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Programming higher-order interactions of Rydberg atoms
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Higher-order interactions in spin-based Hamiltonians are crucial in addressing numerous fundamentally
significant physical problems. In this work, Rydberg-atom graph gadgets are introduced to effectively program
K th-order interactions within a Rydberg-atom system. This approach facilitates the determination of the ground
states of an Ising-type Hamiltonian, encoded to solve higher-order unconstrained optimization problems. A
favorable scaling behavior, O(NK ), is expected in terms of the number of atoms required for N-vertex hypergraph
optimization problems.
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I. INTRODUCTION

Higher-order interactions in spin-based Hamiltonians play
an important role in many fundamental physics problems.
Exotic quantum phenomena, such as the Efimov trimer [1,2],
fractional quantum Hall states [3], and topologically ordered
states [4,5], are attributed to nonbinary spin interactions. For
example, adding a three-body interaction term to the Hub-
bard model can lead to exotic phases with unique filling
factors [6–9]. Moreover, higher-order interactions are also
essential for molecular interactions involving more than four-
body interactions due to their electronic structures [10] and
for various high-energy physics models [11–13]. In quan-
tum information science, creating multiqubit entangled states
often requires many-body interactions beyond simple two-
body interactions [14,15]. Currently, topological phases are
gaining attention for their potential in quantum error correc-
tion [16,17], necessitating the incorporation of higher-order
interactions in artificial quantum matter as well as in quantum
information and computation [18–22].

In the Rydberg-atom system [23], two-body correlations
naturally arise from the Rydberg blockade effect [24–27].
However, implementing controllable many-body correla-
tions presents experimental challenges, requiring complex
energy level structures and precise electromagnetic field
drivings [28–34]. Previous research has developed nonlocal
two-body interactions using Rydberg quantum wires [35–37],
which incorporate an additional chain of atoms. By integrat-
ing Rydberg quantum wires with a three-dimensional (3D)
configuration of atoms [38–41], all-to-all interactions between
arbitrary pairs of atoms have been achieved [35,37,40]. Build-
ing upon the concept of the Rydberg quantum wire, which
corresponds to a linear qubit graph, we aim to demonstrate the
implementation of higher-order interactions. We introduce the
design of new atomic qubit graphs representing the hyperedge
of a hypergraph, thereby facilitating the representation of
K-body correlations. Just as a system incorporating Rydberg
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quantum wires forms a Rydberg-atom graph, representing
both unweighted [35,36] and weighted graph structures [42],
a system incorporating Rydberg hyperedges could represent a
hypergraph.

The generation of hypergraphs is a scientific and techno-
logical challenge. Even for classical Ising models, conven-
tional computational methods often prove inefficient [43].
When higher-order interactions are involved, optimizing
hypergraphs—which represent hyperedges corresponding to
these interactions in the spin system—requires solving numer-
ous nondeterministic polynomial (NP)-hard problems, such
as the max-K satisfiability (SAT) problem for K � 3. Con-
sequently, this method of generating higher-order interactions
within the Rydberg-atom graph could provide a viable solu-
tion for addressing both classical and quantum problems.

As a conceptual overview of this paper, Fig. 1 illustrates
an example of the Rydberg-atom hypergraph representation
of higher-order unconstrained binary optimization (HUBO).
In the given example, the hypergraph GH (V, E ) consists
of four vertices, V = {x1, x2, x3, x4}, and three edges, E =
{(x2, x4), (x3, x4); (x1, x2, x3)}, where (x1, x2, x3) is an order-
three (K = 3) hyperedge, as shown in Fig. 1(a). This
hypergraph GH represents the hypergraph optimization prob-
lem with the cost function f = −x1 − x3 − x2x4 + x3x4 +
x1x2x3, where x1, x2, x3, and x4 are binary variables. As is
detailed in subsequent sections, the hypergraph GH is pro-
grammable into a Rydberg-atom graph using a proper set
of auxiliary atoms, referred to as Rydberg hyperedges, as
shown in Fig. 1(b), where the triangular subgraph between the
atoms representing x1, x2, and x3 corresponds to the hyperedge
(x1, x2, x3). The HUBO solution x = (1, 0, 1, 0) is obtainable
through a quantum adiabatic process that evolves the atom
system to its many-body ground state, as depicted in Fig. 1(c).

Our method of using Rydberg atoms to implement HUBO
problems is introduced in Sec. I. This Rydberg HUBO im-
plementation develops two types of hyperedges: the positive-
weight hyperedge and the negative-weight hyperedge, both
based on the properties of Rydberg superatoms [44–47]. In
Sec. III, applications of the Rydberg HUBO implementations
are considered, including quantum simulations and quantum
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FIG. 1. (a) The hypergraph GH (V, E ) representing the cost function f = −x1 − x3 − x2x4 + x3x4 + x1x2x3. (b) The Rydberg-atom graph
constructed for the HUBO problem to optimize f . (c) The many-body ground state of the Rydberg-atom system resulting in the HUBO solution
(x1, x2, x3, x4) = (1, 0, 1, 0).

computing with high-order interactions. In Sec. IV, the scal-
ing properties of the Rydberg-atom HUBO implementation
are analyzed, showing that the number of atoms required is
O(NK ), where N is the number of vertices in the hypergraph
and K is the maximum order of the interaction. The conclu-
sion is presented in Sec. V.

II. HIGHER-ORDER ISING SPIN INTERACTION

We consider an extended Ising model which incorpo-
rates higher-order interactions, also known as the p-spin
model [48,49], defined as follows:

Ĥ =
∑

j

J (1)
j n̂ j +

∑

j<k

J (2)
jk n̂ j n̂k +

∑

j<k<l

J (3)
jkl n̂ j n̂k n̂l + · · · ,

(1)
where n̂ = |1〉〈1| is the number operator, taking a value of
0 or 1 for spin basis |0〉 or |1〉, respectively, and J (K ) is
the interaction strength where K number of spins are in-
volved. An Ising spin system with higher-order interactions
can be naturally mapped to a hypergraph, GH = (V, E =
{E (2), E (3), . . .}), where spins correspond to vertices in V , and
K th-order interactions are represented by hyperedges E (K ).
Thus, the Hamiltonian Ĥ can be expressed as

Ĥ =
∑

j∈V

J (1)
j n̂ j +

∑

( j,k)∈E (2)

J (2)
jk n̂ j n̂k

+
∑

( j,k,l )∈E (3)

J (3)
jkl n̂ j n̂k n̂l + · · · . (2)

We aim to implement Ĥ in Eq. (2) using a new kind of
quantum wire of Rydberg atoms that effectively aggregates
K-body interactions of Rydberg atoms. In the qubit system
of Rydberg atoms, where the ground and Rydberg states are
respectively represented by |0〉 and |1〉, the Hamiltonian gov-
erning the dynamics of a Rydberg-atom graph is given by (in
units of h̄ = 1)

ĤRyd = �

2

∑

j

σ̂ x
j − �

∑

j

n̂ j +
∑

( j,k)

Un̂ j n̂k, (3)

where � and � denote the Rabi frequency and de-
tuning of the Rydberg-atom excitation process, and the

Pauli operator σ̂ x = |0〉〈1| + |1〉〈0| acts as a bit-flip operator.
In the Hamiltonian ĤRyd, excitation to the Rydberg state of a
single atom incurs an energy penalty of −�. When � → 0
and 0 < � < U , the Hamiltonian of the Rydberg-atom graph
becomes equivalent to the cost function of the maximum
independent set (MIS) problem, which aims to maximize
the occupation number (n = 1) under the constraint of the
Rydberg blockade, given by n jnk = 0 for ( j, k) ∈ E [50].
One remark is that the Rydberg-atom graph assumed the
laser-cooled system. Therefore, the position of the atoms are
well-confined during the timescale of the quantum operation.
The state of the Rydberg-atom graph is initialized |0〉|V | by
setting � < 0. By adiabatic quantum operation, the ground
state evolves to the solution of the MIS by sweeping the
detuning from � < 0 to 0 < � < U with finite Rabi fre-
quency � �= 0 and then turns off the Rabi frequency � → 0.
The typical experimental conditions are noted in the previous
works [35,36,42].

The first two terms (K = 1 and K = 2) of Ĥ in Eq. (1) are
effectively representable in the quadratic unconstrained binary
optimization (QUBO) form as

ĤQUBO
g=

∑

j∈V

J (1)
j n̂ j +

∑

( j,k)∈E

J (2)
jk n̂ j n̂k, (4)

where the symbol
g= denotes ground-state equivalence under

the MIS conditions, � → 0 and 0 < � < U . The coefficients
J (1)

j and J (2)
jk are encodable with QUBO building blocks,

including the auxiliary atom set and the Rydberg quantum
wire [42]. In the QUBO representation, there are two kinds
of quantum wires: “even-atom quantum wire” and “odd-atom
quantum wire,” which represent the cost function as follows:

Ĥ even
jk

�

g= n̂ j n̂k, (5)

Ĥodd
jk

�

g= −n̂ j n̂k + n̂ j + n̂k . (6)

The higher-order (K > 2) terms of Ĥ in Eq. (1) can
be viewed as hyperedges that correspond to the aggregate
units of their elements, in the sense that njnknl · · · = 1
if and only if n j = nk = nl = · · · = 1. These higher-order
terms are encodable by introducing a new kind of quantum
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wire for hyperedges, detailed below, in such a way that a
Rydberg-atom graph can represent the K th-order hyperedge,
which corresponds to the K th-order term in Ĥ , i.e.,

Ĥ (K ) g=
∑

( j,k,l,...)∈E (K )

Jjkl···n̂ j n̂k n̂l · · · . (7)

A. Higher-order unconstrained binary optimization

The HUBO problem is the extended version of the QUBO
problem. It includes higher-order terms in addition to the
linear and quadratic terms in QUBO, targeting to obtain
the solution x = (x1, x2, . . . , xN ) ∈ {0, 1}N that minimizes the
cost function f (x) defined as

f (x) =
∑

j

J (1)
j x j +

∑

j<k

J (2)
jk x jxk +

∑

j<k<l

J (3)
jkl x jxkxl + · · · ,

(8)
where J (K )

jkl··· is a real-valued K th-order coefficient.
Our approach to the implementation of K th-order inter-

action is to extend the previous QUBO implementation of
Rydberg-atom graphs [42]. The Rydberg QUBO implemen-
tation is illustrated in Figs. 2(a) and 2(b). The two kinds
of quantum wires, the “even-atom” quantum wire and the
“odd-atom” quantum wire, are used to encode positive and
negative quadratic terms, respectively. An even-atom quantum
wire configuration is shown in Fig. 2(a). This configuration
connects two vertices representing variables x1 and x2, where
x1(2) ∈ {0, 1}, with an atom chain consisting of two atoms,
W1 and W2. In this configuration, excitation occurs in either
W1 or W2 under the MIS condition, resulting in an additional
energy of −� when x1x2 = 0. Conversely, when x1x2 = 1, no
excitation is permitted in the quantum wire, so that there is
no additional energy. In short, only in the case of x1x2 = 1
is the effective energy +� implied. Therefore, the even-atom
quantum wire has an effective energy term, Ĥ even

12 /�
g= n̂1n̂2.

Likewise, Fig. 2(b) depicts the simplest odd-atom quantum
wire connecting x1 and x2, with a single atom W1. In this
case, one excitation occurs in W1 under the MIS condition
when −x1x2 + x1 + x2 = 0, resulting in an effective energy
of +� when −x1x2 + x1 + x2 = 1. Therefore, the odd-atom
quantum wire introduces the effective energy term Ĥodd

12 /�
g=

−n̂1n̂2 + n̂1 + n̂2.
For the implementation of higher-order terms, in the sub-

sequent subsections, we introduce two types of hyperedges,
the “positive-weight hyperedge” and the “negative-weight
hyperedge,” which correspond to the positive and negative
higher-order terms, respectively.

B. Positive-weight hyperedge

A K th-order positive hyperedge is a “positive”-weighted
aggregation of K vertices, meaning J123··· > 0 for
(x1, x2, x3, . . .) ∈ E (K ). Similar to the even-atom quantum
wire in QUBO, making a subgraph which satisfies

Ĥpos
123···
�

g=
K∏

j=1

n̂ j, (9)

where the set of auxiliary atoms act as a positive-weight
hyperedge. This condition can be generated by the K-atom

TABLE I. The many-body ground-state energies of positive-
weight hyperedges, generated by K-atom Rydberg superatoms under
the MIS condition, depend on the spin configuration of data qubits
x1, x2, . . . , xK .

|x1x2 · · · xK 〉 Hyperedge configuration Energy

|00 · · · 0〉 (|00 · · · 1〉 + · · · + |10 · · · 0〉)/
√

K −�

|00 · · · 1〉 (|0 · · · 10〉 + · · · + |10 · · · 0〉)/
√

K − 1 −�
...

...
...

|11 · · · 0〉 |00 · · · 1〉 −�

|11 · · · 1〉 |00 · · · 0〉 0

Rydberg superatom [44–47], a cluster of atoms that share the
Rydberg blockade regime. By the character of the Rydberg
blockade, a Rydberg superatom only permits single-atom ex-
citation under the MIS condition.

Figure 2(c) showcases a positive-weight hyperedge with
the maximum order of K = 3. The K = 3-atom Rydberg su-
peratom forms a triangle with atoms W1, W2, and W3, which
is connected to the three vertices x1, x2, and x3, acting as
a hyperedge (x1, x2, x3) with a positive energy contribution.
Under the MIS condition, only a single excitation in the K = 3
Rydberg superatom is permitted, adding an energy penalty of
−�, where x1x2x3 = 0. Conversely, no excitation occurs in
the Rydberg superatom when x1x2x3 = 1, thereby assigning
an effective positive energy of +� to the spin configuration
corresponding to x1x2x3 = 1. Thus, the energy function in-
corporating the additional cost from the Rydberg superatom
is represented as Ĥpos,(3)

123 /� = n̂1n̂2n̂3, following the form in
Eq. (9).

Similarly, in Fig. 2(d), the hyperedge with the maximum
order of K = 4 is illustrated. The K = 4 Rydberg superatom
in Fig. 2(d) generates the Ĥpos,(4)

1234 /� = n̂1n̂2n̂3n̂4 term. The
many-body ground states of the connected Rydberg super-
atom under the MIS condition are listed in Table I.

It is noted that the even-atom quantum wire, one of the
QUBO building blocks, also follows the positive-weight hy-
peredge implementation. QUBO is the case containing K = 2
order terms as the maximum order term. The K = 2-atom
Rydberg superatom is a dimer, one of the simplest even-atom
chains, as shown in Fig. 2(a). The energy corresponding to the
even-atom quantum wire in Eq. (5) also satisfies Eq. (9), i.e.,
Ĥ even

jk = Ĥpos,(K=2)
jk .

C. Negative-weight hyperedge

A K th-order negative-weight hyperedge is a “negative”-
weighted aggregation of K vertices, meaning J123··· < 0 for
(x1, x2, x3, . . .) ∈ E (K ). To achieve this, the term −∏K

j=1 n̂ j

should be implemented. Consequently, the effective Hamilto-
nian of the new quantum wire must incorporate −∏K

j=1 n̂ j .
The (K − 1)-atom Rydberg superatom, which is connected
with K vertices, possesses such an effective Hamiltonian.
So, we connect all elements of the Rydberg superatom,
from W1 to WK−1, with vertices x1 through xK−1, and also
connect the final vertex xK to WK−1, which is shared with
the xK−1th vertex, as in Figs. 2(e) and 2(f). Then, under
the MIS condition, to prevent excitation of the atoms in
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(a)

Even-atom 

quantum wire

(b)

Odd-atom 

quantum wire

(c) (d)

Positive 
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Negative 
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FIG. 2. Rydberg QUBO and HUBO implementations. (a) Positive even-atom quantum wire implementation for QUBO. (b) Negative odd-
atom quantum wire implementation for QUBO. (c, d) Positive hyperedge implementations of order K = 3 and K = 4 using K = 3-atom and
K = 4-atom Rydberg superatoms, respectively. (e, f) Negative hyperedge implementations of order K = 3 and K = 4 using K − 1 = 2-atom
and K − 1 = 3-atom Rydberg superatoms, respectively.

042612-4



PROGRAMMING HIGHER-ORDER INTERACTIONS OF … PHYSICAL REVIEW A 110, 042612 (2024)

TABLE II. The many-body ground-state energies of negative-
weight hyperedges, generated by (K − 1)-atom Rydberg superatoms
under the MIS condition, depend on the spin configuration of data
qubits x1, x2, . . . , xK .

|x1 · · · xK−2; xK−1xK 〉 Hyperedge configuration Energy

|0 · · · 0; 00〉 (|0 · · · 001 > + · · · −�

+|1 · · · 000 >)/
√

K − 1
|0 · · · 0; 01 > (|0 · · · 010〉 + · · · −�

+|1 · · · 000〉)/
√

K − 2
...

...
...

|1 · · · 1; 00〉 |0 · · · 001〉 −�

|1 · · · 1; 01〉 |0 · · · 000〉 0
|1 · · · 1; 10〉 |0 · · · 000〉 0
|1 · · · 1; 11〉 |0 · · · 000〉 0

the Rydberg superatom, vertices from x1 to xK−2 must be
excited, and vertices K − 1 and K must satisfy −xK−1xK +
xK−1 + xK = 1, which means at least one vertex from xK−1

and xK should be excited. If this condition is not met, there
will be a single-atom excitation in the Rydberg superatom,
effectively contributing an energy of −�. Thus, when the con-
ditions x1x2 · · · xK−2 = 1 and −xK−1xK + xK−1 + xK = 1 are
met, specifically, for (xK−1, xK ) = (0, 1), (xK−1, xK ) = (1, 0),
and (xK−1, xK ) = (1, 1), the Rydberg superatom has an effec-
tive energy of +� compared to the case when the condition is
not met. The corresponding Hamiltonian is given by

Ĥneg
12···(K−2);(K−1)K

�

g= [−n̂K−1n̂K + n̂K−1 + n̂K ]
K−2∏

j=1

n̂ j, (10)

which contains the negative K th-order term and two addi-
tional positive (K − 1)th-order terms.

Figure 2(e) illustrates a negative-weight hyperedge with
the maximum order of K = 3. The K − 1 = 2-atom Rydberg
superatom, forming a dimer with atoms W1 and W2, is con-
nected to the vertices x1, x2, and x3, acting as a hyperedge
(x1, x2, x3) with a negative energy contribution. Under the
MIS condition, only a single excitation in the K − 1 = 2-atom
Rydberg superatom is allowed, adding an energy penalty of
−�, when x1(−x2x3 + x2 + x3) = 0. Conversely, no excita-
tion occurs in the Rydberg superatom when x1(−x2x3 + x2 +
x3) = 1, and there is no excitation in the Rydberg superatom
when x1(−x2x3 + x2 + x3) = 1. The effective energy differ-
ence between two condition is +�. Thus, the energy function
incorporating the additional cost from the Rydberg superatom
is given by Ĥneg,(3)

1;23 /� = n̂1(−n̂2n̂3 + n̂2 + n̂3), following the
form in Eq. (10).

Similarly, the K − 1 = 3-atom Rydberg superatom in
Fig. 2(f) generates the Ĥneg,(4)

12;34 /� = n̂1n̂2(−n̂3n̂4 + n̂3 + n̂4)
term. The many-body ground states of the connected Rydberg
superatom under the MIS condition are listed in Table II.

It is noted that if K = 2, the
∏K−2

j=1 n̂ j term in Eq. (10)
can be omitted, leaving only the terms −n̂1n̂2 + n̂1 + n̂2,
which match Eq. (6). This indicates that the negative-weight
hyperedge in Rydberg HUBO implementation includes the
odd-atom quantum wire in Rydberg QUBO implementation,
such that Ĥodd

jk = Ĥneg,(K=2)
jk .

III. PROGRAMMING RYDBERG-ATOM GRAPHS
FOR HUBO PROBLEMS

HUBO problems can be transformed into QUBO prob-
lems [51–53] without utilizing the hypergraph implementa-
tion. However, converting the higher-order terms in a HUBO
problem into quadratic terms for a QUBO problem neces-
sitates additional variables, thereby increasing the number
of required atoms. While this increase can be polynomi-
ally bounded in specific cases [54], the number of auxiliary
variables generally grows exponentially, significantly increas-
ing the resources needed to solve the HUBO problem [55].
This resource increase must be considered when transforming
HUBO problems to QUBO problems, as exponential growth
in resources can make the problem significantly more chal-
lenging to solve. A direct HUBO implementation is thus
crucial to avoid the additional atom resources required by the
transformation from HUBO to QUBO.

Now, the HUBO problem can be encoded into a Rydberg-
atom graph by utilizing the positive-weight hyperedge defined
in Eq. (9) and the negative-weight hyperedge defined in
Eq. (10), with appropriately tuned weights:

ĤHUBO =
∑

( j)

wdata
j Ĥdata

j + woffset
j Ĥoffset

j

+
∑

E (K ),K

w
pos,(K )
( j,k,l,...)Ĥ

pos,(K )
( j,k,l,...) + w

neg,(K )
( j,k,l,...)Ĥ

neg,(K )
( j,k,l,...),

(11)

where Ĥdata and Ĥoffset are Hamiltonians corresponding to
data and offset qubits, respectively, which are components
of the QUBO building blocks [42] encoding linear terms.
The weights w determine the coupling strength of each term
and can be set using local laser beam addressing [56–59]
or through duplication [42] with 3D stacking [38–41]. To
implement HUBO with locally focused light, a weighted de-
tuned beam should be applied to all the atoms in the Rydberg
superatom, which serves as the hyperedge gadget.

In the following, we consider two experimentally feasible
candidates that necessitate higher-order interactions. The first
involves the quantum simulation of complex spin systems, and
the second relates to the application of HUBO-based adiabatic
quantum computing.

A. Quantum Sierpinski triangle

When the downward-facing triangles in a triangular lattice
follow the Hamiltonian ĤST,

ĤST = −J
∑

� jkl

σ̂ z
j σ̂

z
k σ̂ z

l , (12)

the ground state contains an odd number of up-spins |1〉 in
each downward-facing triangle, where σ̂z = −|0〉〈0| + |1〉〈1|
is the Pauli z operator. This configuration satisfies σ z

j σ
z
k σ z

l =
+1 under the ferromagnetic condition J > 0. The many-body
ground state of the spin system forms the shape of a Sierpinski
triangle, shown in Fig. 3(a), which is a characteristic fractal
structure [34,60]. Then, the Hamiltonian ĤST can be expressed
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(c)

Addressing Duplicating
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+2 +2

+2-1 -1

-1

FIG. 3. (a) Sierpinski-triangle-shaped spin ordering. The downward-facing triangle is subject to the third-order interaction ĤST =
−Jσ̂ z

j σ̂
z
k σ̂ z

l . The corresponding hypergraph represents the HUBO cost function. (b) A sketch of the Rydberg-atom graph corresponding to
the downward-facing triangle. It includes three quantum wires and one third-order hyperedge. (c) The skeleton Rydberg-atom graph, which is
the unweighted version of the graph.

using a Rydberg-atom graph as follows:

ĤST ∝
∑

� jkl

[−4n̂ j n̂k n̂l + 2n̂ j n̂k + 2n̂k n̂l + 2n̂ j n̂l

−n̂ j − n̂k − n̂l ]. (13)

The relation σ̂ z = 2n̂ − 1̂ is used for deriving Eq. (13),
where 1̂ is the identity operator. Figure 3(b) depicts the il-
lustration of the Rydberg-atom graph [37] representing a unit
downward-facing triangle, which is highlighted in Fig. 3(a).
The black lines represent antiferro (AF)-ordered quantum
wires [35] that facilitate the establishment of nonlocal inter-
actions. By using postprocessing [35,36,42] or local beam
addressing [59], we can restrict the state of the quantum wire
as an AF-ordered state so that it just functions as a wire. The
Hamiltonian for the unit downward-facing triangle in Eq. (13)
can be formulated in the format of Eq. (11) as

ĤST
� jkl

= wdata
j Ĥdata

j + wdata
k Ĥdata

k + wdata
l Ĥdata

l

+ w
neg,(2)
jl Ĥneg,(2)

jl + w
neg,(2)
kl Ĥneg,(2)

kl

+ w
pos,(2)
jk Ĥpos,(2)

jk + w
neg,(3)
jk;l Ĥneg,(3)

jk;l , (14)

where the weights are wdata
j = wdata

k = 3, wdata
l = 5, wpos,(2)

jk =
w

neg,(2)
jl = w

neg,(2)
kl = 2, and w

neg,(3)
jkl = 4. In Fig. 3(c), a skele-

ton Rydberg-atom graph is depicted where all weights are
w = 1, corresponding to the sketch in Fig. 3(b). The high-
lighted region in Fig. 3(c) contains the third-order negative
hyperedge, utilizing the same configuration as in Fig. 2(e). As

illustrated in Fig. 3(c), weights can be assigned through local
beam addressing or by duplicating the hyperedge subgraph.

B. Factorization problems

Using HUBO enables the solution of the factorization
problem. The objective of prime factorization is to identify
integers P and Q for a given integer N , such that N = PQ.
For example, to factor N = 6 = (110)2, where (Nm · · · N1N0)2

denotes the binary notation and N = Nm2m + · · · + N121 +
N020, the cost function of the factorization problem is ex-
pressed as

fFact6(x) = [6 − (21P1 + 20P0)(21Q1 + 20Q0)]2. (15)

To simplify the problem, let P0 = 1. Subsequently, the cost
function transforms to

fFact6(x) = −20Q1 − 11Q0 − 16P1Q1 − 16P1Q0

+ 4Q1Q0 + 32P1Q1Q0. (16)

This constitutes a three-variable optimization problem involv-
ing P1, Q1, and Q0. Similar to the previous example, we
express the Hamiltonian in the form of Eq. (11):

ĤFact6 = wdata
P1

Ĥdata
P1

+ wdata
Q1

Ĥdata
Q1

+ wdata
Q0

Ĥdata
Q0

+ w
neg,(2)
P1Q1

Ĥneg,(2)
P1Q1

+ w
neg,(2)
P1Q0

Ĥneg,(2)
P1Q0

+ w
pos,(2)
Q1Q0

Ĥpos,(2)
Q1Q0

+ w
pos,(3)
P1Q1Q0

Ĥpos,(3)
P1Q1Q0

, (17)

which involves four different quantum wires and hyperedges:
a K = 3 order positive hyperedge for 32P1Q1Q0, odd-atom
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1st – order interaction

(Vertex)

2nd – order interaction

(Edge)

Kth – order interaction

(Kth – order hyperedge)

FIG. 4. The diagram depicts a fully connected hypergraph. In QUBO cases, edges are represented by quantum wires, shown as colored
lines in the figure. In HUBO cases, hyperedges are represented by the hyperedge gadgets introduced in this paper, illustrated as colored circles
in the figure. To represent a K th-order hypergraph, the duplication method requires O(

∑
K=1 w

(K )
E NK ) atoms.

quantum wires for 16(−P1Q1 + P1 + Q1) and 16(−P1Q0 +
P1 + Q0), and an even-atom quantum wire for 4Q1Q0.
The weight factors are wdata

P1
= 32, wdata

Q1
= 36, wdata

Q0
= 27,

w
neg,(2)
P1Q1

= w
neg,(2)
P1Q0

= 16, w
pos,(2)
Q1Q0

= 4, and w
pos,(3)
P1Q1Q0

= 32. The
solution to the HUBO problem is (P1; Q1, Q0) = (1; 1, 0), cor-
responding to P = (11)2 = 3 and Q = (10)2 = 2, satisfying
6 = 2 × 3. This solution can be obtained via quantum adia-
batic passage to the MIS condition.

IV. DISCUSSION

To discuss the scaling behavior, we employ a 3D quantum
wire lattice structure [37], akin to Figs. 3(b) and 3(c). A line
of N data qubits is organized, with quantum wires effectively
duplicating this line of data qubits. Hence, the scalability is
determined by the number of duplications. This structure is
already used for discussing the scaling behavior of both the
unweighted graph case and the weighted graph case [37,42].
The combination of 3D [38–41] and quantum wire guarantees
the all-to-all connectivity [35,37].

In Fig. 4, the Rydberg-atom graph is illustrated, where
black lines represent AF-ordered quantum wires [35,36,42],
connecting atoms such that vertices effectively link together.
The AF-ordered quantum wire is experimentally reliable
using local beam addressing [59], duplication [42], and post-
processing [35,36,42] independently. Branches extend from
AF-ordered quantum wires, running parallel to the vertex line
and crossing over other AF-ordered quantum wires to form
edges of the graph. In Fig. 4, a branch originates from x1,
passes over x2, . . . , xN , and connects to all others, ensuring
x1-to-all connectivity. Similarly, branches are extended from

x2 to xN−1, and so forth, achieving an all-to-all connected
graph. The number of branches scales as O(N ) while the
height scales as O(1) [37]. Therefore, to generate an all-to-all
connected unweighted graph, O(N2) atoms are required [37].
In the case of a weighted graph, local addressing and duplica-
tion methods necessitate O(N2) atoms and O(wVN + wEN2),
respectively, where wV and wE denote the maximum weight
of vertices and edges [37,42].

To implement hyperedges of the highest-order K on a cubic
lattice structure, branches are utilized to represent combina-
tions of vertices. For instance, Fig. 4 illustrates a hypergraph
with the maximum degree K = 3, where the colored circles
indicate hyperedges. To implement a K = 3 order hyper-
edge, branches are formed by selecting K − 1 vertices from

(a) (b)

FIG. 5. Hyperedges implemented using AF-ordered quantum
wires. (a) The target graph with a K = 5 positive-weight hyperedge.
(b) By employing AF-ordered quantum wires and vertex splitting, a
Rydberg superatom is realized using O(K2) atoms.
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N − 1. The number of branches scales as O(NK−1) scaling.
Ultimately, constructing a hypergraph of order K requires
O(NK ) atoms. Similar to QUBO, in the case of implement-
ing a weighted graph, the required number of atoms is
O(

∑
K=1 w

(K )
E NK ), where w

(K )
E denotes the maximum weight

of the K th hyperedges, with w
(K=1)
E = wV and w

(K=2)
E = wE.

If K , the order of the interaction, becomes larger,
implementing a Rydberg superatom becomes increasingly
challenging. However, using an AF-ordered quantum wire and
the vertex splitting method [35,36,42], it is possible to im-
plement a superatom-equivalent graph. Figure 5(a) shows the
target graph corresponding to the positive-weight hyperedge
with K = 5. Figure 5(b) displays the Rydberg-atom graph
used for hyperedge implementation. A Rydberg superatom
is a type of Rydberg-atom graph, which can be programmed
using Rydberg-atom graph QUBO implementation. For a K-
atom Rydberg-atom graph, the number of vertices is K , so
each hyperedge requires O(K2) atoms. The number of hy-
peredges in a K th-order hypergraph is O(NK ), thus requiring
O(K2NK ) atoms. If K is a finite number, the scaling remains
O(NK ).

V. CONCLUSION

Rydberg-atom graph gadgets are introduced to efficiently
program K th-order interactions within a Rydberg-atom sys-
tem under the MIS condition. This methodology facili-
tates the determination of many-body ground states for
Ising-type Hamiltonians, which are encoded to tackle HUBO,
the higher-order unconstrained optimization problem. This
Rydberg-atom approach extends beyond solving classical
optimization problems to quantum simulations of spin mod-
els. The polynomial scaling of O(NK ), in terms of the
number of atoms required for N-vertex hypergraph optimiza-
tion problems, underscores the experimental feasibility of
Rydberg-atom-based higher-order graph optimization using
current and near-term devices.
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