e > . (3.37)

Here, Θ(t) is given by the following equation

cos(θ(t)) =
∆(t)

Ω′(t)
(3.38)

sin(θ(t)) =
Ω(t)

Ω′(t)
. (3.39)

For a linearly chirped pulse with large linear chirp, state evolution becomes slower and adiabatic theorem

is valid [37]. In this case, time evolution of the state occurs along the time evolution of the eigenvalue

and eigenstate. Fig. 3.1 and 3.2 shows the time evolution of the eigenvalue and eigenstate by a linearly

chirped pulse with c2 = 50000fs2, which results adibatic inversion of atomic states.
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Figure 3.1: Time evolution of eigenstate represented by time dependent change of eigenenergy. A

50000fs2 linearly chirped pulse with spectral FWHM of ∼ 7nm and pulse area 2π was used for calculation.

Blue line represents λ+(t), red line represents λ−(t), and dotted cyan line is temporal width τ of the

pulse. Starting from initial state |g >, an adibatic time evolution occurs through red line, λ−(t), and

the corresponding state evolution is |g >→ |e >.
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Figure 3.2: State representation of time evolution given in 3.1. Blue line represents |ψ+(t) >, red

line represents |ψ−(t) >, and dotted cyan line shows temporal width τ of the pulse. From an initial

state |g >, time evolution of the state is described by the red line, |ψ−(t) >, which shows the complete

population inversion of atomic states.
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Chapter 4. Magneto optical trap

Magneto optical trap (MOT) is an experimental apparatus for cooling and trapping of neutral

atoms. Atoms are cooled down to a temperature lower than mK via laser cooling[cite] and trapped

inside a vacuum chamber. Since the temperature of the trapped cold atoms are very low, temperature

dependent effects such as Doppler broadning and collisional decoherence are minimized. In addition,

spatial confinement of the cold atom ensemble inside a MOT plays an important role on considering

spatially inhomogeneous interation between laser beam and the ensemble [38]. In this chapter, I describe

our magneto optical trap system and its charateristics [39].

4.1 Vacuum chamber assembly

Usually, the high-vacuum chamber is made of the stainless-steel(SUS) due to its resistance to oxida-

tion which may become a huge source of out-gasing. We selected SUS-316 as chamber material because

of its nonmagnetic property, i.e., µ ' µ0, to minimize the disturbance of the trap magnetic field.

Fig. 4.1 show a schematic diagram of our chamber. A main spherical polyhedron chamber has two

arms. One arm is connected to the vacuum system, which consists of a ion gauge, an ion pump and a

turbo pump. Since base pressure of the turbo pump (∼ 10−7 Torr) is higher than desired pressure of

the chamber (∼ 10−9 Torr), we installed a gatevalve between the turbo pump and the arm. Since the

gatevalve sustains pressure of the chamber, the turbo can be disassembled from the arm after use. The

ion pump keeps high vacuum (∼ 10−9 Torr) of the whole chamber assembly. The other arm is connected

to a rubidium source through a gate valve. Our rubidium source is just an ingot of rubidium. If the gate

valve is open, vaporized rubidium atoms are diffused into the main chamber.

There are total 18 accesible holes in our chamber, six φ38 holes and twelve φ25 holes. Two φ38 holes

are occupied by a MCP assembly and an ion transfer metal plate assembly. And another two φ38 holes

are conneted to two arms, the atom source and the vacuum system which are explained above. Rest two

φ38 holes and four φ25 holes, which forms an orthogonal axis, are laser quality windows and used for

MOT beams. Another two φ25 holes are used for femtosecond laser and equiped with broadband anti

reflection coated low dispersion windows. The rest four windows are remained for various purpose such

as monitoring of the MOT or absorption imaging of the MOT.

4.2 Cooling and trapping

For cooling and trapping of the neutral atoms, we need two kinds of forces depend on motion of

atoms. First, velocity dependent force for cooling or deacceleration, and second, position dependent

for for trapping or spatial confinement. In the MOT, the Doppler shift produces velocity dependence

of the transition rate and the Zeeman shift produces position dependence of the transition rate. And

momentum kicks given by scattered photons act as forces. Fig. 4.2 and Fig.4.3 show how velocity and

position dependence of the transition rate is made. Especially, the cooling process utilizes Doppler shift

to make velocity dependence of transition rate is called Doppler cooling [40, 41].
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Figure 4.1: Schematic diagram of the chamber assembly.
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Figure 4.2: Doppler cooling inside a MOT. If an atom is moving toward the laser beam, light seen by

the atom is blue shifted. Also, if an atom is moving along with the laser beam, the light is red shifted for

the atom. Thus, if the beam is red detuned initially, the atoms moving toward the laser beam feels the

light with smaller detuning, which results higher transition probability of the atoms moving toward the

beam. Since absorbed photons transfer momentum ~~k to the atom, deacceleration occurs when atom

and photon moving in opposite direction have higher probability of absorption.

4.3 MOT transitions of a 85Rb atom

Energy levels of a 85Rb atom is shown in Fig. 4.4. F = 3 → F ′ = 4 transition is used as cooling

transition due to the its cycling property, i.e. F’=4 only decays into F=3 state. However, small splittings

between 5P3/2 hyperfine states, which are corresponds to the ∼ 10×Γ maximum, can cause unexpected

excitations. Although the transition probability is very small, the excitation like F = 3 → F ′ = 3 can

break the cycling trantion by decaying into F=2. Therefore, we also need another laser light which

couples F=2 ground state with an appropriate excited state to transfer the atoms to F=3 ground state.

We call this transition as “repumping” and we uses F = 2→ F ′ = 3 as a repumping transition.

Wavelength of a diode laser can be tuned and locked to a specific hyperfine transition by using real-

time spectroscopic signal as a reference. Typically, Doppler free spectroscopic schemes such as saturated

absorption spectroscopy (SAS), which can seperately observe hyperfine absorption peaks from Doppler

broadened profiles, are used for frequency reference. Fig. 4.5 and Fig. 4.6 show measured SAS data of
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Figure 4.3: Trapping process inside a MOT. To make position dependence of the transion probability,

circularly polarized beams and magnetic field are used. Since magnetic field linearly depends on position,

Zeeman energy shift induced by the magnetic field is also linear to the position. The σ± circularly po-

larized beams only induces ∆m = ±1 transition due to the angular momentum conservation. Therefore,

as shown in the diagram, transitions giving momentum kicks toward the point of zero magnetic field

become more probable, which gather atoms to near zero magnetic field region.

85Rb.

4.4 Magnetic field characteristics

The tranch of the chamber is designed for anti-Helmholtz coil to produce magnetic field gradient

required for MOT at the center of the chamber. We used 1mm diameter enamelled copper wire as a

magnet wire and 290 turned coil is prepared at each tranch. The anti-Helmholtz has a electrical resistance

of ∼ 7.5Ω. Magnetic field produced by the anti-Helmholtz coil can be calculated by Biot-Savart’s law,

which is given as [42]

B =
µ0

4π

∫
C

Id~l × ~r
|~r|3

. (4.1)

Calculated radial magnetic field is 2.5G/cm/A and 2.6G/cm/A is measured. For axial magnetic field,

5G/cm/A is expected and 5.2G/cm/A is measured.

4.5 Process for High-vacuum

Generally, three pumps are needed to achieve high-vacuum, a rotary pump for initial vacuum pump-

ing, a turbo molecular pump for mid-range vacuum and an ion pump of 10−9 Torr or lower attainable

pressure. Our turbo molecular pump can be started at atmosphere pressure. The rotation speed of our

turbo pump is gradually increased as the pressure becoming lower, to a certain normal operation point.

We can reach about the order of 10−7 Torr with the turbo pump. At this point, we must bakeout the
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Figure 4.4: Energy level diagram and MOT transitions.

whole chamber to get rid of the out gasing from the metal surface inside of the chamber and also from

some unexpected contaminations. Before the bakeout process, bakable temperatures of all parts of the

chamber assembly must be carefully considered. There are two ordinary bakeout methods, by using

heating tapes and heat dispenser, and by using the oven. A method using an oven needes an oven as

large as the whole chamber assembly, therefore getting an oven is a difficulty of the method. However,

the whole chamber can be heated evenly inside the oven and the stress from the thermal expansion is

minimized. Instead of using an oven, we wound heating tapes at the outside surface of the chamber

assembly as even as we can, and several layers of aluminium foils are used to dispense and insulate the

heats. The turbo pump should be kept on during the whole bakeout procedure. Available maximum

bakeout temparature for our chamber assembly is ∼ 250 ◦C and the temperature was slowly controlled,

about 20 ◦C change for an hour, to minimize the stress by using variable transformers(sladacs). The real

time temperature of the chamber assembly was measured and monitored at three different points. After

the temperature reached to ∼ 200 ◦C, voltages of sladacs were fixed. A progress of the bakeout can be

monitored by a vacuum gauge. An ion gauge is ordinarilly used for high vacuum as < 10−8 Torr. When

the temperature rises, pressure inside the chamber also raises because of the out-gassing and thermal

expansion of the gas. Pressure was slowly decreased during bakeout and approched to an equilibrium

point after sufficient time of bakeout. If the pressure doesn’t changed for a day, the bakeout is enough (It

took about a week). The cooling process also must be slowly done. It is important that the turbo pump

must be isolated during cooling because an ordinary turbo pump doesn’t maintain vacuum higher than

order of 10−8Torr. Therefore, if the temperature reaches to operational temperature of the ion-pump,

we must close the valve between the chamber and the turbo pump, and turn on the ion pump. Then,

because of the thermal contraction of the gas inside the chamber, the pressure is rapidly dropped with

temperature.
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Figure 4.5: SAS signal corresponds to the hyperfine transition of F=3→ F’ of 85Rb atoms. The position

indicated by an arrow indicates lock point for MOT cooling and trapping beam, which is 12 MHz

('natural linewidth) red detuned from F=3 → F’=4 transition.

4.6 Diode laser system

Our diode laser uses grating feedback to achieve <1MHz linewidth for trapping atoms in MOT. The

diode laser consist of a laser diode, a grating, a PZT for grating angle control and a thermoelectric cooler

for temperature control. A febri-ferot laser diode(Toptica LD-0780-0200-1) is selected for 780nm D2 line

of Rb atoms. A 1800 grooves/mm reflection grating is used for feedback control of wavelength and the

efficiency of the grating is about 45% at 780nm. Diffraction from the grating is described by the grating

equation as

d(sinθi + sinθr) = mλ, (4.2)

where d = 1
1800 mm is a groove length, θi is incident angle of a ray, θr is the angle of diffaracted ray

and m is a integer. Because the 0th order diffaraction of the grating is a specular reflection, we uses

1st order diffaraction for feedback. For 780 nm radiation, θi = θr,1 = 44.6◦ is a successful feedback

condition and corresponding 0th order diffraction is simply θr,0 = −44.6◦. A PZT is used for an order

1µm displacement and the corresponding angular displacement of the grating is an order of 10−3 degree,

which gives a frequency tuning range about 10GHz. Fig. 4.9 Temperature is also an important parameter

for a laser diode because the resonant mode of a laser diode is very sensity on thermal contraction and

expansion of cavity length. A TEC with a PID temperature feedback controller is used for temperature

control and stabilization.

4.7 Characterization of the MOT

In this section, We discuss about the methods to measure various MOT characteristics and the

results.
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Figure 4.6: SAS signal corresponds to the hyperfine transition of F=2→ F’ of 85Rb atoms. The position

indicated by an arrow indicates lock point for MOT repump beam which corresponds to F=2 → F’=2

transition peak. Easily resolvable F=2 → F’=2 transition was used for repump instead of F=2 → F’=3

transition, which gives no difference for cooling and trapping when repump laser power is enough.

We first observed the loading process of the MOT. A loading process of the MOT can be described

by the equation

Ṅ = α− βN, (4.3)

where N is a number of atoms loaded in a MOT, α is a loading rate and β is the background collisional

loss rate. Here we assumed that the density of the MOT is relatively low and Rb-Rb collisional loss in

the MOT, which is described by a term γN2, is neglected. Straightforward calculation from Eq. (4.3)

gives a loading equation as

N =
α

β
+ ce−βt, (4.4)

where c is defined by a integral constant C as c = − e
−βC

β . From Eq. (4.4), a loading time of the MOT

is given as 1
β .

To observe the loading process, 780nm fluorescence from the atomic cloud was measured as a funtion

of time and measured fluorescence curve was fitted with Eq. (4.4). Fig. 4.10 shows the loading curve of

the MOT, with a ground line.

Density of the captured atomic cloud can be calculated by using volume of atomic cloud and number

of atoms in cloud. By adjusting magnetic field, we made atomic cloud nearly spherical shape, which

make volume caculation easier. Because the chamber hole has a cylindrical shape, we used geometrical

method to estimate the radius of atomic cloud. Fig. 5 shows imaged atomic cloud and two circular

boundaries of chamber hole at near and far side. According to a geometrical fact, radius of the cylinder

at the center of the chamber should be the mean value of two circles. Estimated diameter is 0.13cm and

corresponding volume is 1.53x10−3 cm3. Here we assumed a spatially gaussian atom cloud. Number of
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Figure 4.7: Radial magnetic field produced by the anti-Helmholtz coil, theoritical calculation(blue) and

measured data(red dots) at 1A of current. Data shows the linearlity of the magnetic field at the center

of the chamber.

atoms in cloud is calculated from a saturation value of the loading curve. The fraction of the number of

atoms in an excited state is given as [41]

F =
I/(2Is)

1 + I/Is + (2∆/Γ0)2
, (4.5)

where I is an intensity of the laser beam, Isis the saturation intensition for the transition, ∆ is detuning

of the laser beam and Γ0 is a natural linewidth of the transition. Γ0 ' 6MHz and Is = 1.67mW/cm2 for

the F = 3 → F ′ = 4 transition and we used ∆ ' 12MHz detuned frequency for cooling. Then, number

of the atoms can be estimated from the fluorescence as

Natom =
Pτ

FhfΩA
, (4.6)

where P is measured power of fluorescence in W, τ is a life time of the excited state, which is 26ns for

the F = 3 → F ′ = 4 transition, ΩA is a solid angle of a photon collecting aperture and f is a resonant

frequency for the transition. In our measuring condition, ΩA = πr2

4πR2 where R = 10cm is a distance from

the atom cloud and the aperture and r = 1.25cm is a radius of the aperture. The 0.155V saturation

value in the loading curve was measured with 1MΩ impedance and the estimate current from PMT is

1.55x10−7A. Also, our PMT has 2500 gain at 700V and 2mA/W sensitivity at 780nm. Therefore, power

of measured fluorescence is

P =
current

gain× sensitivity
=

1.55× 10−7

2500× 2
= 31nW. (4.7)

With ' 3mW radiation at each direction with half inch size, I = 3×6
π×0.6252 and finally we have F = 0.21,

N = 3.85× 106 and the density ρatom = 2.52× 109.
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Figure 4.8: Axial magnetic field produced by the anti-Helmholtz coil, theoritical calculation(blue) and

measured data(red dots) at 1A of current. Data shows the linearlity of the magnetic field at the center
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Figure 4.9: Schematic diagram of a grating feedback diode laser.
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blocked. Estimated loading time from fitted equation is 2.35(s).

29



Chapter 5. Interference control of a four level diamond system

5.1 Theoretical consideration of interference control

Two-photon transition probability in weak field regime was already discussed in chapter 3. Based

on Eq. (3.23), consider a four-level diamond-configuration system of rubidium. This work has been

published in Physical Review A Vol. 88, pp. 053427 (2013) [43]. For a four-level diamond-configuration

system, which comprises a ground state |g〉, two intermediate states |a〉 and |b〉, and a final state |f〉, the

two-photon transition probability amplitude of |g〉 → |f〉 transition is given in weak-field regime by the

summation of the two quantum paths via each intermediate state, and written as

cfg = −π
∑
i=a,b

µfiµig
~2

E(ωig)E(ωfi)

+ i
∑
i=a,b

µfiµig
~2

℘

∫ ∞
−∞

E(ω)E(ωfg − ω)

ωig − ω
dω.. (5.1)

Now we will decompose the net transition probability amplitude into spectral subsets to solve the

maximal interference problem for the two-photon transition. First, we denote the resonant and non-

resonant two-photon contributions in Eq. (5.1) as

cfg =
∑
i=a,b

crfg,i +
∑
i=a,b

cnrfg,i

= crfg + cnrfg. (5.2)

Each resonant term, crfg,i, is solely contributed by the two-photon resonant spectral components of the

laser pulse, so the amplitude of crfg,i is not affected by the spectral phase function. However, the non-

resonant term, cnrfg,i, is integrated over the whole spectral range, and, therefore, sensitively responds to

the spectral phase function. Let us assume that the laser pulse has constant spectral phase over the

whole spectrum. For convinience, we define f(ω), the integrand of the total non-resonant part cnrfg as

f(ω) =
∑
i=a,b

µfiµig
~2

E(ω)E(ωfg − ω)

ωig − ω
. (5.3)

An imaginary unit i is omitted from f(ω) because the relative phase between resonant and non-resonant

part is not important here. Then, f(ω) changes its phase at resonant frequency ωig due to the sign change

of the denominator ωig − ω across the resonance for each pathway, |g〉 → |a〉 → |f〉 and |g〉 → |b〉 → |f〉.
Also, the interference between the two pathways introduce another critical frequency, ωc, where f(ω)

changes its sign [see, Fig. 5.1(b)]. ωc is located between ωag and ωbg, and defined as

ωc =
kωag + ωbg
k + 1

, k =
µfbµbg
µfaµag

. (5.4)

Finally, a photon pair make up the two-photon transition satisfies the frequency-sum relation, ωfg =

ω1 + ω2 as appeared in the numerator of f(ω), E(ω)E(ωfg − ω). Since the spectral components are

symmetrically added around ωfg/2, the spectral boundaries are also symmetric around ωfg/2. So, there

are seven spectral boundaries, ωag, ωc, ωbg, ωfg/2, ωfb, ωfg − ωc, and ωfa which make eight spectrum

blocks divided by the boundaries. Within each block, the phase of f(ω) is in-phase if the given spectral

block has a constant phase. Shape of the function f(ω) is schematically described in Fig. 5.1(b)
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form a diamond system, while the two-photon transition to 5D5/2(gray) via 5P3/2 forms a ladder sys-

tem. (b) The spectrum blocks and the schematic shape of f(ω), the integrand of cnrfg. (c) Schematic
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To be more specific, we denote the eight spectrum blocks as A = (−∞, ωag), B = (ωag, ωc), C =

(ωc, ωbg), D = (ωbg, ωfg/2), E = (ωfg/2, ωfb), F = (ωfb, ωfg − ωc), G = (ωfg − ωc, ωfa), H = (ωfa,∞),

and also define positive-definite functions α(ω) and β(ω) as

α(ω) =
µfaµag

~2

|E(ω)E(ωfg − ω)|
|ωag − ω|

β(ω) =
µfbµbg
~2

|E(ω)E(ωfg − ω)|
|ωbg − ω|

. (5.5)

Then, the non-resonant part cnrfg is given as

− icnrfg =

[∫
A

α(ω)dω +

∫
A

β(ω)dω −
∫
H

α(ω)dω −
∫
H

β(ω)dω

]
eiφAeiφH

−
[∫

B

α(ω)dω −
∫
B

β(ω)dω +

∫
G

α(ω)dω +

∫
G

β(ω)dω

]
eiφBeiφG

+

[∫
C

β(ω)dω −
∫
C

α(ω)dω −
∫
F

α(ω)dω −
∫
F

β(ω)dω

]
eiφCeiφF

−
[∫

D

β(ω)dω +

∫
D

α(ω)dω +

∫
E

α(ω)dω +

∫
E

β(ω)dω

]
eiφDeiφE , (5.6)

where φi denotes the phase of the spectrum block i. The phase function φ(ω) needs to be uniform in each

spectrum block to make the corresponding non-resonant transitions constructively interfere with each

other. Note that the first term in each square bracket of Eq. (5.6) indicates the dominant term in each

spectrum block since the function α(ω) or β(ω) in Eq. (5.5) shows singular behavior as ω approaches to

ωag or ωbg, respectively.

As easily found in Eq. (5.6), not all the phases {φA, φB , · · · , φH} are independently controlled. So,

we use only the four phases of A to D and leave the phases of E to H to be zero. By substituting the

spectrum of the laser pulse, Eq. (5.6) becomes

cnrfg = i[cAe
iφA − cBeiφB + cCe

iφC − cDeiφD ], (5.7)

where cj for j ∈ {A,B,C,D} is the sum of integrals in each square bracket of Eq. (5.6), labeled with its

dominant spctrum block j. As all the cj ’s are positive, the maximal cnrfg is obtained when φ(ω) satisfies

the relations:

φA = φC = φB + π = φD + π. (5.8)

5.2 Four level approximation of hyperfine states

Transition dipole moments for the hyperfine transitions are calculated using the reduction formu-

las [45, 46],

< F,mF |erq|F ′,mF ′ >=< F ||er||F ′ >< F,mF |F ′, 1,mF ′ , q >, (5.9)

and

< F ||er||F ′ >=< JIF ||er||J ′I ′F ′ >

=< J ||er||J ′ > (−1)F
′+J+1+I

{
J J ′ 1

F ′ F I

}
, (5.10)
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where the nuclear spin I = 5/2 for 85Rb. We limit our calculation to ∆mF = 0 as our experiment uses

linearly polarized light. We also assume that there is no external magnetic field, i.e., all Zeeman sub-

levels are degenerate. Taking into account the hyperfine splitting, the transition probability amplitude

from a ground sub-level (F , mF ) to a final sub-level (F ′′, mF ) is described by

cF ′′F,mF = −π
√
PF,mF

∑
J′,F ′

J′

µF ′′F ′
J′ ,mF

µF ′
J′F,mF

~2
E(ωF ′′F ′

J′
)E(ωF ′

J′F
)

+ i
√
PF,mF

∑
J′,F ′

J′

µF ′′F ′
J′ ,mF

µF ′
J′F,mF

~2
℘

∫ ∞
−∞

E(ω)E(ωF ′′F − ω)

ωF ′
J′F
− ω

dω, (5.11)

where PF,mF is the statistical probability of the ground sub-levels (F,mF ) and µF ′
J′F,mF

is the

transition dipole moment for (F,mF ) → (F ′J′ ,mF ). F ′J′ indicates the hyperfine state F ′ of J ′ and the

J ′ summation denotes the sum of all possible two-photon transitions via 5P1/2 and 5P3/2. Then, the

resulting transition probability from 5S1/2 to 5D3/2 is given by

P5S1/2→5D3/2
=

∑
F ′′,F,mF

|cF ′′F,mF |2. (5.12)

Since cF ′′F,mF is rapidly diverging near resonance, we can approximate F ′ states are degenerated at the

region far enough from the F ′ hyperfine resonances. Also, The resonant part of the equation also can

be expressed by µ
(2)
F ′′F,mF ,J′

because our laser bandwidth is large enough to be considered as a constant

intensity over the hyperfine splittings. Then Eq. (5.11) can be simplified as

cF ′′F,mF ≈ −π
√
PF,mF

∑
i=a,b

µ
(2)
F ′′F,mF ,J′(i)

~2
E(ωfi)E(ωig)

+ i
√
PF,mF

∑
i=a,b

µ
(2)
F ′′F,mF ,J′(i)

~2

∫
|ω−ωig|�0

E(ω)E(ωfg − ω)

ωig − ω
dω + S, (5.13)

where µ
(2)
F ′′F,mF ,J′(i)

=
∑
F ′
J′(i)

µF ′′F ′
J′(i),mF

µF ′
J′(i)F,mF

for i = a, b is the sum of two-photon transition

dipole moments via all possible J ′(i) states. Here, S is the spectral integral near the hyperfine resonance

region, which remains constant in our experiments because of the limitted spectral resolution. Moreover,

the numerical calculation finds the fixed ratio between µ
(2)
F ′′F,mF ,J′(a) and µ

(2)
F ′′F,mF ,J′(b)

, or

µ
(2)
F ′′F,mF ,J′=3/2

µ
(2)
F ′′F,mF ,J′=1/2

=

√
3

5
, (5.14)

of which the result is also independent of mF . Therefore, Eq. (5.13) is simply reduced to Eq. (5.1) and,

even if hyperfine transitions are considered, ωc in Eq. (5.4) is a constant for all possible F and F ′′ pairs.

5.3 Experimental details

For the experiment, broadband laser pulses were produced by a Ti:sapphire mode-locked laser os-

cillator operating at a repetition rate of 80 MHz, and were then spectrally programmed by a spatial

light modulator (SLM) [see, Fig. 5.1(c)] [4]. The laser spectrum was centered at 782 nm, close to the

two-photon resonant wavelength 778 nm. The SLM with 128 liquid-crystal pixels was located in the

Fourier plane of the 4-f geometry zero-dispersion Martinez stretcher [3] with a pair of cylindrical lenses
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(f = 100 mm) and a pair of gratings (1200/mm). The spectral resolution per pixel for a liquid crystal

cell unit 97 µm wide and with 3 µm spacing was 0.5 nm, so the spectral region of each rubidium resonant

level was excluded from the phase shaping. The shaped laser pulses, with energy up to 0.5 nJ, were

focused by a lens with a focal length of 75 mm inside the rubidium vapor cell and the fluorescence signal

at 420 nm via 6P was collected by a photo-multiplier tube. The collected signal did not exclude the

two-photon transition to 5D5/2 due to the small splitting between the two 5D states. However, the

ladder transition to 5D5/2, which is only sensitive to the spectral blocks C and D, did not interfere with

the diamond transitions to 5D3/2 in the perturbative interaction regime. A brief estimation of the pulse

area
∫∞
−∞ µA(t)/~dt ∼ 0.1, where A(t) is the electric field envelope, calculated with an estimated peak

electric field of 5 MV/m and pulse duration of 100 fs, confirms that the interaction is in the pertubative

regime [32]. To observe the quantum interference between the two excitation passages, |g〉 → |a〉 → |f〉
and |g〉 → |b〉 → |f〉, laser pulses with a wide spectral width, about 45 nm FWHM, were required due to

the energy difference (15 nm) between |a〉 and |b〉.

5.3.1 SLM calibration

Before proceeding to the quantum interference experiment, we performed a phase-step scanning

experiment. The laser pulse was spectrally shaped with a phase function φ(λ) = πΘ(λ − λs), where

Θ(λ) is the Heaviside step function and λs changes through the laser spectrum. As shown in Fig. 5.2(a),

the π-phase step was swept to calibrate the spectral position of the SLM pixels. When the π-phase step

was located at a resonant frequency, it inverted the base sign of the non-resonant transition probability

amplitude in Eq. (5.1) and part of the destructive interference was removed. As a result, at each

resonant frequency position, the two-photon transition probability increased and a sharp peak occurred.

Figure 5.2(b) shows the experimental results of the phase-step sweeping and identifies the rubidium

resonant-level locations in the SLM.

5.4 Experimental result

The phase programming of spectrum blocks aims to control the interference between the two passages

of rubidium two-photon transition from |g〉 to |f〉. Assume that the laser pulse has a constant phase

over the spectrum. Then, as described in Eq. (5.7), destructive interference occurs due to the base phase

differences in the transition probability amplitude components. We can represent this behavior in a

vector diagram, as in Fig. 5.3(a). The phases of the resonant and non-resonant transition probability

amplitude components are shown as vectors, with the proper labeling introduced in Eq. (5.7). For

convenience, we define

cnr+ = cAe
iφA + cCe

iφC and cnr− = cBe
iφC + cDe

iφD . (5.15)

5.4.1 A+C phase rotation

The first experiment considered the interference control of A and C with respect to B +D and the

resonant components. The vector diagram in Fig. 5.3(b) shows the schematics of this experiment, where

we applied a −π/2 to 2π phase to A and C independently with π/10 steps. As the phase increased, the

non-resonant components corresponding to A and C rotated counter-clockwise and the initial destructive

interference was gradually removed. Figure 5.3(d) shows the result. As the phase of A and C respectively
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reached π/2, the two-photon transition probability increased and a maximum occurred. Note that the

maximum point shifted toward π in both the φA and φC directions because of the other non-resonant

components B and D, in which the phase differences with respect to A and C are inherently π.

5.4.2 B+C phase rotation

The second experiment used the phases of B and C to control the interference with respect to A+D

and the resonant component. The vector diagram in Fig. 5.3(c) describes the concept of this experiment.

For this, we applied a −π/2 to 2π phase to B and C independently with π/10 steps. Unlike in the

previous case of A and C control, B and C were initially in opposite directions from each other, or with

the phase difference of π. Hence, the maximal occurred near φB = π/2 and φC = 3π/2, as shown in

Fig. 5.3(e).

5.4.3 AC+BD phase rotation

Finally, we applied interference control to all non-resonant components with respect to the resonant

component. Direct phase shaping of a resonant frequency component was not available via our SLM due

to the limit of the frequency resolution. Therefore, we controlled the non-resonant components to align

them with the resonant one. In this experiment, θ, the phase of A and C, which has an inherent phase of

π/2, was simultaneously varied from 0 to 2π, while the phase of B and D, which has an inherent phase

of 3π/2, was varied from 0 to −2π, i.e., −θ. Then, as described in Fig. 5.4, the non-resonant component

cnr+ rotated counter-clockwise and cnr− rotated clockwise. After θ = π/2 rotation, the two non-resonant

components and the resonant component were all aligned and the maximal transition probability was

achieved. Another local maximum occured at θ = 3π/2 as a consequence of the anti-parallel resonant

and non-resonant components. Figure 5.4 shows the experimental results of the interference control. The

data were fitted with the empirical formula

cfg = −r + xei(θ+π/2) + yei(−θ−π/2), (5.16)

where r is |crfg|, x is |cnr+ |, y is |cnr− | and θ is the phase applied to the spectrum blocks. The result

confirms the phase function solution summarized in Table 5.1, that A and C should be π/2 phase-shifted

from resonant transitions and π phase-shifted from B and D.

Table 5.1: Phase function solution of the four-level diamond-configuration system

blocks A B C D

ω (−∞, ωag) (ωag, ωc) (ωc, ωbg) (ωbg,
ωfg

2 )

φ(ω) π
2 − φH −π2 − φG

π
2 − φF −π2 − φE

blocks E F G H

ω (
ωfg

2 , ωfb) (ωfb, ωfg − ωc) (ωfg − ωc, ωfa) (ωfa,∞)

φ(ω) φE φF φG φH
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Chapter 6. Spatially averaged Rabi oscillation

6.1 Spatial averaging effect

When a two-state atom interacts with a resonant laser pulse, the dynamics of the excited state

probability, which we may refer to as single-atom Rabi oscillation (SARO), is represented by

P (Θo) = sin2 Θo

2
, (6.1)

where Θo is the pulse area defined by Θo =
∫
µA(t)dt/~, as in Eq. (3.16). Since the pulse area is subject

to both the pulse duration and the electric-field envelope, Rabi oscillations of an ultra-short time scale can

be implemented by ultrafast optical interaction at a strong-enough laser intensity regime. However, the

spatial extent of the laser beam over the laser-atom interaction region inevitably causes spatial average

effect that often leads to a complete wide out of the oscillatory behavior. To overcome this problem,

homogenizing the spatial profile of laser beams [32, 33] and adapting chirped laser interaction [31] have

been considered. This work has been published in Optics Letters Vol. 40, pp. 510 (2015) [38].

For quantitative analysis of spatially averaged Rabi oscillation, we use the atom ensemble localized

in a magneto-optical trap (MOT) and make it interact with ultrafast laser pulses. As a theoretical model

to investigate the spatially inhomogeneous interaction, we consider a Gaussian laser beam propagating

along z direction. The pulse area in Eq. (6.1) is then represented in the cylindrical coordinate system as

Θ(r, z) = Θo
wo
w(z)

e−r
2/w(z)2 = Θze

−r2/w(z)2 , (6.2)

where r =
√
x2 + y2, w(z) is the beam waist at z, wo = w(0) is the minimal beam waist, Θo is the

maximal pulse area, and Θz = woΘo/w(z). When we assume the atom density profile in the MOT is

also a Gaussian, i.e., ρ(r, z) = ρoe
−(r2+z2)/w2

a , the excitation probability averaged over the entire atom

ensemble, 〈P (Θo)〉 =
∫
P (r, z; Θo)ρ(r, z)dV /

∫
ρ(r, z)dV , which we may call the ensemble-atom Rabi

oscillation (EARO), is then given by

〈P (Θo)〉 =
1√
πw3

a

∫ ∞
−∞

dz

∫ ∞
0

dr2 sin2 Θ

2
e−(r2+z2)/w2

a

=
1√
πw3

a

∫ ∞
−∞

dzw2e−z
2/w2

af(Θz), (6.3)

where f(Θz) =
∫ Θz

0
(Θ/Θz)

w2/w2
a sin2(Θ/2)dΘ/Θ.

Figure 6.1 shows the numerical calculation of EARO in Eq. (6.3) for various size ratios wo/wa, which

is compared with SARO in Eq. (6.1). Note that the all EARO peaks coincide with the SARO curve in

Fig. 6.1. The locations of the EARO peaks are found from the condition

d〈P 〉
dΘo

=
1√
πw3

a

∫ ∞
−∞

dzw2e−z
2/w2

af ′
dΘz

dΘo
= 0. (6.4)

It is straightforward to show that f(Θn) = (wa/w)2 sin2 Θn/2 for those Θn’s that satisfy f ′ = 0. Then,

Eq. (6.3) at Θ = Θn results in

〈P (Θn)〉 = sin2 Θn

2
, (6.5)

indicating that all EARO peaks are on the SARO curve.
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√
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6.2 Experimental details

Experiments were performed with atomic rubidium (85Rb) in a MOT as shown in Figs. 6.2(a,b). The

5S1/2 and 5P1/2 energy states are the ground and excited states, respectively, of the two-level system.

The atoms were initially prepared in F = 3 hyperfine level of 5S1/2 by the MOT, and a π-polarized

laser pulse induced ∆mF = 0 transition to F ′ = 2 and 3 of 5P1/2. The excited and ground states of

the combined hyperfine levels formed an effective two-level system, for a ultrafast laser interaction with

a moderated laser bandwidth [34, 47]. The atomic transition was driven by ultrafast laser pulses from

a Ti:sapphire laser amplifier that produced 250-fs-short pulses at a repetition rate of 1 kHz. When the

laser pulses were focused by a lens of focal length f = 500 mm on to the atom ensemble, the pulse

energy of up to 20 µJ corresponded to the pulse area Θo up to 5π. The laser spectrum was centered

at λ = 794.7 nm, the resonant wavelength of the 5S1/2 → 5P1/2 transition, and the spectral bandwidth

was ∆λ = 3 nm (FWHM). The laser pulse was focused on the atom cloud by a f = 500 mm lens, and

the beam size at the atom cloud was adjusted by translating the lens. The detection of the excited atom

population was carried out by photo-ionization as shown in Fig. 6.2(c). The probing UV pulse for the

photo-ionization was prepared by frequency-doubling of a fraction of the main pulse via second-harmonic

generation. The beam size of the probing UV pulse was adjusted by another lens f = 300 mm. Both

laser pulses were combined after the lenses by a dichroic mirror and collinearly delivered to the atom

cloud. The time difference controlled by a delay stage between the main and probing pulses was fixed

to 10 ps, a thousand times smaller than the decay time of the Rb excited state [45].

In each cycle of experiment operating at 2 Hz, atoms were first prepared by turning on 500 ms and off

the MOT by mechanical shutters, then immediately interacted with the ultrafast laser pulse, and finally

photo-ionized by the probing UV pulse. The excited-state probability was estimated by comparing the

fluorescence image counting of the atoms in the MOT and the ion count.

6.3 Experimental result

6.3.1 Spatially averaged oscillation

Figure 6.3 shows the main experimental result, which clearly exhibits the seemingly decay-like

oscillatory behavior. The above analysis on the ensemble-atom laser interaction predicts that such

behavior is the spatially averaged Rabi oscillation. The agreement of the numerical calculation by

Eq. 6.3 and the experimental result is excellent. It is noted, however, that the discrepancy between

them is evident in particular for a high pulse-area exceeding Θo = 3π and also for a higher spatial

inhomogeneity in Fig. 6.3(c) for wo/wa = 1 than the others. As a cause of the error, we can consider

the three-photon ionization directly by the main laser pulse in addition to the one-photo ionization by

the probing UV pulse. Such effect is however already systematically taken into account in the data

analysis, and the error is estimated less than 2% in the given range of pulse area. The main reason for

the discrepancy is the axis mis-alignment of at most 50µm between the laser and the atom cloud, not to

mention the imperfect shape of the atom cloud. Our calculation predicts the case in Fig. 3(c) exhibits

total 5% of error. It is noted that the ratios of the adjacent peaks are uniquely determined as a function

of the size ratio wo/wa, which result can be used as an alternative means to calibrate the excited-state

probability of the atom ensemble.
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Figure 6.2: (a) Schematic diagram of the experimental setup. Ultrafast laser pulses were split into two

pulses, one for Rabi oscillation and the other frequency-doubled for atom ionization. Both pulses were

independently focused and delivered to the MOT by a dichroic mirror (DM). (b) Schematic diagram of

the 85Rb MOT chamber. The trapping and re-pumping laser beams were adjusted to vary the atom

cloud size from 250 to 500 µm [51]. (c) Energy level diagram of the Rb atom and the laser spectrum.

Atoms in the excited 5P1/2 state were photo-ionized and Rb+ ions were transferred by bias electric plates

and measured by a micro-channel plate detector (MCP).
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Figure 6.4: Composite-pulse experiment of ensemble-atom Rabi oscillation. For an atom ensemble of

the size 1.7 times smaller than a laser beam (i.e., wo = 1.7wa), the excited-state population for the

composite-pulse operation Rx(Θo/2)Ry(Θo)Rx(Θo/2) was measured and plotted in black circles. In

comparison, the single pulse experiment Rx(Θo) was plotted in red boxes. The solid lines represent the

corresponding numerical calculations, when the spatial inhomogeneity of the ensemble-atom experiment

is taken into account. The dotted lines are for the spatially homogeneous case (i.e., wo � wa), when the

theoretical formulas are given by 1 − cos4 (Θo/2) (black) for the composite pulse and sin2 (Θo/2) (red)

for single pulses, respectively.

6.3.2 Rx(Θo/2)Ry(Θo)Rx(Θo/2) composite-pulse operation

In the second experiment, we considered a composite pulse to achieve a higher-fidelity Rabi oscilla-

tion. We tested the three-pulse composite consisting of two π/2 rotations about x-axis and a π rotation

about y-axis, or Rx(π/2)Ry(π)Rx(π/2), which sequence of pulses is well-known in NMR designed to

correct errors caused by pulse-area fluctuation [48, 49]. The π-rotation Ry(π) about the y-axis in the

middle corrects the rotation error of the pair of π/2 rotations Rx(π/2)2. In our experiment, we used the

three-pulse composite to reduce the spatial inhomogeneity in the ensemble-atom laser interaction. To

make the three pulses of the specific amplitude and phase coding, we used an acousto-optic pulse shaper

as shown in Fig. 6.2(a), and the accurate control of the pulses was checked by in-situ auto-correlation

measurement [50]. Figure 6.4 shows the result of the pulse composite experiment. The first-order cor-

rections of the pulse area Θo for the π and π/2 pulses in an ensemble-atom experiment are respectively

given by π+α and π/2 +β, where α and β are determined by the size ratio wo/wa. The experiment was

thus performed by a pulse sequence Rx(π/2+α)Ry(π+β)Rx(π/2+α), and the excited-state population

is plotted in Fig. 6.4 as a function of Θo = π + 2α = π + β by fixing β = 2α for the experimental con-

venience. The result in Fig. 6.4 clearly demonstrates 15% of increase at the first peak of the oscillation

by the composite pulse (black circles) compared to the oscillation by the single pulse (red boxes). The
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robustness of the composite pulse scheme manifested by the broadened oscillation peak around the π ro-

tation is also clearly observed in Fig. 6.4. It is straight-forward to show that the excited state probability

for a single-atom excitation is given by

Pe(Θo) = 1− cos4 Θo

2
(6.6)

for the composite pulse, which results in a broader peak shape around Θo = π than sin2 (Θo/2) for a

single pulse in Eq. 6.1.
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Chapter 7. Quantum dynamics of a two-state system induced

by a chirped zero-area pulse

In this chapter, we consider chirped zero-area pulses to study the two-state system dynamics induced

by them. To begin with, in the basis of the pulse-area theorem [9], “simple” zero-area pulses make no

net transition, leaving the two-state system intact. However, to be more precise, the system does change

during the dynamics, although it ends up as a complete population return (CPR) after the completion

of the interaction. In that regards, certain manipulation of the initial zero-area pulse could alter the

system evolution completely, leading to a significant change in the final transition probability. Even CPI

could take place by detuning the zero-area pulse [52, 53], where abrupt phase change makes transitions

in adiabatic basis or a crossover between adiabatic evolution and Rabi oscillations. Inspired by these

counter-intuitive examples, we proceed further to consider chirping an (on-resonant) zero-area pulse in

this chapter. For this, we have conducted laser-atom interaction experiments with intense shaped laser

pulses and spatially confined atomic vapor. The results are (1) chirped zero-area pulses could produce

both CPI and CPR; (2) the excited-state probability oscillates as a function of the effective pulse-area

defined by unshaped pulses; and (3) the given dynamics can be modeled in terms of Ramsey-type three-

pulse sequence Rx(π/2)Rz(Θz)Rx(π/2) (to be explained below), all of which can be summarized by an

interplay between adiabatic evolution and Rabi rotations. This work has been published in Physical

Review A Vol. 93, pp. 023423 (2016) [54].

7.1 Theoretical consideration

7.1.1 A chirped zero-area pulse

When the electric field of a laser pulse is defined in time domain as

E(t) = E(t) cos (ωot+ ϕ), (7.1)

where E(t) and ϕ are the envelope and phase, respectively, of the electric-field that oscillates with the

carrier frequency of ωo set to the Bohr transition frequency of the two-state atom, the pulse area Θ is

given under the rotating wave approximation by

Θ =
2µ

~

∫ ∞
−∞

E(t)e−iωotdt =

√
8πµ

~
Ẽ(ωo), (7.2)

where Ẽ(ω) is the amplitude spectrum of the electric field. In that regards, on-resonance pulses with

zero resonant-frequency component, i.e., Ẽ(ωo) = 0, are zero-area pulses (Θ = 0) defined in frequency

domain, which is consistent with the zero-area pulse alternatively defined in time domain [52]. For

instance, a Gaussian pulse with a spectral hole around the resonance frequency ωo is a zero-area pulse,

which is given by the difference of two Gaussian pulses both frequency-centered at ωo, i.e.,

Ẽ(ω)

Eo
= exp

[
− (ω − ωo)2

∆ω2
1

]
− exp

[
− (ω − ωo)2

∆ω2
2

]
. (7.3)

When the spectral width of the first pulse, ∆ω1, is significantly bigger than that of the second, ∆ω2,

(i.e., ∆ω1 � ∆ω2), the second pulse (or, to say, the hole pulse) is regarded as a narrow spectral hole of

the first pulse (the main pulse).
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Let us consider now a chirped zero-area pulse, by chirping the above zero-area pulse, which reads

Ẽ(ω)

Eo
=

[
exp

[
− (ω − ωo)2

∆ω2
1

]
− exp

[
− (ω − ωo)2

∆ω2
2

]]
× exp

[
− ic2

2
(ω − ωo)2

]
, (7.4)

where the two constituent Gaussian pulses are simultaneously chirped with the frequency chirp c2. The

electric field in time domain is then given by

E(t) = E1(t) cos [(ωo + αt)t+ ϕ1]

−E2(t) cos [(ωo + βt)t+ ϕ2]

≡ E1(t)− E2(t), (7.5)

where the amplitude and the phase for each pulse i = 1, 2 are, respectively,

Ei(t) =
Eo∆ωi√

2

√
τo,i
τi
e−t

2/τ2
i , (7.6)

ϕi = −1

2
tan−1 2c2

τ2
o,i

, (7.7)

with τo,i = 2/∆ωi, the initial pulse widths, and τi =
√
τ2
o,i + 4c22/τ

2
o,i, the chirped pulse widths. The

chirp parameters are α = 2c2/(τ
4
0,1 + 4c22) and β = 2c2/(τ

4
0,2 + 4c22), respectively, for the main and hole

pulses. Note that, although Eq. (7.5) satisfies Θ = 0 based on the definition in Eq. (7.2), the conventional

pulse area defined in time domain,
∫∞
−∞ µEtotal(t)/~dt, for real envelope Etotal(t) of the total electric field

E(t) = E1(t)− E2(t), is generally non-zero for c2 6= 0.

As to be discussed below, this type of chirped zero-area pulses can induce both CPI and CPR of

a two-state system. To understand the nature of the given dynamics, we will transform the two-state

system in three steps: first to an interaction basis (to freeze the phase evolution of the bare atomic

state), then to an adiabatic basis [55] (to trace the system’s state-mixing during the interaction), and

finally to another interaction basis (to clear out the remaining fast phase-evolution of the state). After

obtaining the model Hamiltonian, we will discuss the resulting state-evolution in terms of Ramsey-like

three rotations in the Bloch sphere representation.

7.1.2 Schrödinger equation described in the interaction picture of the main

pulse

The dynamics of the two-state system interacts with the electric field E(t), in Eq. (7.5), is governed

by the Schrödinger equation, which reads

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (7.8)

where |ψ(t)〉 ≡ [a(t), b(t)]T is the column vector with the probability amplitudes a(t) and b(t) of the

two-states |1〉 and |2〉 (bare atomic states), respectively, and the Hamiltonian H(t) is given by

H(t) =
~
2

[
−ωo 0

0 ωo

]
+ µ

[
0 E1 − E2

E1 − E2 0

]
. (7.9)

First, we consider the rotating-wave approximation corresponding to the atom interaction with the main

pulse E1(t) (only). In the given interaction picture [35] defined by the state transformation

|ψ(t)〉I = exp
( i
~

∫ t

0

Hω(t′)dt′
)
|ψ(t)〉 ≡ Tω|ψ(t)〉 (7.10)

47



with

Hω =
~
2

[
−ω(t) 0

0 ω(t)

]
, (7.11)

where ω(t) = ωo + 2αt is the (instantaneous) carrier frequency [56] of E1(t), the interaction Hamiltonian

VI is given by

VI =
~
2

[
−∆(t) Ω1(t)

Ω1(t) ∆(t)

]
− ~

2

[
0 Ω2(t)

Ω∗2(t) 0

]
≡ VI,1 + VI,2, (7.12)

where ∆(t) = ωo − ω(t) = −2αt is the (instantaneous) detuning. The Rabi frequencies of the main and

hole pulses are, respectively, given by

Ω1(t) =
µ

~
E1(t), (7.13)

Ω2(t) =
µ

~
E2(t)ei[(β−α)t2+ϕ], (7.14)

where we define ϕ ≡ ϕ1 − ϕ2, and the time-independent phase ϕ1 is included in the base vector for the

sake of simplicity.

7.1.3 Dynamics described in the adiabatic basis of the main pulse

In Eq. (7.12), VI,1, the first part of the interaction Hamiltonian, varies slowly compared to the

second VI,2, so the system dynamics can be more easily understood in the adiabatic basis [55] of the

main pulse. The eigenvalues of VI,1 are given by

~
2
λ±(t) = ±~

2

√
Ω2

1(t) + ∆2(t) (7.15)

and the corresponding eigenstates are

|ψ−(t)〉 = cosϑ(t)|0〉I − sinϑ(t)|1〉I ,

|ψ+(t)〉 = sinϑ(t)|0〉I + cosϑ(t)|1〉I , (7.16)

where |0〉I and |1〉I form the eigenbasis in the interaction picture, and the mixing angle ϑ(t) is defined

by

ϑ(t) =
1

2
tan−1 Ω1(t)

∆(t)
for 0 ≤ ϑ(t) ≤ π

2
. (7.17)

So, the two-state system can be described in adiabatic basis (|ψ−(t)〉, |ψ+(t)〉) with the transformation

|ψ(t)〉A = R(ϑ)|ψ(t)〉I , where the rotation R(ϑ) is defined by

R(ϑ) =

[
cosϑ(t) − sinϑ(t)

sinϑ(t) cosϑ(t)

]
. (7.18)

Note that each adiabatic base vector, |ψ−(t)〉 or |ψ+(t)〉, changes from one atomic state to the other, as

time evolves from t = −∞ to ∞. In other words, when c2 > 0,

lim
t→−∞

|ψ−(t)〉 = |0〉I , lim
t→∞

|ψ−(t)〉 = −|1〉I ,

lim
t→−∞

|ψ+(t)〉 = |1〉I , lim
t→∞

|ψ+(t)〉 = |0〉I , (7.19)

and when c2 < 0, the relation is reversed, since the time dependence of ∆ is opposite.
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In the given adiabatic basis, the Schrödinger equation is given by

i~
d

dt
|ψ(t)〉A =

(
RVIR

−1 − i~RṘ−1
)
|ψ(t)〉A, (7.20)

where the second term in the parenthesis can be ignored, when the evolution by Ω1(t) is adiabatic, i.e.,

i~RṘ−1 = i~

[
0 −ϑ̇
ϑ̇ 0

]
≈ 0, (7.21)

so the resulting interaction Hamiltonian is given by

VA =
~
2

[
λ− −Ω2

−Ω∗2 λ+

]
+ ~<(Ω2) sinϑ

[
cosϑ sinϑ

sinϑ − cosϑ

]
, (7.22)

where <(Ω2) is the real part of Ω2(t).

7.1.4 Ramsey-type three pulsed interactions

Let us take a closer look at Hamiltonian VA. At the extreme times |t| → ∞, it becomes

VA =
~
2

[
−|∆(t)| −Ω2(t)

−Ω∗2(t) |∆(t)|

]
for t→ −∞

=
~
2

[
−|∆(t)| Ω∗2(t)

Ω2(t) |∆(t)|

]
for t→∞. (7.23)

Note that the phase evolutions of the diagonal terms are opposite with each other. So, it is convenient

to remove the phase factor, exp(i
∫ t

0
|∆(t′)|dt′) = exp(i|∆(t)|t/2), through a transformation to another

interaction basis, i.e.,

|ψ(t)〉F ≡ T∆|ψ(t)〉A, (7.24)

where T∆ = exp
(
i
∫ t

0
H∆(t′)dt′/~

)
with

H∆ =
~
2

[
−|∆(t)| 0

0 |∆(t)|

]
. (7.25)

The resulting final Hamiltonian becomes

VF = T∆(VA −H∆)T †∆ =
~
2

[
−∆F (t) ΩF (t)

Ω∗F (t) ∆F (t)

]
, (7.26)

where the effective “detuning” ∆F and “coupling” ΩF are given by

∆F =
√

Ω2
1(t) + ∆2(t) + <(Ω2) sin[2ϑ(t)]− |∆(t)|,

ΩF = {− cos[2ϑ(t)]<(Ω2)− i=(Ω2)}e−i|∆(t)|t/2, (7.27)

where =(Ω2) is the imaginary part of Ω2(t). The above Hamiltonian leads to the detuned Rabi oscil-

lation [9] after a second rotating-wave approximation. The remaining time-dependence in ΩF (t), the

slowly-varying phase factor eiβt
2

, is negligible for the considered chirp values.

Figure 7.1(a) plots the Rabi frequencies of the main pulse, Ω1(t), the hole, |Ω2(t)|, and the total

electric field, |Ω(t)| = |Ω1(t)−Ω2(t)|, of a chirped zero-area pulse that results in a CPR. The numerical

values for the given pulse are c2 = 5.1 × 104 fs2, ∆ω1 = 1.5 × 1013 rad/s, and ∆ω2 = 1.9 × 1012 rad/s.
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The peak electric field of the main pulse is Eo∆ω1/
√

2 = 2.3 × 108 V/m, and the dipole moment of

atomic rubidium (85Rb) for linearly polarized light is given by µ = 1.46 × 10−29 Cm [47, 45]. To

examine adiabaticity, we use the adiabaticity function f(t) = |Ω̇(t)∆(t)− Ω(t)∆̇(t)|/2[
√

Ω2 + ∆2]3 [28].

Adiabatic evolution condition is given by f(t)� 1. For linearly chirped pulses, the function f(t) can be

explicitly written as,

f1(t) =
α|Ω1(t)|(2t2/τ2

1 + 1)

[
√
|Ω1|2 + 4α2t2]3

, (7.28)

f2(t) =
β|Ω2(t)|(2t2/τ2

2 + 1)

[
√
|Ω2|2 + 4β2t2]3

, (7.29)

where f1(t) and f2(t) are the adiabatic functions for the main and the hole pulses, respectively. Note

that the pulse width τi and the chirp parameters α and β are functions of the bandwidth ∆ωi as well

as of the linear chirp c2. With the given parameters in Fig. 7.1, we obtain the adiabatic condition,

f1(t) < 0.2, for the main pulse with Eo∆ω1/
√

2 > 1.2× 108 V/m and c2 > 2× 104 fs2, which ensures the

adiabatic evolution by the main pulse. However, we obtain f2(t) > 1.2, so the hole pulse induces simple

Rabi rotations, even up to the region c2 ' 1× 105 fs2.

Figure 7.1(b) shows the time-evolution of the transition probability in the adiabatic basis compared

with the transition in the bare basis. The overall transition is a CPI in the adiabatic basis, or a CPR in

the bare basis. We plot, in Fig. 7.1(c), the polar angle, θrot(t), of the rotational axis on the Bloch sphere

in the adiabatic basis, defined by

θrot(t) = tan−1 |ΩF (t)|
|∆F (t)|

. (7.30)

When θrot ≈ 0, the given rotation becomes approximately a phase evolution (about the z axis); however,

when θrot = 0.5π, it becomes a Rabi rotation. Therefore, the three plateaus in Fig. 7.1(c) suggest

that there are three distinct regions: In the two tail regions (t < −τ1 and t > τ1), the coupling |ΩF | is

dominant compared to the detuning |∆F |, so a Rabi rotation is expected. Figure 1(b) clearly shows that,

in the both tail regions, Rabi rotations of pi/2 (starting from the transition probability zero to 0.5, and

from 0.5 to 1, respectively) occur in the adiabatic basis. However, in the central region (−τ1 < t < τ1),

the detuning |∆F | is large, causing approximately a phase evolution of the system.

|∆(t)| � Ω1(t) (the tail regions)

In the tail regions (t < −τ1 and t > τ1), the detuning ∆(t) greatly exceeds the main-pulse interaction

Ω1(t), i.e., |∆(t)| � Ω1(t). So, we get ∆F → 0, and ΩF → −|Ω2|eiϕ (for t < τ1) or |Ω2|e−iϕ (for t > τ1).

Given that, the Hamiltonian in Eq. (7.26) is approximated, when the slowly varying phase eiβt
2

in Ω2 is

neglected, as

VF ≈ ~
2

[
0 |Ω2(t)|ei(π+ϕ)

|Ω2(t)|e−i(ϕ+π) 0

]
for t < −τ1

≈ ~
2

[
0 |Ω2(t)|e−iϕ

|Ω2(t)|eiϕ 0

]
for t > τ1, (7.31)

which means that the dynamics in the tail regions are rotations on the Bloch-sphere surface, represented

by Rπ+ϕ(Θ−2 ) and R−ϕ(Θ+
2 ), respectively, for t < τ1 and t > τ1. The rotation axes are on the xy plane,

of which the directions are defined by azimuthal angles φ = π+ϕ and φ = −ϕ, respectively. The rotation

angles are given by

Θ−2 =

∫ −τ1
−∞

|Ω2(t)|dt and Θ+
2 =

∫ ∞
τ1

|Ω2(t)|dt, (7.32)
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Figure 7.1: (a) The Rabi frequencies Ω1(t) (dotted line) for the main pulse, |Ω2(t)| (dashed line) for

the hole, and |Ω(t)| (solid line) for the total electric field. (b) The time evolution of the transition

probabilities in bare atom and adiabatic bases. (c) The transience of the polar angle θrot(t) (solid line)

for the rotational axis of the Bloch vector in the adiabatic basis compared with |∆F (t)| (dotted line) and

|ΩF (t)| (dashed line). The calculation parameters chosen at a CPR are given in the text.
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as a function of the hole pulse E2(t), and Θ+
2 =Θ−2 due to the symmetry.

|∆(t)| � Ω1(t) (the central region)

In the central time region (−τ1 < t < τ1), the main pulse E1(t) plays an important role. To

understand the dynamics in this region, we consider an extreme approximation under the conditions

Ω1(t)� ∆(t) and Ω1(t)� |Ω2(t)|. (Note that the case depicted in Fig. 1 is different from this extreme

case.) Then, we get ∆F ≈ Ω1(t)− |∆(t)|, which leads to

VF ≈
~
2

[
−Ω1(t) + |∆(t)| 0

0 Ω1(t)− |∆(t)|

]
. (7.33)

The resulting two-state dynamics is the rotation about the z-axis, or Rz(Θ1), by an angle

Θ1 =

∫ τ1

−τ1
(Ω1(t)− |∆(t)|)dt (7.34)

defined by the main pulse E1(t).

As a result, the overall dynamics of the two-state system by the chirped zero-area pulse (in the

transformed adiabatic basis) can be summarized as following:

R−ϕ(Θ+
2 )Rz(Θ1)Rπ+ϕ(Θ−2 ). (7.35)

This manifestation of the three-step interaction is a reminiscence of the Ramsey rotation often described

by Rx(π/2)Rz(Θz)Rx(π/2), from which the difference is to be discussed.

Note that the necessary condition required (in our consideration) for Ramsey-type three pulse se-

quence (First Rabi + Second adiabatic evolution + Third Rabi) modeling is in fact the contrast in the

spectral width between the main and hole pulses. When the spectral width of the main pulse is large

enough, chirping makes the main pulse satisfy the adiabatic condition, while the same amount of chirp

makes the spectrally-narrow hole pulse remain as a Rabi-inducing pulse. Therefore, pulses of smooth

envelope shapes other than Gaussian, when they have the spectral hole and the chirp, could be approx-

imated to a Ramsey-type three pulse sequence. Also, the three-pulse Ramsey sequence model captures

the population dynamics of the system when it is initially in the ground state, i.e., it is shown to be

applicable for population dynamics with such an initial state.

7.2 Calculation results

Figure 7.2 presents the numerical simulation for the two-state system dynamics induced by the

chirped zero-area pulses. For the numerical calculation, the Schrödinger equation in Eq. (7.20) is used

with ∆ω1 = 1.5×1013 rad/s and ∆ω2 = 1.9×1012 rad/s. In Fig. 7.2(a), the probability of the transition

to the excited state in bare atomic basis is shown as a function of ΘRabi and c2, where ΘRabi denotes

the effective Rabi rotation phase for the main pulse with zero chirp, defined by

ΘRabi =
µ

~

∫ ∞
−∞
E1(t; c2 = 0)dt. (7.36)

Note that ΘRabi was varied by changing Eo, the electric field amplitude, in experiment and calculation.

We can identify several CPR and CPI regions in Fig. 7.2: The CPR regions appear as localized

dark spots, besides the wide dark region in low pulse energies; and the CPI regions are bright strips. To
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Figure 7.2: (a) Numerical calculation of the transition probability in the atomic basis is plotted as a

function of ΘRabi, the unshaped-pulse Rabi phase, and c2, the frequency chirp. Localized CPR regions
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(c) Trajectories of CPR and CPI represented in the adiabatic basis for chosen points in (a), respectively.
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understand the dynamics, we select a few characteristic points in Fig. 7.2(a) and trace their quantum

trajectories in adiabatic basis. In Figs. 7.2(b,c), the trajectories are plotted on the (θ, φ) surface of

the Bloch sphere (defined in adiabatic basis), where θ and φ denote the polar and azimuthal angles,

respectively, of the Bloch vector. At the CPR points, marked by A©, B©, and C©, each trajectory starts

from θ = 0 and ends at θ = π, as shown in Fig. 7.2(b). Likewise, at the CPI points, marked by 1©, 2©,

· · · , and 6©, each trajectory starts from θ = 0 and ends at θ = 0, as shown in Fig. 7.2(c). Note that

CPR in bare atomic basis, |0〉 → |0〉, is CPI in adiabatic basis, |ψ−(−∞)〉 → |ψ+(∞)〉, and CPI in bare

atomic basis, |0〉 → −|1〉, is CPR in adiabatic basis, |ψ−(−∞)〉 → |ψ−(∞)〉.
In particular, each CPR trajectory (CPI in adiabatic basis) in Fig. 7.2(b) consists of three distinctive

rotations: a rotation of π/2 about a rotation axis in the xy-plane, a wobbling rotation about the z-axis,

and again a π/2 rotation about another axis in the xy-plane. Note that the azimuthal rotation angles

for the second wobbling rotations for the A©, B©, C© trajectories are about 2π, 4π, and 6π, respectively.

The CPR trajectories are therefore represented in accordance with Eq. (7.35) by

R−ϕ(π/2)Rz(2nπ + γ)Rπ+ϕ(π/2), (7.37)

where n is a positive integer. It is noted that γ = −ϕ−(π+ϕ) = π−2ϕ compensates the angle difference

between the first and third rotation axes, explaining the deviation of the azimuthal rotation angle from

2nπ. Here, from Eqs. (7.7) and (7.14), ϕ is given by ϕ = ϕ1−ϕ2 = [tan−1(2c2/τ
2
0,1)−tan−1(2c2/τ

2
0,2)]/2.

Since ∆ω1 > ∆ω2, γ varies from π to ∼π/2, while c2 varies from 0 fs2 to 100000 fs2, and γ ' 0.6π at A©,

B©, and C©. Similarly, the trajectories for D© and E© (not shown) can be approximately represented by

R−ϕ(3π/2)Rz(2π + γ)Rπ+ϕ(3π/2) and R−ϕ(3π/2)Rz(4π + γ)Rπ+ϕ(3π/2), respectively.

The actual trajectories in Fig. 7.2(b) are slightly deviated from the approximated model in Eq. (7.35).

It can be explained that, in the central region, the rotation axis is not perfectly aligned with the z-axis,

causing the wobbling of the z-rotation. As a result, CPRs do not occur at exact Θ2 = nπ+π/2. Also, in

the tail regions, the mixing angle ϑ(t) does not converge to 0 (for t < −τ1) or π/2 (for t > τ1) during the

evolution, and gives cos[2ϑ(t)] = 1 − δ (for t < −τ1) and cos[2ϑ(t)] = −1 + δ (for t > τ1) in Eq. (7.27),

where δ > 0 is a small deviation. Since the azimuthal angle of a rotation axis is given by arg[ΩF (t)],

the actual azimuthal angle difference between the two rotation axes becomes smaller than the model.

Thus, as shown in Fig. 7.2(a), the CPRs (A©, B©, and C©) occur near Θ1 = 2nπ + 0.5π, rather than

Θ1 = 2nπ + γ (' 2nπ + 0.6π).

The intermediate region between the tail regions and the central region, appearing in Figs. 7.2(b,c)

around the end the vertical evolution and beginning of the wobbling z-rotation, is short in time compared

to other regions (the ratio is roughly 0.2 compared to the central region). Also, the change of the rotation

axis is much faster (roughly 5 times faster) than the rotation. Therefore, as shown in Figs. 7.2(b,c), there

are no significant influence to the dynamics in the intermediate region.

7.3 Experimental setup

The experimental investigation of the chirped-zero area-pulse interaction of the two-state system is

performed with shaped intense laser pulses and cold atomic vapor. The experimental setup is shown in

Fig. 7.3. Femto-second laser pulses were first produced from a home-made Ti:sapphire laser oscillator

with 80 MHz repetition rate, and amplified about 5× 105 times by a home-made Ti:sapphire multi-pass

amplifier operating at 1 kHz repetition rate. The wavelength of the pulses was centered at λo = 794.7 nm,

resonant to the atomic rubidium (85Rb) 5S1/2 → 5P1/2 transition. The two states of the quantum
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Figure 7.3: Schematics of the experimental setup. Femto-second laser pulses were shaped by an acousto-

optic programmable dispersive filter (AOPDF) and a 4f -geometry zero-dispersion stretcher; and as-

produced chirped zero-area pulses interacted with cold rubidium atoms (85Rb) in a magneto-optical

trap. After 3 ns, frequency-doubled laser pulses ionized the excited atoms.
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system were |0〉 = |5S1/2〉 and |1〉 = |5P1/2〉. The laser bandwidth was ∆λFWHM = 7 nm (∆ω1 =

1.5× 1013 rad/s), which was narrow enough to restrict the quantum system to a two-state system, and

the corresponding pulse duration was τ0,1 ' 140 fs. Since the hyperfine splittings of |5S1/2〉 and |5P1/2〉
states (up to 3GHz) are much smaller than the laser bandwidth of THz order, the hyperfine states can

be reduced to a two-state system through Morris-shore transform [47], giving µ = 1.46× 10−29 Cm [45].

Each femto-second laser pulse was divided into two: the first (control) pulse after being shaped to

a chirped zero-area pulse induced the atomic transition, and the second (probe) pulse was frequency-

doubled to ionize atoms in the excited state. The chirped zero-area pulse was prepared in two stages:

the laser pulse was first frequency-chirped, up to c2 = 6 × 104 fs2, by an acousto-optic programmable

dispersive filter (Dazzler from Fastlite) [12], and the spectrum near the resonance was removed by a

spectral block in the Fourier plane defined by a 4f -geometry Martinez zero-dispersion stretcher (home-

made) [3, 57], which consisted of a pair of R=500 mm cylindrical mirrors and a pair of gratings with

1800 grooves/mm. For the spectral block, we used various metal wires of which the spectral width ranges

from 200 to 1000 GHz in FWHM (or ∆ω2 = 7.7× 1011 ∼ 3.9× 1012 rad/s in Gaussian width). After the

two-stage of pulse shaping, the laser pulse energy was up to 20 µJ.

We used a conventional magneto-optical trap (MOT) to spatially isolate the rubidium atoms [34].

By adjusting the diameters of the cooling and repumping laser beams, an atomic cloud of about 200 µm

diameter and 6 × 109 cm3 atom density was prepared. The atoms were tightly confined in particular

to achieve a uniform laser-atom interaction [38]. When the laser pulses were focused on to the atomic

vapor, the laser beam diameter of 600 µm was about 3 times bigger than the diameter of the atom cloud.

With this diameter ratio, we achieved 95% of high fidelity for a π-area transform-limited pulse excitation.

The laser pulse energy (up to 20 µJ) with the given beam diameter was equivalent to Θmax = 3.5π.

After being interacted with the control pulse (the chirped zero-area pulse), atoms in the excited state

were ionized by the probe pulse, and resulting ions were measured by a multichannel plate detector. The

overall experimental cycle controlled by mechanical shutters in laser beam lines was 2 Hz to grant the

restoration of the MOT.

7.4 Experimental Results and discussion

Figure 7.4(a) shows the experimental result. By varying the power and the chirp parameter c2 of the

chirped zero-area pulse, the excited-state population was measured. The spectral block of ∆f(FWHM) =

500 GHz (∆ω2 = 1.9× 1012 rad/s) around the resonance was removed in the 4f -geometry stretcher. In

comparison, the corresponding numerical calculation is shown in Fig. 7.4(b). The numerical calculation

is based on Eq. (7.20). Since the experiment was performed under the condition of non-uniform spatial

profiles of the laser pulse and the atom cloud, the calculation took into account the spatial averaging

effect [38], where Θmax
Rabi in the x-axis denotes the maximum of the Gaussian distribution of ΘRabi. The

measured populations were calibrated to probabilities by using the first peak of Rabi oscillations as a

reference. Within the available measurement region, the experimental result shows that the dark CPR

region is surrounded by the bright CPI region, in a good agreement with the theoretical calculation.

In addition, we probed the effect of the width of the spectral hole. The frequency chirp was fixed at

c2 = 5 × 104 fs2, and the spectral hole was varied from 200 to 1000 GHz (FWHM). In Fig. 7.4(c), the

measured pulse energies (shown with squares) for the first CPI peaks are displayed in comparison with

the corresponding numerical calculation (dots).

We now consider possible applications of the chirped zero-area excitation implicated from the results
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Figure 7.4: (a) Experimental result and (b) numerical simulation of the chirped zero-area pulse excitation

of a cold rubidium atom ensemble. The transition probabilities were plotted as a function of c2 (linear

chirp) and Θmax
Rabi. Interaction inhomogeneity due to the Gaussian spatial profile of the atom ensemble

was taken into account for the calculation of (b). (c) Experimental result of spectral hole-width scan.

Measured pulse energies for the first CPI (e.g., the stars marked in (a) and (b)) are plotted for various

spectral hole widths (red squares), in comparison with the calculation result (black dots).
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obtained in this study. Since the two-state system interacting with the chirped zero-area pulse can

undergo, amid the adiabatic evolution (z-rotation) by the main pulse, Rabi-like rotation due to the non-

adiabatic interaction by the hole pulse, an interplay between Rabi-like rotations and adiabatic evolutions

can be made by shaping the spectral width and position of the hole. This approach can be a powerful

and alternative control means in selective excitation of, in particular, multi-state systems. In a V -type

system [13] of 5S1/2, 5P1/2, and 5P3/2 in rubidium, for example, a numerical simulation (not shown)

with chirped zero-area pulses results in over 97% population of the system driven to either excited states,

by simply changing the pulse intensity only. Also, this control method implicates that the laser spatial

profile is also useful for position-dependent selective excitations, which can be applied to, for example,

atom or ion qubits in spatial arrangements [58, 59].
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Chapter 8. Dynamics of a two-state system induced by a

temporal hole on a chirped pulse

From the successful study on dynamics induced by chirped zero-area pulse, we have noticed great

possibilities of quantum control in adiabatic basis. And for the first step of such control scheme, we

considered Rabi rotations naturally described in adiabatic basis. In adiabatic basis, the time-dependent

change of mixing angle ϑ(t) gives coupling between two states. Thus, to make Rabi rotation in adiabatic

basis, we should change ϑ(t) rapidly at a certain t. This can be efficiently done at t = 0 since ∆(t)→ 0

at near t = 0. Small change of Ω(t) at near t = 0 can give very rapid change of ϑ(t). For a simple and

experimentally possible pulse shape to induce such rapid change, we attempted to make a temporal hole

on a chirped pulse. Detailed dynamics of a two-level system induced by a chirped pulse with a temporal

hole and experimental result will be discussed in this chapter.

8.1 Theoretical model

Let us start from the interaction between a two-level system, which consists of a ground state |0〉
and an excited state |1〉, and a linearly chirped pulse. The Hamiltonian for the interaction is given by

H =

[
−~ωo/2 µE(t)

µE(t) ~ωo/2

]
, (8.1)

where E(t) is electic field of the pulse, ωo is a resonant frequency and µ is a transition dipole moment

of the two-level system. The temporal electric field, E(t), of a linearly chirped pulse centered at ωo is

written as

E(t) = EoA(t) cos[(ωo + αt)t], (8.2)

where Eo is an amplitude parameter, A(t) is a normalized envelope of the electric field and α is a

linear chirp parameter. If the pulse is Gaussian, the envelope is given by A(t) = e−t
2/τ2

. Note that

the instantaneous frequency of E(t) is ω(t) = d
dt [(ωo + αt)t] = ωo + 2αt. After transforming into

the interaction picture and making rotating wave approximation, the Hamiltonian of (8.1) becomes an

interation Hamiltonian VI as

VI =
~
2

[
−∆(t) Ω(t)

Ω(t) ∆(t)

]
(8.3)

where ∆(t) = ωo − ω(t) = −2αt is instantaneous detuning and Ω(t) = µE(t)/~ is the Rabi frequency.

When the applied chirp is large and the Rabi frequency is kept large enough during the evolution,

the system’s evolution is adiabatic. This well-known adiabatic evolution by a linearly chirped pulse is

called RAP (rapid adiabatic passage) and results in CPI (complete probability inversion) of the system.

However, by making a temporal hole on the chirped pulse, we can manipulate the Rabi frequency in

the middle of the time evolution, and can induce non-adiabatic couping for controlling the evoltion. If

the adiabatic evolution is described in adiabatic basis, a basis formed by eigenstates of the interaction

Hamiltonian VI , the system stays in same state all along the evolution. Thus, transforming into the
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adiabatic basis will be helpful to study non-adiabatic coupling induced by the temporal hole. The

eigenvalues of VI are given by
~
2
λ±(t) = ±~

2

√
Ω2

1(t) + ∆2(t) (8.4)

and the corresponding eigenstates are

|ψ−(t)〉 = cosϑ(t)|0〉 − sinϑ(t)|1〉,

|ψ+(t)〉 = sinϑ(t)|0〉+ cosϑ(t)|1〉, (8.5)

where the mixing angle ϑ(t) is given by

ϑ(t) =
1

2
tan−1 Ω1(t)

∆(t)
for 0 ≤ ϑ(t) ≤ π

2
. (8.6)

Here, we can define a unitary transform |ψ(t)〉A = R(ϑ(t))|ψ(t)〉, from a state of the initial two-level

system, |ψ(t)〉, to a state in adiabatic basis, |ψ(t)〉A. The transform matrix R(ϑ) is defined by

R(ϑ) =

[
cosϑ(t) − sinϑ(t)

sinϑ(t) cosϑ(t)

]
. (8.7)

In the given adiabatic basis, the Schrödinger equation is given by

i~
d

dt
|ψ(t)〉A =

(
RVIR

−1 − i~RṘ−1
)
|ψ(t)〉A, (8.8)

where the term −i~RṘ−1 is from time-dependence of the transform matrix R(ϑ(t)) and given by

−i~RṘ−1 = i~

[
0 −ϑ̇
ϑ̇ 0

]
. (8.9)

Thus, the interaction Hamiltonian in adiabatic basis is defined as

VA =
~
2

[
λ− −2iϑ̇

2iϑ̇ λ+

]
, (8.10)

which describes a two-state system with a time-varying energy splitting of λ+ − λ− =
√

∆2 + Ω2 and

driving interaction 2ϑ̇. Note that the off-diagonal term 2ϑ̇ in adiabatic basis usually called “non-adiabatic

coupling”, and explicitly given by

2ϑ̇ =
|Ω̇(t)∆(t)− Ω(t)∆̇(t)|

∆2(t) + Ω2(t)
. (8.11)

The diagonal components of the Hamiltonian in Eq. (8.10) doesn’t become 0 even if Ω(t) = 0. Thus,

the phase of the state evolves without the pulse and diverges at t→ ±∞. To remove the phase evolution

before and after the pulse duration, we need another transform T∆ = exp
(
i
∫ t

0
H∆(t′)dt′/~

)
, where H∆

is defined by

H∆ =
~
2

[
−|∆(t)| 0

0 |∆(t)|

]
. (8.12)

And the interaction Hamiltonian finally becomes

VF =
~
2

[
−∆F (t) ΩF (t)

Ω∗F (t) ∆F (t)

]
, (8.13)
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where

∆F (t) =
√

∆2(t) + Ω2(t)− |∆(t)|

ΩF (t) = −2iϑ̇e−i|∆(t)|/2. (8.14)

Note that the additional phase of off-diagonal component is |∆(t)|t/2, which is defined by
∫ t

0
|∆(t′)|dt′.

The Hamiltonian in Eq. (8.10) and Eq. (8.13) gives identical time evolution except phase evolution. Since

its components are all real, Eq. (8.10) is convinient to consider dynamics intuitively. On the other hand,

Eq. (8.13) is suitable to describe time evolution in numerical way because unnecessary phase evolution

is dropped. Thus, the dynamics will be explained in Eq. (8.10) and the numerical calculations of time

evolution will be given in Eq. (8.13).

Now consider a chirped pulse with a temporal hole. To suppress altering of the spectrum by the

temporal hole, and also for experimental realization, the temporal hole must be smooth. For a good

example, let us define a chirped Gaussian pulse with a Gaussian temporal hole, which is given by

E(t) = NEo(e
−t2/τ2

− ke−t
2/τ2

h) cos[(ωo + αt)t], (8.15)

where τh is width and k is depth of a temporal hole. Note that the temporal hole directly changes energy

of the pulse, a nomalization factor N is introduced to maintain the pulse energy and given by

N =

√√√√ ∫∞
−∞ e−2t2/τ2dt∫∞

−∞(e−t2/τ2 − e−t2/τ2
h)2dt

. (8.16)

Fig. 8.1 a) and b) show time dependent change of electric field envelope A(t) and mixing angle ϑ(t) for

cases without and with a temporal hole, respectively. As shown in Fig. 8.1 a), a largely chirped Gaussian

pulse gives slowly varying 2ϑ̇ during evoltion, because of slow and smoothly varying ∆(t) and Ω(t). Also,

A(t) maintains the energy splitting λ+ − λ− =
√

∆2 + Ω2 large, even at near t = 0 where ∆(t) → 0.

Thus, the condition 2ϑ̇ � |λ+ − λ−| is kept all along the system evolution, which results in z-rotation

in adiabatic basis, or adiabatic evolution. However, as shown in Fig. 8.1 b), a temporal hole located at

t = 0 makes A(t) small at t = 0. As a result, rapid change of ϑ(t) occurs across t = 0 and the conditions

ϑ(t)� |λ+ − λ−| is made near t = 0, which results in rabi rotation. Note that in Fig. 8.1 b), temporal

hole is defined by width of τh = 0.1τ and depth of k = 0.9.

Starting from a common initial state (|ψ−〉 + |ψ+〉)/
√

2, time evolution on a bloch sphere corre-

sponding to two cases Fig. 8.1 a) and b), are respectively plotted in Fig. 8.1 d) and e). Fig. 8.1 d) and

e) are calculated in the system described by Eq. (8.13) and x-axis y-axis are azimuthal angle and polar

angle on a bloch sphere, respectively. As shown in Fig. 8.1 e), a narrow and deep enough temporal hole

induces very rapid change of ϑ̇(t) and rabi rotation occurs at central region of the hole. Thus, for a

narrow and deep temporal hole, the Hamiltonian in the central region (also indicated by red solid line

in Fig. 8.1 b) and e)) of temporal hole, −τh < t < τh, can be approximated by

Vhole '
~
2

[
0 −2iϑ̇

2iϑ̇ 0

]
, (8.17)

which describes y rotation on Bloch sphere. The y-rotation angle can be obtained by

Θ =

∫ τh

−τh
2ϑ̇dt

= 2[ϑ(t = τh)− ϑ(t = −τh)]. (8.18)
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Figure 8.1: a-c) Time dependences of Normalized electric field envelope and mixing angle 2ϑ are plotted

for a) a chirped pulse, b) a chirped pulse with a temporal hole of width τh = 0.1τ and depth k = 0.9,

c) a chirped pulse with a temporal hole of width τh = 0.1τ and depth k = 1. d-f) Evolution on Bloch

sphere in adiabatic basis corresponding to a), b) and c) are respectively plotted and the arrows indicates

direction of evolution. x-axis is azimuthal angle on the Bloch sphere and y-axis is polar angle on the

Bloch sphere. For b), c), e) and f), red line indicated −τh < t < τh region, and For c) and f), black line

indicates changes at t = 0.
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In the outside region t > τh and t < −τh, two z-rotations occur. The z-rotation angles also can be

calculated using Hamiltonian Eq. (8.13),

φ1 =

∫ −τh
−∞

√
∆2(t) + Ω2(t)− |∆|dt

φ2 =

∫ ∞
τh

√
∆2(t) + Ω2(t)− |∆|dt. (8.19)

Note that φ1 = φ2 if the temporal envelope of the pulse is symmetric with respect to t = 0.

Fig. 8.1 c) shows time dependent change of ϑ and A(t), and f) shows corresponding evolution

described on Bloch sphere when k = 1. If depth of the temporal hole becomes k = 1, nonlinear change

of envelope A(t) can exceed linear change of ∆(t) at near t = 0. As a result, Ω(t) < ∆(t) relation hold

for t → ±0 and a discontinuous step change of the mixing angle ϑ occurs at t = 0. The change of ϑ is

π since limx→0+ tan−1(x) = 0 and limx→0− tan−1(x) = π in the range of ϑ. The π change of ϑ at t = 0

is indicated by black solid line in Fig. 8.1 c) and this step change of ϑ causes a Rabi rotation at t = 0,

shown in Fig. 8.1 f) also by black solid line. In addition, in the region of −τh < t < 0 and 0 < t < τh

(indicated by red solid line in Fig. 8.1 f)), two rabi rotations are respectively occurs. Since Hamiltonian

for all Rabi rotations can be approximated by Eq. (8.17), they are y-rotations. The rotation angle is

given by

Θ = π +

∫ 0−

−τh
2ϑ̇dt+

∫ τh

0+

2ϑ̇dt

= π + 2ϑ(t = τh)− π + 0− 2ϑ(t = −τh)

= 2[ϑ(t = τh)− ϑ(t = −τh)]. (8.20)

From Eq. (8.18) and Eq. (8.20), the y-rotation angle at central region is always given by Θ = 2[ϑ(t =

τh)− ϑ(t = −τh)]. The z-rotation angle in |t| > τh region is same as k < 1 case, given as Eq. (8.19).

From the discussion above, the total time evolution operator U by a chirped pulse with a temporal

hole can be expressed by three-rotations

U = Rz(φ2)Ry(Θ)Rz(φ1). (8.21)

Explicitly, U is given by

U =

[
eiφ2 0

e−iφ2

][
cos(Θ) − sin(Θ)

sin(Θ) cos(Θ)

][
eiφ1 0

e−iφ1

]
. (8.22)

If the initial state is given by

ψ(−∞) = (|ψ−〉+ eiϕ|ψ−〉)/
√

2, (8.23)

where ϕ is the relative phase, then probabilities of two states after time evolution is respectively given

by

P− = |〈ψ−|U |ψ(−∞)〉|2

=
1

2
[1− sin(2Θ) cos(2φ1 − ϕ)],

P+ = |〈ψ+|U |ψ(−∞)〉|2

=
1

2
[1 + sin(2Θ) cos(2φ1 − ϕ)]. (8.24)

Eq. (8.24) shows that when the initial state of the system is a superposition state, the system undergoes

a probability oscillation by a chirped pulse with a temporal hole. The oscillation amplitude is governed

by y-rotation angle Θ, and peak position depends on z-rotation angle φ1.
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Figure 8.2: a) Schematics of the experimental setup and level diagram of 85Rb atom. Our two-level

system consists of 5S 1
2
, 5P 1

2
states of 85Rb. To measure |ψ−〉 probability after the interaction, applied

ionization pulse ionize 5P 1
2

state atoms only and Rb+ ions counted via microchannel plate(MCP). b)

Electric field envelope used for experiment, which is calculated from measured intensity profile. Due to

the limited spectral resolution of pulse shaping, the temporal hole removed about 60% of electric field at

t = 0. Inset shows measured internsity profile via cross-correlation. The assymmetry of the pulse comes

from spectral assymmetry, however, gives no significant effect on dynamics.
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8.2 Experimental Setup

As stated in Eq. (8.24), a chirped pulse with a temporal hole induces probability oscillation of a two-

level system when the initial state is a superposition of |ψ−〉 and |ψ+〉. For experimental realization of

such phenomenon, we used a Ti:sapphire laser amplifier system, which is equipped with a pulse shaping

apparatus. Our homemade Ti:sapphire laser amplifier generates femtosecond laser pulses in 1 kHz

repetition rate. Spectrum of the pulse was centered at 794.7 nm, corresponding to the 5S1/2 → 5P1/2

transition of the rubidium atom, and the bandwidth of the pulse was 3 THz in Gaussian width. Since

the time evolution by a chirped pulse with a temporal hole should start from a superposition state, a

π/2 pulse was required in advance to prepare (|0〉+ |1〉)/
√

2 initial state. To generate a pulse sequence

of a π/2 pulse and a chirped pulse with temporal hole, an acousto-optic pulse shaper (AOPDF, Dazzler

from Fastlite) simultaneously programmed both spectral amplitude and phase of each laser pulse. The

generation a pulse sequence is handled in frequency domain and the priciple can be written as

S̃(ω) = S̃1(ω) + nS̃2(ω) exp(iϕ) (8.25)

where S̃1(ω) is a spectral electric field for a π/2 pulse, S̃2(ω) is for a chirped pulse with a temporal hole,

n is relative amplitude of the chirped pulse with a temporal hole and ϕ is a relative phase. The linear

chirp of the chirped pulse with a temporal was fixed at 60000 fs2. Because the total energy |S̃(ω)|2 of the

programmed pulse sequence output from the acouto-optic pulse shaper is limited by RF power, relative

amplitude n and applied RF power must be controlled simultaneously to keep the S̃1(ω) as a π/2 pulse.

Thus, along with the change of RF power and relative amplitude k, the relative energy between two

pulses was measured and calibrated by using a photodiode and cross-correlation. Figure 8.2 b) shows

an electric field envelope of the chirped pulse with a temporal hole. The envelope was calculated from

measured intensity profile via cross-correlation. Another pulse with temporal Gaussian width of 300 fs

was used for cross-correlation measurement and the result is plotted in the inset of Figure 8.2 b). The

delay between the π/2 pulse and the chirped pulse with a temporal hole was maintained as 2.2 ps and

relative phase between two pulses was controlled by changing ϕ, which is defined in Eq. (8.25). Total

energy of the shaped pulse sequence was upto 20 µJ. After interating with the chirped pulse with a

temporal hole, 5P1/2 state atoms are selectively ionized by a frequency doubled 400 nm ionization pulse,

and ions are measured via micro channel plate. Note that after the interaction, ψ−〉 state probability is

identical to 5P1/2 state probability since ψ−(∞)〉 = −|1〉. To minimize inhomogeneity of the interaction,

laser beam size at interaction region was made about 2.3 times bigger than the MOT atomic cloud. The

size of MOT atomic cloud was about 250 µm in FWHM (full width at half maximum).

8.3 Results and Discussion

In figure 8.3 a) and b), calculated and experimentally measured probability of |ψ−〉 state after

interacting with a chirped pulse with a hole are respectively plotted as a function of calibrated peak

pulse area and initial state relative phase ϕ. The calibration of peak pulse area is same as section 7.4.

For direct comparison between two plots in Fig. 8.3 a), spatial inhomogeneity of the interaction is included

in calculation. As described in Fig. 8.2, only about 60% of the electric field was remove at t = 0 due to

the limited spectral resolution of pulse shaping apparatus. In this case, y-rotation angle Θ induced by

non-adiabatic coupling gradually increases to a certain peak value as electric field amplitude E0 becomes

larger. And after the peak, Θ decreases since remaining ω(t = 0) makes the change of ϑ slower at near
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t = 0 and the evolution at central region gradually approaches to an adiabatic evolution. The change of

Θ as a function of electric field amplitude E0 is directly shown by the probability oscillation amplitude

depending on initial state relative phase (while keeping E0 as a constant). φ1 is a monotonic fuction on

E0: φ1 is increased when E0 increases. Change of the minimum and maximum probability position in

ϕ axis shows change of φ1. Since φ1 is positively proportional to E0, the position of the maximum and

minimum moves to upper-right direction as E0 increases. Calculation and experimental results along

three dashed lines in Fig. 8.3 a) and b) are simultaneouly plotted in Fig. 8.3 c). The change of peak

position shows dependence of φ1 on E0 and the change of oscillation amplitude shows dependence of Θ

on E0.

66



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Calibrated peak pulse area (π)

In
it

ia
l 

st
at

e 
re

la
ti

v
e 

p
h
as

e 
(π

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Calibrated peak pulse area (π)

In
it

ia
l 

st
at

e 
re

la
ti

v
e 

p
h
as

e 
(π

)

a)

b)

0 0.5 1 1.5 2

Initial state relative phase (π)

0

0.2

0.4

0.6

0.8

1

E
x
ci

te
d
 s

ta
te

 P
ro

b
ab

il
it

y

c)

(1)

(1)

(2)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

Figure 8.3: a) Starts from a initial state of (|ψ−〉 + |ψ+〉eiϕ)/
√

2), calculated probability of |ψ−〉 state

after interacting with a chirped pulse with a hole is plotted as a function of calibrated peak pulse area and

initial state relative phase ϕ. Spatial inhomogeneity of the interaction is also included in calculation. b)

Measured probability of |ψ−〉 (or |1〉) state after interacting with a chirped pulse with a hole is plotted as a

function of calibrated peak pulse area and initial state relative phase ϕ. c) Calculation and experimental

results along three dashed lines in a) and b) are simultaneouly plotted.
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Chapter 9. Conclusion

In this dissertation, quantum control of alkali atoms in ensemble was widely studied from weak field

regime to strong field regime, by using broadband pulse shaping scheme.

In the weak field regime, two photon transitions of a four-level system of the rubidium atom in a

diamond configuration was considered. Since the dynamics can be expressed by perturbation, parameter

for quantum control was spectral phase, rather than amplitude. The interference between two two-

photon excitation passages was maximized by considering inherent phases of eight probability amplitude

components and the experimental result showed good agreement with the theoretical prediction.

In the strong field regime, spatial inhomogeneity of interaction give large error in experiment, even

a complete wipeout of the dynamics. Thus, quantative analysis on ensemble averaged Rabi oscillation

was conducted to develope a model for spatial inhomogeneity of interaction. The cold atomic rubidium

vapor spatially confined in a magneto-optical trap was driven by the resonant ultrafast laser pulse, and

the oscillation of excited population was probed as a function of the pulse energy. Theretical model

calculation based on assumption of a Gaussian atomic ensemble and a Gaussian laser pulse and the

experimental result showed very good agreement. The most important result of this study was the

development of the estimation method for inhomogeous interaction, which can be applied to any strong

field dynamics.

Dynamics of a two-level system induced by chirped pulses with spectral and temporal hole showed

a new control method of two-level system, which utilizes interplay between adiabatic evolution and

the Rabi rotation. The chirped pulses in these works induce adiabatic evolution, where this adiabatic

evolution can be regarded as a background with interesting properties. And the holes were made on

the chirped pulse to apply rabi rotations as control parameters in the middle of adiabatic evolution. As

a result, interplay between the background and the hole was successfully demonstrated and complete

probability oscllation was observed in both case. The most valuable application of this work is selective

excitation in multi-level system. Narrow spectral holes made on a chirped pulse at the temporal or

spectral positions corresponding to resonances of the system can act as switches of adiabatic evolution

of multi-level system. By varying pulse intensity, these switches can be turned on and off. As a result,

transition paths are altered and transition probability to a desired state of ' 1 can be obtained [60].
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