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Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical
mechanics, often obeys a master equation that captures essential information from the complexities. Here,
we find that thermalization of an isolated many-body quantum state can be described by a master equation.
We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum
simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of
their local observables, a thermalization signature, obeys a master equation experimentally constructed by
monitoring the occupation probabilities of prequench states and imposing the principle of the detailed
balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization
dynamics that does not require coupling to baths or postulated randomness.
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It is a long-standing question about thermalization,
whether and how an isolated many-body quantum system
coherently evolves into a steady state that seems to be in
thermal equilibrium [1,2]. As a variety of quantum simu-
lators have been developed recently [3], there are a number
of experimental reports on thermalization [4–7]. There are
also theoretical mechanisms, such as the eigenstate thermal-
ization hypothesis (ETH) [8–13], that tell us whether the
steady state is practically indistinguishable from an equilib-
rium thermodynamic ensemble. By contrast, the principles
of dynamics toward the steady state remain largely
unknown. The thermalization dynamics has the complexity
exponentially increasing with system size; hence, its com-
putation is impractical for large systems. Recently, a master
equation was derived [14] for describing the thermalization
dynamics of a quantum spin system. It is constructed in
terms of transition rates between the eigenstates of the
prequench Hamiltonian and well describes the time evolu-
tion of local observables towards steady-state values (except
some coherent oscillations). It is powerful, as the number
of the rates necessary for the construction increases only
linearly with system size. We experimentally construct the
master equation by preparing optical dipole traps with unit
occupation of 87Rb atoms and monitoring the global sudden
quench dynamics to a Rydberg level.
Rydberg-atom experiment.—We utilized the recently

developed single-atom array synthesizer [15–18] in con-
junction with global Rydberg-atom excitation. In Fig. 1(a),
defect-free 87Rb single-atom chains of various size
(N ¼ 10–25) were formed by using dynamic holographic
optical tweezers; note the images of an N ¼ 25 zigzag
chain of bending angle θ ¼ 60° in Fig. 1(b). We fixed the
interatom distance d ¼ 4.0� 0.2 μm and changed the
zigzag angle θ from 45° to 180°; among the angles θ’s

that we choose (see Supplemental Material in Ref. [19]),
we focus on θ ¼ 180° and 60°, which correspond to a
spin chain with a nearest neighbor interaction and another
with both of a nearest neighbor interaction and a next
nearest neighbor interaction, respectively. The entire array
was coherently driven to a 67S1=2 Rydberg state with
homogeneous interaction strength by adopting widely used
two-photon excitation [19,28–33]. Each atom i behaved as
a pseudospin-1=2 system composed of the ground state
j5S1=2; F ¼ 2; mF ¼ 2i≡ j↓ii and the Rydberg state
j67S1=2; J ¼ 1=2; mJ ¼ 1=2i≡ j↑ii, as the intrinsic
dephasing time 16 μs was longer than the experiment
duration 3 μs [19].
The system can be described by the Hamiltonian of an

Ising-like spin-1=2 chain [30–33],

H¼H0þHI ¼
X

i>j

Vijn̂in̂jþ
X

i

ℏΩ
2

σ̂ðiÞx −
ℏΔ
2

σ̂ðiÞz ; ð1Þ

where n̂i ¼ j↑iih↑ij, σ̂ðiÞx ¼ j↑iih↓ij þ j↓iih↑ij, and σ̂ðiÞz ¼
j↑iih↑ij − j↓iih↓ij. The first term H0 of Eq. (1), the
repulsive van der Waals interaction Vij ¼ −C6=jxi − xjj6
with coefficient C6 ¼ −470 GHz=μm6 [34], behaves as
interactions between the spins, while the second and
third terms with Rabi frequency Ω and detuning Δ act
as spin transverse Zeeman splitting HI . The nearest
neighbor interaction strength is estimated as V12=2πℏ ¼
14–25 MHz for d ¼ 4.0� 0.2 μm, and the next nearest
neighbor interaction strength V13 depends on θ, V13 ¼
V12=64 for θ ¼ 180° and V13 ¼ V12 for θ ¼ 60°. The
fluctuation of Vij is due to thermal atomic motions.
There is a shot-to-shot noise on HI , resulting in 2 μs
inhomogeneous dephasing time on collective Rabi oscil-
lations [19]; however, it does not qualitatively alter the
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equilibration dynamics under the parameters of H0 ≫
ℏΩ ≫ ℏjΔj [35].
Thermalization.—Initially, Ω and Δ are zero and the

chain is in the ground state j↓1↓2…↓Ni of H0. Then,
staying at t ¼ 0, they are suddenly turned onto Ω=2π ¼
1.0� 0.1 and Δ=2π ¼ 0.0� 0.1 MHz. This global quench
makes the measured Rydberg fraction fR ≡P

ihn̂iiðtÞ=N
change in time, as in Figs. 1(c) and 1(d) [also seeP

i;jhn̂in̂jiðtÞ=N2 in Ref. [19]]. The overall features of
fR are qualitatively the same for N ≥ 10; fR shows
coherent oscillations before it approaches a steady-state
value f̄R. The major frequency component of the oscil-
lations occurs at

ffiffiffi
2

p
Ω for the linear chain and

ffiffiffi
3

p
Ω for the

zigzag chain of θ ¼ 60°, corresponding to the collective
Rabi frequency of two or three atoms. The results agree
with computations based on a Lindblad equation for
N ¼ 10 and on matrix product states (MPS, see
Ref. [19]) for N ¼ 20. Note that the shot-to-shot noise is
taken into account for N ¼ 10; the noise effect becomes
negligible for larger N [5,11,36].
We estimate the relaxation time trelax, after which the

oscillations are suppressed, as trelax ¼ 1.5–2 μs from both
of the experimental data and the theoretical calculation
shown in Fig. 1; after the relaxation, there is still a long-
time weak oscillation, which is a finite-size effect and
becomes suppressed for larger N [5,11,36]. For smaller θ,
trelax becomes shorter (because of stronger next nearest
neighbor interactions) and below the dephasing time

(e.g., trelax ¼ 1.5 μs at θ ¼ 60°), implying that the relax-
ation may occur due more to the coherent dynamics than to
the dephasing (experimental imperfection). For N ¼ 10
and θ ¼ 180°, the inhomogeneous dephasing affects the
relaxation, as the relaxation time trelax ¼ 2 μs becomes
comparable to the dephasing time.
Around the relaxation time trelax ¼ 1.5–2 μs for

θ ¼ 60°–180°, the oscillations are suppressed. We obtain
the time average f̄R at t ≥ trelax. f̄R follows the universal
scaling behavior of f̄R ∝ αν with α ∝ ℏΩd6=jC6j [19]. The
measured exponent ν ¼ 0.16� 0.02 agrees with the pre-
diction [28,37] based on the Hamiltonian H. All the above
observations support that our system properly works as
Rydberg quantum simulators [31–33,38,39].
Detailed balance.—To analyze the relaxation of fR,

we measure the probabilities PnðtÞ with which there are n
atoms in spin-up j↑i at time t. In Fig. 2(a), PnðtÞ exhibits
coherent oscillations while diffusing to a steady-state
distribution. To describe the diffusion, we consider a master
equation of the simplest form [14]

∂tPnðtÞ ¼ ½Pnþ1ðtÞΓnþ1→nðtÞ þ Pn−1ðtÞΓn−1→nðtÞ�
− PnðtÞ½Γn→n−1ðtÞ þ Γn→nþ1ðtÞ�; ð2Þ

where Γn→n�1ðtÞ is the rate of transition from states with n
spin-up atoms to those with n� 1. The other transitions of
n ↔ n0ð≠ n� 1Þ are negligible in our regime ofH0 ≫ HI ,

(a) (c)

(d)(b)

FIG. 1. Setup. (a) The wave front of the trap laser is modulated by a liquid-crystal spatial light modulator (SLM) and imaged by a
telescope (L1, L2) and an objective lens (L3). The fluorescence image of the trapped atoms is captured by a camera and analyzed to
feedback the SLM for array compactification by atom shuttling [15–18]. Then, 480 and 780 nm lasers excite the array to a 67S Rydberg
state, forming a tunable Ising-like spin-1=2 chain. (b) Zigzag chain fluorescence images (Gaussian filtered for clarity). Time dependence
of Rydberg fraction after the quench for (c) the linear chain of N ¼ 10 and θ ¼ 180° and (d) the zigzag chain of N ¼ 20 and θ ¼ 60°.
The experimental data (circles) are compared with the computation (solid lines) and the result (dashed) of the master equation
constructed based on the experimental data. All error bars, � standard error of the mean. (c),(d)(right) Chain configurations with
blockade radius of rB ¼ ðjC6j=2πΩÞ1=6 ¼ 6.5 μm and lattice spacing of d ¼ 4.0� 0.2 μm.
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as they are higher-order processes of multiple spin flips
by HI.
The principle of the detailed balance, ½Peq

nþ1Γnþ1→n þ
Peq
n−1Γn−1→n� ¼ Peq

n ½Γn→n−1 þ Γn→nþ1� and Peq
1 Γ1→0 ¼

Peq
0 Γ0→1, is obtained from the master equation in the

steady state, where Pn ¼ Peq
n and ∂tPnðtÞ ¼ 0; equiva-

lently, Γn→n−1=Γn−1→n ¼ Peq
n−1=P

eq
n . We obtain Peq

n by the
time average of PnðtÞ at t ≥ trelax and retrieve the micro-
scopic information of Γn→n−1=Γn−1→n using the detailed
balance relation. In Fig. 2, the results agree with the
theoretical prediction [14,40] of Peq

n ¼ νn=D and
Γn→n−1=Γn−1→n ¼ νn−1=νn obtained in the limit of
HI=H0 → 0, where νn ¼ ðNþ1−n

n Þ for the linear chain, νn ¼
ðNþ2−2n

n Þ for θ ¼ 60°, and D ¼ P
nνn.

We explain the meaning of νn for the linear chains as an
example. In our relaxation dynamics, H0 ≫ HI and the
initial state is the ground state j↓1↓2 � � �↓Ni of H0. In this
case, it is enough to consider only low-energy eigenstates

jσð1Þz σð2Þz …σðNÞ
z i of the prequench Hamiltonian H0, from

j↓1↓2↓3…i to j↑1↓2↑3…i, in which any two neighboring

spins σðiÞz and σðiþ1Þ
z cannot be simultaneously in spin-up;

the other higher-energy eigenstates can be ignored, since
they are separated from the low-energy states in energy at
least by Vi;iþ1. Then, PnðtÞ almost equals the probability of
occupying the low-energy states of n spin-up atoms, and
the possible values of n are 0; 1;…; nmax ¼ N=2 for evenN
and 0; 1;…; nmax ¼ ðN þ 1Þ=2 for odd N. νn is the number
of the low-energy states of n spin-up atoms. Transitions
between those of n and those of n� 1, occurring with
a single spin flip by HI, govern the relaxation dynamics
in our regime of H0 ≫ HI [14]. In this case, the ratio
Γn→n−1=Γn−1→n of the transition rates equals the ratio
νn−1=νn. We emphasize that the ratios, microscopic infor-
mation of the dynamics, are measured in our experiments.

The master equation in Eq. (2) efficiently describes the
relaxation dynamics, as it has only 2nmax parameters of
the transition rates Γn→n�1, which is much smaller than the
size 2N of the Hilbert space. This allows us to experimen-
tally construct the master equation. Among the 2nmax
parameters, nmax parameters are determined by the ratios
Γn→n−1=Γn−1→n, measured by applying the detailed bal-
ance. The other nmax parameters are determined by using
the probabilities PnðtÞ and their derivatives ∂tPnðtÞ
measured at the early stage of t ≃ 0 before the coherent
oscillations occur. In this step, we use the form of
Γn→n�1ðtÞ ¼ 2Ω2tTn→n�1 derived in Ref. [14], where
Tn→n�1’s are time independent. Using the experimentally
constructed master equation, we compute the time evolu-
tion of the Rydberg fraction fRðtÞ [¼ P

nnPnðtÞ=N] andP
i;jhn̂in̂jiðtÞ=N2 [¼ P

nn
2PnðtÞ=N2] and find that the

result well describes the experimental data of the relaxation
of fRðtÞ in Figs. 1(c) and 1(d) [Ref. [19] forP

i;jhn̂in̂jiðtÞ=N2]. Note that the master equation result
does not show the coherent oscillations, since the higher-
energy eigenstates and the processes of multiple spin flips
are ignored in the master equation. All the observations
imply that the thermalization dynamics obeys the master
equation, similar to dynamics to equilibrium in statistical
mechanics.
Steady state.—The thermalization dynamics can be con-

sidered as diffusion on the graph in Fig. 2(c), where each link
has equal transition probability determined by HI. This
indicates that the relaxation time trelax depends on the initial
point of the diffusion [14,40]. The initial state j↓1↓2…↓Ni
of this experiment is located at an edge of the graph. Hence,
the dynamics has a long relaxation time trelax as in Figs. 1(c),
1(d), and 2(a). When an initial state is located closer to the
center of the graph, the resulting coherent oscillations
become more rapidly suppressed with shorter trelax [14].

(a) (b)

(c)

FIG. 2. Detailed balance in the linear chain of N ¼ 10. (a) The measured PnðtÞ (color bars) and its standard deviation (�σ, overlaid
black lines). At t > 2 μs, the measured data (red dots) and the theoretical predictions (black line) of the steady-state values Peq

n are
shown. The red dashed line evolves along the tallest bar, showing the coherent oscillation of Pn. (b) The ratio Γn→n−1=Γn−1→n (red dots)
of transition rates are obtained (with error bar �σ) from Peq

n and compared with the theoretical prediction (black dots). (c) Graph for the
thermalization dynamics. Its nodes (circles) represent low-energy eigenstates of the prequench Hamiltonian H0, classified by the
number n of spin-up atoms in the states. νn is the number of the eigenstates having n spin-up atoms. Each red link connecting two nodes
indicates transitions between the corresponding states by HI.
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We experimentally measured the steady-state values of
the probability jCmj2 with which the chain occupied the
mth eigenstate of the prequench Hamiltonian H0. In the
language of the diffusion on the graph, jCmj2 is interpreted
as the occupation probability of the node corresponding
to the mth eigenstate. As shown in Fig. 3, the result is
jCmj2 ≃ 1=D, where D ¼ P

nνn is the total number of the
low-energy eigenstates. This demonstrates almost uniform
spreading over the graph, namely, over the low-energy
eigenstates. Indeed, the experimental data of Peq

n are close
to νn=D.
In Fig. 4, the experimental results of the steady-state

values of the Rydberg fraction fR are shown for N ¼ 3–25.
They agree with the computation based on the MPS. They
are, however, slightly different from the ETH prediction.

Indeed, the typical features of the ETH do not hold in
our cases [19].
In summary, we performed a quantum simulation experi-

ment with tunable tweezer traps and Rydberg-atom inter-
action. Our quantum simulator provides an ideal test bed
for studying quantum coherent evolution of a many-body
system after a quench. It allows us to simulate a one- or
two-dimensional lattice of Ising-like spin-1=2 particles or
the Hamiltonian in Eq. (1) with parameters tunable in a
wide range. We can monitor the time evolution by
measuring occupation probabilities of the eigenstates of
a prequench Hamiltonian or a postquench Hamiltonian.
The thermalization dynamics studied in our experiment
belongs to the cases where the postquench Hamiltonian is
slightly modified after quench so thatH0 ≫ HI. Our results
suggest that the detailed balance can be an underlying
principle of the thermalization dynamics of the cases. The
thermalization dynamics can be efficiently described by the
diffusion governed by a master equation of a simple form,
similar to relaxation towards equilibrium in classical
statistical mechanics, but without its underlying assump-
tions of coupling to baths and the ergodicity hypothesis
based on randomness.
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