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Rydberg-atom experiment for the integer factorization problem
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The task of factoring integers poses a significant challenge in modern cryptography, and quantum computing
holds the potential to efficiently address this problem compared to classical algorithms. Thus, it is crucial to
develop quantum computing algorithms to address this problem. This study introduces a quantum approach
that utilizes Rydberg atoms to tackle the factorization problem. Experimental demonstrations are conducted for
the factorization of small composite numbers such as 6 = 2 × 3, 15 = 3 × 5, and 35 = 5 × 7. This approach
involves employing Rydberg-atom graphs to algorithmically program binary multiplication tables, yielding
many-body ground states that represent superpositions of factoring solutions. Subsequently, these states are
probed using quantum adiabatic computing. Limitations of this method are discussed, specifically addressing
the scalability of current Rydberg quantum computing for the intricate computational problem.
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I. INTRODUCTION

Modern cryptosystems using public-key distribution rely
on the fact that finding prime factors, p and q, of a given
semiprime integer, n = p × q, is computationally inefficient
in classical computation [1]. On a quantum computer, Shor’s
algorithm is expected to run in a polylogarithimic time of n,
i.e., to solve the factorization problem efficiently [2,3]. Exper-
imental tests of Shor’s algorithm for small integers have been
conducted on various quantum gate-based computers, includ-
ing those using NMR [4], trapped ions [5], superconductor
qubits [6,7], and photons [8,9]. Improvements are expected
in gate fidelity and system size to facilitate factorization
of larger numbers. An alternative approach is provided by
quantum adiabatic computing [10], where the integer factor-
ization problem is encoded into the Hamiltonian of a quantum
many-body system, which allows the prime factors to be
obtained by adiabatically driving the system to its ground
state. Experimentally quantum adiabatic methods are carried
out with NMR systems [11,12] as well as on commercially
accessible platforms such as IBMQ [13] and D-Wave [14].
These experiments utilize quadratic unconstrained binary op-
timization (QUBO) to encode the factorization problem into
Hamiltonians.

In recent years, there has been a rapid progress in the
field of Rydberg-atom-based quantum computing [15–18].
Atomic qubits numbering in the hundreds have become avail-
able and are used for various quantum applications, including
quantum simulations, adiabatic quantum computing, and
quantum approximate optimization algorithms [19–25]. The
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versatility of atom rearrangement techniques has enabled
the creation of highly customizable atomic arrangements
in conjunction with either quantum wires [26,27], cross-
ing gadgets [28,29] utilizing local addressing [25,30,31],
or a dynamic qubit architecture [22,24]. Experimentally,
Rydberg-atom graphs, each denoted as G(V, E ), where V
represents atoms and E denotes pairwise strong Rydberg
couplings, are applied to nondeterministic polynomial time
(NP)-complete problems including the maximum independent
set (MIS), maximum cut, and satisfiability (SAT) problems
[25,26,32–34].

This paper aims to program Rydberg-atom graphs for
solving the integer factorization problem and experimentally
determining its factors. Of particular relevance in the con-
text of this paper, previous theoretical considerations have
explored the use of Rydberg-atom systems employing cross-
ing gadgets and single-atom addressing [28]. In this work,
we opt for constructing Rydberg-atom graphs using three-
dimensional structures and quantum wires instead of relying
on the technically challenging single addressing.

The procedure involves an efficient two-step reduction al-
gorithm that transforms the integer factorization problem, via
(i) the SAT problem, into (ii) the MIS problem. Addition-
ally, it includes a protocol for embedding the MIS problem
onto a Rydberg-atom graph and experimentally probing the
Rydberg-atom graph’s ground state. The subsequent sec-
tions of the paper elaborate on the procedure, starting with an
overview of the use of a Rydberg-atom graph in integer fac-
torization, illustrated by the example of p × q = 6 in Sec. II.
Details about encoding of the factorization into the SAT prob-
lem are provided in Sec. III. Experimental demonstrations
of p × q = 15 and 35 are presented in Sec. IV. Scalability
issues related to the Rydberg-atom approach to the integer
factorization problem are discussed in Sec. V, leading to con-
clusions in Sec. VI.
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FIG. 1. The procedure of addressing the integer factorization problem using a Rydberg-atom graph. (a) The instance p × q = 6 and its
associated multiplication table. (b) The 3-satisfiability (3-SAT) representation of the given factoring problem, along with the corresponding
graph G6. (c) Implementation of Rydberg-atom quantum adiabatic computing, where G6 is manifested as a Rydberg-atom graph. (d),(e)
Experimental probability distributions in |p0, p1, q0, q1; p0, q0〉 basis and (p1 p0)2 × (q1q0)2 basis, respectively.

II. RYDBERG-ATOM APPROACH TO THE INTEGER
FACTORIZATION PROBLEM

We describe the method of programming the integer fac-
torization problem with a Rydberg-atom graph, using the
simplest possible example of p × q = 6 as illustrated in
Fig. 1. Initially, we reduce the integer factorization problem
to a SAT one. Considering the three-bit binary representation
6 = (110)2, we assume that the factors p and q are two-bit in-
tegers, denoted as p = (p1 p0)2 and q = (q1q0)2. The Boolean
equations governing the binary variables p0, p1, q0, q1 are
then derived from the multiplication table in Fig. 1(a) as
follows:

p0q0 = 0, (1a)

p0q1 ⊕ p1q0 = 1, (1b)

p0q1 p1q0 ⊕ p1q1 = 1, (1c)

where ⊕ is XOR and p0q1 p1q0 in Eq. (1c) denotes the carry
arising from Eq. (1b). These equations can be efficiently (i.e.,
in a polynomial number of steps in the bit number of n)
converted to a Boolean equation in conjunctive normal form,

yielding

�6 = p1q1(p0 + q0)( p̄0 + q̄0) = 1. (2)

Further details will be described in Sec. III. The Boolean
equation �6 = 1 readily translates into the following Boolean
satisfiability (SAT) problem of four clauses:

�6(p0, p1, q0, q1) = C1 ∧ C2 ∧ C3 ∧ C4 = 1, (3a)

C1 = p1, (3b)

C2 = q1, (3c)

C3 = p0 ∨ q0, (3d)

C4 = p0 ∨ q0. (3e)

Subsequently, we translate this SAT problem into a MIS prob-
lem on a graph, as depicted in Fig. 1(c). The first two clauses
C1 and C2 in Eqs. (3b) and (3c) are incorporated into isolated
single-vertex graphs denoted as K′

1s in graph nomenclature:

K1(v) := G(V = {v}, E = ∅). (4)

For C3 and C4, two-vertex connected graphs, or K′
2s, are

employed:

K2(v1, v2) := G(V = {v1, v2}, E = {(v1, v2)}. (5)
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Now, we introduce additional edges to represent interclause
relations between variables p0, q0 and their negations p0, q0,
creating connections between C3 and C4. These interclause
edges impose constraints between the vertices encoding
the same variables. Consequently, the graph G6 expressing
the factorization problem p × q = 6 as a MIS problem on the
graph is defined as follows:

G6 = K1(p1) ∪ K1(q1) ∪ K2(p0, q0) ∪ K2(p0, q0)

+ e(p0, p0) + e(q0, q0). (6)

Here, G6 has maximum independent set of size 4, which is
equal to the number of clauses in �6. Therefore, any maxi-
mum independent set configuration of size 4 corresponds to an
assignment satisfying �6 = 1, ensuing that the corresponding
binary representation of numbers p, q meet p × q = 6.

By transforming the integer factorization problem into a
MIS one, we can leverage a Rydberg-atom experiment to
address it, exploiting the Rydberg blockade phenomenon to
inherently encode the independence condition in the spa-
tial configuration of the atoms. Specifically, the graph G6 is
implemented as a Rydberg-atom graph, where each vertex
corresponds to an atom, and edges are established by po-
sitioning the respective pairs of atoms in close proximity,
ensuring that their simultaneous excitation to the Rydberg
state is hindered by the blockade phenomenon [35,36]. Fol-
lowing a quantum evolution, the collection of atoms in the
Rydberg state delineates a subset of vertices of G6. These
subsets sampled from this final state are expected to be good
candidates for the MIS of the graph.

The Hamiltonian is defined for a general graph G (an
unweighted graph) as follows:

Ĥ (G) = U

4

∑
( j,k)∈E

(
σ̂ ( j)

z + 1
)(

σ̂ (k)
z + 1

) − h̄�

2

∑
j∈V

σ̂ ( j)
z , (7)

where |0〉 and |1〉 are pseudospin states denoting the ground
and Rydberg-atom states, respectively, σ̂z = |1〉〈1| − |0〉〈0|,
U is the interaction between each pair of “edged” atoms
(of the same separation distance), and � is the detuning
of Rydberg-atom excitation. The MIS phase requires two
conditions: U � h̄|�| enforces the Rydberg blockade phe-
nomenon; and � > 0 maximizes the number of atoms being
excited to the Rydberg state. The many-body ground state
|Ĥ (G)〉 is then the superposition of MIS’s of G [26,37]. For
the Rydberg-atom graph G6 in Eq. (6), the many-body ground
state |Ĥ (G6)〉 of Ĥ (G6) is given by

|Ĥ (G6)(|p0 p1q0q1; p0q0〉)〉 = |0111; 10〉 + |1101; 01〉√
2

, (8)

which is the superposition of two factoring solutions, p × q =
(10)2 × (11)2 and (11)2 × (10)2.

Experimental verification can be performed with the adi-
abatic evolution of the Rydberg-atom graph G6 from the
paramagnetic phase to the antiferromagnetic phase, which
corresponds to the MIS phase [33]. (See experimental details
in Appendix A). We used rubidium atoms (87Rb) with ground
state |0〉 ≡ |5S1/2, F = 2, mF = 2〉 and Rydberg state |1〉 ≡
|71S1/2, mJ = 1/2〉. The Rabi frequency � is ramped up from
0 to �0 = (2π )1.5 MHz, while the laser detuning is main-
tained at � = −(2π )3.5 MHz for 0.3 µs. Then the detuning is

ramped up from −(2π )3.5 to +(2π )δF MHz for 2.4 µs, with
δF = 3.5 and fixed Rabi frequency �0. (The p × q = 15 and
35 experiments in Sec. IV are performed with δF = 3.5 and
3.9, respectively.) Finally the Rabi frequency is ramped down
to zero and the detuning is maintained at +(2π )3.5 MHz
for 0.3 µs. The entire evolution time is 3.0 µs. The detun-
ing and Rabi frequencies are changed with the frequency
and the power of the excitation lasers with acousto-optic
modulators (AOM), which are controlled by a programmable
radio-frequency synthesizer (Moglabs XRF). After the quasia-
diabatic evolution, the population of each atom is measured by
illuminating the conventional cycling transition lights where
the atoms in the ground state show fluorescence whereas the
atoms in the Rydberg state do not. The experimental results
obtained with G6 are depicted in Fig. 1(d), where the expected
states |p0 p1q0q1; p0q0〉 = |0111; 10〉 and |1101; 01〉 in Eq. (8)
are measured with high probabilities, confirming that the inte-
ger factors are (11)2 = 3 and (10)2 = 2.

III. ENCODING INTEGER FACTORIZATION
INTO THE SATISFIABILITY PROBLEM

The conjunctive normal form of integer multiplication can
be efficiently represented using a binary decision diagram
(BDD), as detailed in Ref. [38]. In this context, we provide
a concise overview of the BDD construction process, utilizing
the example of p × q = 6 in Sec. II, and derive �6 in Eq. (3),
the Boolean expression in conjunctive normal form for the
SAT problem [39,40].

In a generic factorization problem for a given semiprime
number n = p × q, if n is an N-bit integer, finding the un-
known factors, p (an Np-bit integer) and q (an Nq-bit integer),
involves identifying the preimage of n through the binary
multiplication function

f : {0, 1}Np × {0, 1}Nq → {0, 1}N , (9)

where Nq � N − Np. Let pi (0 � i � Np − 1) be the ith bit
of p, q j (0 � j � Nq − 1) the jth bit of q, and nk (0 � k �
N − 1) the kth bit of n. The function f is then expressed as

n = f (p0, p1, · · · , q0, q1, · · · ) =
Np−1∑
i=0

Nq−1∑
j=0

piq j2
i+ j, (10)

where each term piq j2i+ j contributes a nonzero value to the
sum only when pi = q j = 1.

Figure 2(a) shows the BDD for the p × q = 6 factoring
problem. In this constructed BDD, each column corresponds
to one of the three bit-wise calculations of p × q = 6 in
Eq. (1). There are three columns comprising a total of 10 unit
BDDs, interconnected based on the constraints from bit-wise
equations in Eq. (10). Assuming that we have processed the
sum in Eq. (10) up to the (i, j)th term, by defining a running
sum f(i, j) = v, the subsequent running sum f(i′, j′ ) is given by

f(i′, j′ )(pi′ , q j′ ; v) =
{
v if pi′q j′ = 0,

v + 2i′+ j′ if pi′ = q j′ = 1.
(11)

These running sum relations can be represented by the unit
BDD, as depicted in Fig. 2(b). The starting and ending nodes
contains the running values f(i, j) and f(i′, j′ ), respectively, with
edges distinguished as solid or dotted based on whether the

023241-3



JUYOUNG PARK et al. PHYSICAL REVIEW RESEARCH 6, 023241 (2024)

FIG. 2. (a) The binary decision diagram (BDD) for factoring p ×
q = 6. (b) The unit BDD representing the logical relation between pi′

and qj′ in the multiplication table, depicted by the blue-colored box
labeled f(i′, j′ ), where the edges in the BDD can be either solid or
dotted, depending on whether pi′ qj′ is 1 or 0.

product pi′q j′ is set to 1 or 0, respectively. The BDD for f is
formed by linking these unit BDDs representing all running
sum relations.

The first column (column 0) in Fig. 2(a) pertains to the first
bit calculation, utilizing the topmost unit BDD to compute
the running sum f(0,0)(p0, q0) = p0q0. Two possible end node
values, f(0,0) = 0 (derived from paths satisfying p0q0 = 0)
and f(0,0) = 1 (through the path of p0q0 = 1,), emerge. Only
the former (the orange-colored, left end node) aligns with the
first bit constraint f(0,0) = n0, leading to the exclusion of the
latter (the gray-colored, right end node). The second column
(column 1) initiates from the f(0,0) = 0 node and computes
the second bit of n. Three possible end nodes represent the
running sums f(1,0) = 0, 2, and 4, respectively. Among these,
only the second one satisfies the second bit equation f(1,0) =
n0 + n1 × 2. Similarly, the third column (column 2) begins
from the f(1,0) = 2 node and terminates at two possible nodes,
f(1,1) = 2 and 6. The second one is the only one satisfying
f(1,1) = n0 + n1 × 2 + n2 × 22.

Now we seek a Boolean expression in conjunctive normal
form for the 3-SAT problem. Generally, the prime number
couple (p, q) for a semiprime number n = p × q is unique (up
to ordering). So, the determination of BDD paths leading to
the end node corresponding to n establishes the values of pis
and q js. Since pis and q js are involved in various paths, fixing
their values imposes constraints on the BDD paths. Con-
versely, preventing certain paths from extending beyond the
solution space by incorrectly setting a bit-wise equation for
ni introduces constraints on the potential values of pis and
q js. Aggregating these constraints enables the representation
of the given factorization problem through a Boolean formula
of the SAT problem.

In the illustrated BDD example in Fig. 2(a), the paths
(gray arrows) unable to meet the constraints are as follows:
p0q0 = 1 in column 0, p0q1 · p1q0 = 1 and p0q1 p1q0 = 1 in

column 1, and q2 = 1, p1q1 = 1, and p2 = 1 in column 2.
These unsuccessful paths, which are the gray-colored arrows
in Fig. 2(b), can be expressed in disjunctive norm form as
follows:

¬�6,0 = p0q0, (12a)

¬�6,1 = p0q1 · p1q0 + p0q1 p1q0, (12b)

¬�6,2 = p1q1. (12c)

The resulting Boolean equation for p × q = 6 is given by

�6 = ¬(¬�6,0 + ¬�6,1 + ¬�6,2)

= p1q1(p0 + q0)(p0 + q0) = 1, (13)

which is the same as �6 in Eq. (2) in Sec. II.

IV. EXPERIMENTAL DEMONSTRATION

We now apply the process of translating factoring problems
into Rydberg-atom graphs to experimentally investigate the
integer factors of p × q = 15 and p × q = 35. We first derive
the corresponding Boolean expressions in conjunctive normal
form using the methodology outlined in Sec. III and subse-
quently these expressions are transformed into their respective
Rydberg-atom graphs.

A. Solving p × q = 15

The conjunctive normal form Boolean equation represent-
ing p × q = 15 is derived as follows:

�15 = (p1 + p2)(q1 + q2)(p1 + q1)(p1 + q1)

× (p1 + p2 + q2)(q1 + p2 + q2)p0q0 = 1. (14)

The detailed construction of �15 from the BDD is described
in Appendix C. The corresponding Rydberg-atom graph G15

is then expressed as

G15 = K2
(
p(1)

1 , p2
) ∪ K2

(
q(1)

1 , q2
) ∪ K2

(
p(2)

1 , q(2)
1

)
∪ K2(p1, q1) ∪ K3

(
p(3)

1 , p(1)
2 , q(1)

2

)
∪ K3

(
q(3)

1 , p(2)
2 , q(2)

2

)
+

∑
i=1,2,3

e
(
p(i)

1 , p1

) +
∑
j=1,2

e
(
p2, p( j)

2

)

+
∑

i=1,2,3

e
(
q(i)

1 , q1

) +
∑
j=1,2

e
(
q2, q( j)

2

)
, (15)

which is depicted in Fig. 3(a). Each parenthesized term in
�15 corresponds to a two- or three-vertex connected graph
(K2 or K3), and each variable-negation relation is represented
by an additional edge. The superscript indices in the last four
terms in Eq. (15) denote variable-atom duplicates in different
subgraphs (K2 or K3). The single-vertex graphs for p0 and q0

are omitted in Fig. 3(a), for simplicity.
The graph G15 is not directly implementable with a two-

dimensional (2D) arrangement of atoms. To address this,
we opt for a three-dimensional (3D) atomic arrangement,
following the approach outlined in Refs. [41,42]. The re-
sulting experimental Rydberg-atom graph GExp

15 is illustrated
in Fig. 3(b). The graph features a three-layer atomic struc-
ture: the top layer contains three variables p(1)

1 , p(2)
1 , q(2)

1 ; the

023241-4



RYDBERG-ATOM EXPERIMENT FOR THE INTEGER … PHYSICAL REVIEW RESEARCH 6, 023241 (2024)

FIG. 3. Implementing the integer factorization of p × q = 15 using Rydberg atoms. (a) Rydberg-atom graph G15. (b) Experi-
mental Rydberg-atom graph GExp

15 and (c) image of atoms in 3D configuration. (d) Experimental probability distribution for all
microstates in the basis of variable and negation atoms of GExp

15 . The four blue peaks are |000, 1, 111, 0; 100010〉 corresponding to
((p2 p1 p0 )2, (q2q1q0 )2) = (101; 011), |111, 0, 000, 1; 0, 01, 1, 00〉 corresponding to (011; 101), |000, 1, 110, 0; 1, 00, 0, 11〉 corresponding to
(101; 011), and |110, 0, 000, 1; 0, 11, 1, 00〉 corresponding to (011; 101). (e) Result of factorization. The portion of peaks in (d) following the
3-SAT logical constraints is mapped to (011; 101) = (3, 5) and (101, 011) = (5, 3), demonstrating the correct answer to the factoring problem
15 = 3 × 5.

middle layer encompasses five variables p2, p1, p(3)
1 , q1, q(1)

1 ;
and the bottom layer includes the remaining six variables
p(1)

2 , q(1)
2 , q(3)

1 , p(2)
2 , q(2)

2 , q2. Three Rydberg quantum wires op-
erate on the middle and bottom layers: P4(p2,w

(1),w(2), p(1)
2 )

for e(p2, p(1)
2 ), P4(q2,w

(3),w(4), q(2)
2 ) for e(q2, q(2)

2 ), and
P8(q2,w

(5),w(6), · · · ,w(10), q(1)
2 ) for e(q2, q(1)

2 ). The total
number of atoms in GExp

15 is 24, comprising 14 variable atoms
(p(1)

1 , p2, q(1)
1 , etc.) and 10 quantum-wire atoms (w(1), w(2),

etc.). The atom images of GExp
15 are presented in Fig. 3(b) and

the 3D coordinates of all atoms are detailed in Table I.
Experimental results of GExp

15 are shown in Fig. 3(c). The
quantum adiabatic evolution of the Hamiltonian H (GExp

15 ) is
performed, following the experimental procedure outlined in
Sec. II. A total of 12 575 experimental events were recorded.
We applied the single-vertex error mitigation protocol from
Ref. [34] and the Rydberg quantum-wire compilation method
of antiferromangetic chain states from Ref. [26] to obtain
11 274 usable events. The resulting probability distribution
is depicted in Fig. 3(d) for all microstates in the basis
|p(1)

1 p(2)
1 p(3)

1 , p2, q(1)
1 q(2)

1 q(3)
1 , q2; p1, p(1)

2 p(2)
2 , q1, q(1)

2 q(2)
2 〉 cov-

ering all variable and negation atoms of GExp
15 . In Fig. 3(d),

the experimental probability distribution P(p, q) is presented

in the ((p2 p1 p0)2; (q2q1q0)2) basis. The standard variable
assignment method for duplicate variables [43] was used,
wherein a variable x is binary one if any duplicate x(i) is
one, and all of its negations x( j)s are zero at the same time.
Conversely, it is binary zero if all duplicates x(i) are zero, and
any variable duplicate x( j) is one. If neither condition is met,
it is marked as “undecidable.” As a result, the Rydberg-atom
experiment involving GExp

15 identifies the integer factors of
p × q = 15 to be (p, q) = (3, 5) and (5,3), with probabilities
of 13.5(5)% and 16.0(6)%, respectively.

B. Solving p × q = 35

Let us examine another example: p × q = 35. The proce-
dure is similar to the previous p × q = 15 example. The SAT
formula �35 is derived as follows:

�35 = p0q0(p1 + p2)(p1 + q1)(p1 + q2)(p1 + q1)

× (q1 + q2 + p1)(p2 + q1 + p1 + q2) = 1. (16)

It can be reformulated for 3-SAT implementation as

�35 = p0q0(p1 + p2)(p1 + q1)(p1 + q2)(p1 + q1)

× (q1 + q2+p1)(p2+q1+s) · (p1+q2+s)=1. (17)
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TABLE I. Atom positions of GExp
15 , GExp

35 .

Graphs Atom positions (x, y, z) or (x, y) (µm)

GExp
15 p(1)

1 : (0.0,6.43,6.43) p(2)
1 : (0.0, −6.43, 6.43) p(3)

1 : (−9.09, 0.0, 0.0)
p2: (−1.64, 12.67, 0.0) q(1)

1 : (18.18,0.0,0.0) q(2)
1 : (9.09, −6.43, 6.43)

q(3)
1 : (9.09, 6.43, −6.43) q2: (24.61, 0.0, −6.43) p1: (0.0,0.0,0.0)

p(1)
2 : (−13.64, 4.55, −6.43) p(2)

2 : (4.55, 14.3, −6.43) q1: (9.09,0.0,0.0)
q(1)

2 : (−13.64, −4.55, −6.43) q(2)
2 : (13.64, 14.3, −6.43) w(1): (−10.0, 16.31, 0.0)

w(2): (−15.45, 12.73, −6.43) w(3): (27.34, 8.67, −6.43) w(4): (22.18, 15.85, −6.43)
w(5): (29.61, −7.0, −6.43) w(6): (22.73, −13.64, −6.43) w(7): (13.64, −13.64, −6.43)
w(8): (4.55, −13.64, −6.43) w(9): (−4.55, −13.64, −6.43) w(10): (−13.64, −13.64, −6.43)

GExp
35 p(1)

1 : (35.36,32.14) p(2)
1 : (36.43,43.21) p(3)

1 : (78.21,41.43)
p(1)

2 : (29.29,27.14) p(2)
2 : (62.14,29.29) q(1)

1 : (62.14,48.21)
q(2)

1 : (60.36,36.79) q(1)
2 : (42.50,48.21) q(2)

2 : (53.93,47.14)
p(1)

1 : (42.14,37.5) p(2)
1 : (56.43,53.93) p(3)

1 : (73.21,47.14)
q1: (66.79,41.79) q2: (47.86,42.14) q(3)

1 : (71.79,36.43)
s: (55.36,33.93) s: (48.93,34.29) w(1): (84.29,47.86)
w(2): (80.00,55.00) w(3): (73.57,61.07) w(4): (64.29,59.29)
w(5): (31.43,50.36) w(6): (34.64,57.50) w(7): (42.50,61.43)
w(8): (50.36,61.07)

This involves replacing the last clause (p2 + q1 + p1 + q2) in
Eq. (16), which has four variables, with (p2 + q1 + s)(p1 +
q2 + s) by introducing a dummy variable s. The correspond-
ing Rydberg-atom graph G35 is given by

G35 = K2
(
p(1)

1 , p(1)
2

) ∪ K2
(
p(2)

1 , q(1)
1

) ∪ K2
(
p(3)

1 , q(1)
2

)
∪ K2

(
p(1)

1 , q1

) ∪ K3
(
q(2)

1 , q(2)
2 , p(2)

1

)
∪ K3

(
p(2)

2 , q(3)
1 , s

) ∪ K3
(
p(3)

1 , q2, s
)

+
3∑

i, j=1

e
(
p(i)

1 , p( j)
1

) +
3∑

i=1

e
(
q(i)

1 , q1

) +
2∑

i=1

e
(
q(i)

2 , q2

)

+ e(s, s), (18)

as depicted in Fig. 4(a).
Implementing G35 directly in an experiment is challenging,

even with Rydberg quantum wires. Hence, we explore a 2D
version of the experimental graph, denoted as GExp

35 , expressed
by the following:

GExp
35 = K2

(
p(1)

1 , p(1)
2

) ∪ K2
(
p(2)

1 , q(1)
1

) ∪ K2
(
p(3)

1 , q(1)
2

)
∪ K2

(
p(1)

1 , q1

) ∪ K3(q(2)
1 , q(2)

2 , p(2)
1

)
∪ K3

(
p(2)

2 , q(3)
1 , s

) ∪ K3
(
p(3)

1 , q2, s
)

∪ P6
(
p(2)

1 ,w(1),w(2),w(3),w(4), p(2)
1

)
∪ P6

(
p(3)

1 ,w(5),w(6),w(7),w(8), p(2)
1

)
+ e

(
p(1)

1 , p(3)
1

) + e
(
p(2)

1 , p(1)
1

) + e
(
p(3)

1 , p(3)
1

)

+
3∑

i=1

e
(
q(i)

1 , q1

) +
2∑

i=1

e
(
q(i)

2 , q2

)

+ e(s, s), (19)

as illustrated in Fig. 4(b). In this representation, the
term

∑3
i, j=1 e(p(i)

1 , p( j)
1 ) in Eq. (18) is replaced by

e(p(1)
1 , p(3)

1 ) + e(p(2)
1 , p(1)

1 ) + e(p(3)
1 , p(3)

1 ). Two Rydberg
quantum wires P6(p(2)

1 , · · · , p(2)
1 ) and P6(p(3)

1 , · · · , p(2)
1 ) are

introduced for edges e(p(2)
1 , p(2)

1 ) and e(p(3)
1 , p(2)

1 ), respec-
tively. The remaining four edges, e(p(1)

1 , p(1)
1 ), e(p(1)

1 , p(2)
1 ),

e(p(2)
1 , p(3)

1 ), e(p(3)
1 , p(1)

1 ), are treated post-selectively. This
2D graph involves a total of 25 atoms, comprising 17
variable atoms and 8 quantum-wire atoms. The atom image is
presented in Fig. 4(b) and the the 2D coordinates of all atoms
are detailed in Table I.

Figure 4(d) showcases the experimental outcomes of GExp
35 .

The probability distribution is plotted in the basis of all
variable and negation atoms of GExp

35 . Among the 13 mi-
crostates highlighted in blue, there are correct mapping to
the solution factors. Conversely, the microstates labeled in
black are deemed �35 unsatisfiable, and those in gray are
considered “undecidable” regarding a definite set of values
for variables (p2, p1, q2, q1, s). Out of 9,383 experimental
events, 5,337 usable events were collected after the proce-
dures of the single-vertex error mitigation protocol [34] and
the Rydberg quantum-wire compilation method [26] are ap-
plied. In contrast to the previous experiment with p × q = 15,
where 89.7(5)% of total events are deemed usable, the ex-
periment of p × q = 35 only yields 56.9(5)% usable events.
This discrepancy reflects the consequence of post-selective
treatment applied to the four edges e(p(1)

1 , p(1)
1 ), e(p(1)

1 , p(2)
1 ),

e(p(2)
1 , p(3)

1 ), e(p(3)
1 , p(1)

1 ) in G35, but not in GExp
35 .

In Fig. 4(e), the probability distribution for solution fac-
tors (p, q) is visually presented, employing a color-coding
scheme. Probability peaks corresponding to the correct so-
lution factors are highlighted in blue, those for microstates
failing to satisfy �35 are depicted in black, and the prob-
abilities for “undecidable” microstates are colored in gray.
Among the probability peaks showcased in Fig. 4(e), the most
prominent peaks associated with solution factors (p, q) are
(101,111) and (111,101), with probabilities of 57.6(7)% and
18.8(5)%, respectively, out of 5,003 nongray events. Con-
sequently, the solution to the factor pair in the problem of
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FIG. 4. Implementing the integer factorization of p × q = 35 using Rydberg atoms. (a) Rydberg-atom graph G35. (b) Experimental
Rydberg-atom graph GExp

35 and (c) the image of the atom configuration. (d) Probability distribution obtained experimentally for all microstates in
the basis of variable and negation atoms in GExp

35 . The top four most probable microstates in (d) are |000, 10, 100, 11, 1; 101, 0, 0, 0〉 correspond-
ing to ((p2 p1 p0)2, (q2q1q0 )2) = (101, 111); |000, 11, 100, 11, 0; 100, 0, 0, 1〉 corresponding to (101, 111); |011, 11, 000, 01, 0; 000, 1, 0, 1〉
corresponding to (111, 101); and |000, 11, 110, 10, 0; 100, 0, 0, 1〉 corresponding to (101, 111). (e) Result of factorization. The portion of
peaks in (d) following the 3-SAT logical constraints is mapped to (101; 111) = (5, 7) and (111; 101) = (7, 5), demonstrating the correct
answer to the factoring problem 35 = 5 × 7.

factoring p × q = 35 is determined to be (p, q) = (5, 7) or
(7,5) based on the highest probability peaks observed in the
experimental results in Fig. 4(e).

V. DISCUSSION

It is worthwhile to discuss scaling issues related to the
Rydberg-atom approach to the factorization problem. First,
we will provide an estimation of the required number of atoms
for encoding the integer factorization problem and then we
will consider computational complexities associated with the
presented reduction algorithm in the context of a Rydberg-
atom experiment.

Atom resource estimation (upper bound). The necessary
number of atoms for the integer factorization of n = p × q
in a Rydberg-atom experiment, is estimated as

Natom = 4.88N1.8
C ≈ 7.29(log2 n)5.4 (20)

in terms of NC , the number of clauses [33], in the Boolean
formula � designed for factoring the given integer n (to be
detailed below).

The determination of NC involves connecting each unit
BDD corresponding to f(i′, j′ ) in Eq. (11), as illustrated in
Fig. 2(b). For simplicity, we omit primes, mapping i′ �→ i and

j′ �→ j, hereafter. To approximate NC , let us first compute
the number of clauses corresponding to a single generic unit
BDD. For example, in an exemplary BDD in Fig. 5(a) for
factoring p × q = 15, there are 14 unit BDDs, each of which
is represented with an initial running sum v and parameters
pi, q j , along with auxiliary variables l (i, j;v)

up , l (i, j;v)
left , l (i, j;v)

right ∈
{0, 1}. A generic unit BDD shown in Fig. 5(b) corresponds to
the assignment of these auxiliary variables for i = 2, j = 0,
v = 7, extracted from Fig. 5(a). The uppermost initial node
of the unit BDD in Fig. 5(b) is assigned l (i, j;v)

up = 1 if that
node is “passed-through,” and l (i, j;v)

up = 0 otherwise. l (i, j;v)
left and

l (i, j;v)
right are respectively assigned 1 if the left bottom node and

the right bottom node of the unit BDD is “passed-through,”
respectively, as given by

l (i, j;v)
left = l (i, j;v)

up · piq j, (21a)

l (i, j;v)
right = l (i, j;v)

up · piq j . (21b)

These constraints among the auxiliary variables have to be
satisfied and can be rewritten in a 3-SAT form as

� (i, j;v) = (
l (i, j;v)
up + l

(i, j;v)
left

)(
pi + q j + l

(i, j;v)
left

)
× (

pi + l
(i, j;v)
up + l (i, j;v)

left

)(
q j + l

(i, j;v)
up + l (i, j;v)

left

)
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FIG. 5. (a) The binary decision diagram (BDD) designed for factoring p × q = 15. (b) A unit BDD responsible for constructing the 3-SAT
formula � (2,0;7). (c) Three unit BDDs collectively constructing the SAT formula �(2,0;7). Refer to the text for a detailed discussion.

× (
l (i, j;v)
right + l

(i, j;v)
up + l (i, j;v)

left

)(
l

(i, j;v)
right + l (i, j;v)

up

)
× (

l
(i, j;v)
right + l

(i, j;v)
left

) = 1. (22)

The subsequent step involves establishing logical connec-
tions among the “pass-through” variables for various (i, j; v)
trios, such as those among (i, j, v) = (1, 1; 3), (1, 1; 7), and
(2, 0; 7) in Fig. 5(c). The initial top node of the unit BDD
denoted by (i, j) with a running sum v on that node has two in-
coming edges from the top initial nodes of unit BDDs denoted
by (i, j) with running sums v − 2i+ j and v. So, a Boolean
expression is established among the corresponding “pass-
through” variables, l (i, j;v)

up , l (i−1, j+1;v−2i+ j )
right , and l (i−1, j+1;v)

left , as
follows:

l (i, j;v)
up = l (i−1, j+1;v)

left + l (i−1, j+1;v−2i+ j )
right . (23)

These constraint for the BDD connections can be rewritten in
a 3-SAT form as

�
(i−1, j+1;v−2i+ j );(i−1, j+1;v)
(i, j;v)

= (
l

(i, j;v)
up + l (i−1, j+1;v)

left + l (i−1, j+1;v−2i+ j )
right

)
× (

l (i, j;v)
up + l

(i−1, j+1;v)
left

)

× (
l (i, j;v)
up + l

(i−1, j+1;v−2i+ j )
right

) = 1. (24)

Upon collecting all the unit-BDD 3-SAT formulas � (i, j;v)

and their connections �
(i−1, j+1;v−2i+ j );(i−1, j+1;v)
(i, j;v) , and logically

multiplying them, we can obtain the total 3-SAT formula �n

for factoring the given integer n. The total number of clauses
is then determined by counting the occurrences of the prod-
uct, each generating 3 + 7 = 10 clauses in the total 3-SAT
formula. Since each unit BDD in Fig. 2(b) consists of three
nodes, with two nodes overlapping among neighboring unit
BDDs, each unit BDD effectively contributes two nodes to
the total BDD. Consequently, the number of unit BDDs in the
total BDD is obtained by dividing the total number of nodes in
the total BDD by two. The number of nodes in the total BDD

for factoring n, denoted as Bn, is determined by [38]

2N3
p − 2N2

p − 2Np + 5 � Bn � 2N3
p − 4Np + 5, (25)

wherein we assume p and q to be Np = Nq = log2 n/2-bit
binary integers. Thus, the number of clauses in the total 3-SAT
formula is, up to the leading order,

NC = 10 × (Bn/2) = 10(log2 n/2)3, (26)

which results in Eq. (20).
Computational complexity. The classical computational

complexity involved in converting the integer factorization
problem to a BDD is discussed following the methodology
outlined in Ref. [38]. The number of nodes in a total BDD is
given by

Bn ≈ 2(log2 n/2)3, (27)

when the BDD consists of N0 ≡ (log2 n/2)3 unit BDD blocks,
each with an average 2 nodes, as depicted in Fig. 2(b). The
number of time steps required to build each unit BDD of the
total BDD for factoring the given integer n and the memory
space needed to arrange these unit BDD cells are respectively
given by

�Nstep = N0, (28)

�Nmemory = N0. (29)

Hence, the construction of a BDD can be accomplished in
polynomial time steps and memory space, efficiently using
classical computation.

Errors in state preparation, measurement, and imperfect
adiabatic evolution. In our present experimental configura-
tion, the errors in state preparation and measurement are
quantified as P(0 → 1) = 0.03 and P(1 → 0) = 0.18 [26]. In
addition, there are also inherent control errors arising from
imperfect adiabatic evolution. A heuristic approach intro-
duced in Ref. [34] estimates the successful adiabatic evolution
probability p, approximated as ln(1 − p) ∼ HP−0.63(13) ∼
e−C

√|G|, where C is a positive constant and |G| is the size
of the Rydberg-atom graph. The exponential increase in the
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likelihood of unsuccessful adiabatic evolution with
√|G|

necessitates an enhanced approach beyond the current adi-
abatic evolution scheme. Nonetheless, recent advancements
in error detection, correction, and mitigation [24,44,45] offer
prospects for addressing these challenges.

VI. CONCLUSION

These Rydberg-atom experiments have taken on the task of
addressing the integer factorization problem, with a particular
focus on instances of p × q = 6, 15, and 35. The approach
involves converting these instances into 3-SAT problems
and subsequently mapping them onto Rydberg-atom graphs.
These graphs are then subjected to quasiadiabatic quantum
experiments, producing superpositions of microstates. These
microstates are used to experimentally determine the inte-
ger factors (p, q) that constitute n = p × q. The proposed
method estimates that the number of required atoms and clas-
sical computational resources for obtaining the Rydberg atom
graph remain within polynomial orders of log2 n, suggesting
the effectiveness of this encoding scheme. Nonetheless, it is
important to note that solving 3-SAT problems on a large
scale using Rydberg atoms remains challenging, primarily
due to the current limitations of imperfect quantum adiabatic
processing hardware.

The experimental data set is archived in Ref. [46] for fur-
ther analysis.
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APPENDIX A: EXPERIMENTAL APPARATUS

The experimental setup closely resembles the one de-
scribed in Ref. [47]. Optical tweezers are used to trap
rubidium atoms (87Rb). These traps are generated using a
spatial-light modulator (SLM, ODPDM512 by Meadowlark
optics). As outlined in previous work [48], we utilize the
Gerchberg-Saxton weighted (GSW) algorithm to generate
trap phases for the SLM. Each trap beam is focused by an
objective lens with a numerical aperture (NA) of 0.5 (G Plan
Apo 50X of Mitutoyo) to a radius of 1.1 µm. The depth of
each trap is approximately 1 mK. To efficiently confine 87Rb
atoms in the optical tweezer traps, the atoms are cooled below
the trap depth. This cooling process involves initially cooling
the atoms in the vacuum chamber using a magneto-optical
trap (MOT) before loading them into the traps. Additionally,
polarization gradient cooling (PGC) is employed to further
cool the atoms to approximately ∼30 µK inside the optical
tweezers. The occupation of atoms is monitored by imaging
their fluorescence onto an electron-multiplied-CCD camera
(EMCCD, Andor iXon897) while laser-cooling beams are
illuminated. An electrically tunable lens (EL-16-40-TC from
Optotune) is used to adjust the imaging focal plane to observe
the entire three-dimensional atomic array.

Initially, the atoms are randomly loaded into the tweez-
ers due to collisional blockade [49]. Following the imaging
of the initial atom loadout in the tweezer traps, va-
cancies are identified, and the Gerchberg-Saxton algo-
rithm is employed to rearrange atoms from reservoirs
to create unity-filling atomic arrays. For excitation to
the Rydberg state |0〉 = |5S1/2, F = 2, mF = 2〉 → |1〉 =
|71S1/2, j = 1/2, mj = 1/2〉, a two-photon transition scheme
is utilized with 780-nm (home-built external-cavity diode
laser) and 480-nm (TA-SHG Pro from Toptica) lasers via
an intermediate level |5P3/2, F ′ = 3, m′

F = 3〉 with an inter-
mediate detuning �i = (2π )660 MHz. Following Rydberg
excitation, the population of each atom is measured by illu-
minating cyclic transition lights, where atoms in |0〉 exhibit
fluorescence while those in |1〉 do not.

APPENDIX B: ALGORITHM AND HEURISTIC
FOR DETERMINING ATOMIC ARRANGEMENT

The algorithm and heuristics are employed to determine the
spatial arrangement of atoms corresponding to a given SAT
formula �. Given �, we generate a corresponding theoretical
Rydberg-atom graph G that initially lacks designated node
coordinates.

We first assume that G is planar and has a node degree of
at most 4. Any deviations from these will be addressed below.
Under this assumption, G can be orthogonally drawn on a
2D plane with a time complexity of O(|G|2 log |G|) [50,51].
In this drawing, the appropriate number of atoms for the
quantum wire [26] is inserted along the edges, resulting in the
realization of G as GExp, where nodes are assigned real spatial
coordinates satisfying the Rydberg blockade interaction crite-
rion outlined in Eq. (7).

If G is not planar, we partition the nodes into different
three-dimensional planes. It is guaranteed that any maximum
degree 6 graph has drawing on 3 three-dimensional planes
[52–54]. We apply this technique of separating nodes into
at most 3 three-dimensional planes, as demonstrated in the
formation of GExp

15 in the text. After that, the method described
in the prior paragraph is utilized to form a graph GExp.

In cases where G contains nodes with a degree exceeding
4, we prune certain edges in G to create another graph G′ with
a restricted node degree of at most 4. This process ensures
that the subgraph H on G, consisting of nodes representing
any variable and its negation (e.g., p(i)

1 , p( j)
1 in G35 as detailed

in the text), remains a connected graph. The resulting graph
is then assigned real spatial node coordinates, following the
procedure outlined in the previous paragraph, to form GExp.

APPENDIX C: THE BOOLEAN EXPRESSION
FOR p × q = 15

The binary decision diagram (BDD) in Fig. 5(a) is used
to derive the SAT formula, �15 in Eq. 14. The overall SAT
formula for the integer factorization problem is expressed as

�15 = �15,0�15,1�15,2�15,3, (C1)

where �15,0, �15,1, �15,2, and �15,0 correspond to columns 0,
1, 2, and 3 of the BDD, representing bitwise relations for p =
(p2 p1 p0)2 × (q2q1q0)2 = (1111)2, respectively. In Fig. 5(a),
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the orange-colored circles indicate nodes that need to be
“passed-through” for successful factorization of n, while the
gray-colored filled circles are not to be “passed-through.”

The unsuccessful path in column 0 corresponds to p0q0 =
1. Consequently, the Boolean subformula for column 0 is

¬�15,0 = p0q0 resulting in the b=Boolean subformula for
column 0 in conjunctive normal form:

�15,0 = p0q0. (C2)

Similarly, for columns 1 and 2, �15,1 and �15,2 are obtained
by aggregating failed paths in the respective columns:

�15,1 = ¬(p0q1 · p1q0 + p0q1 · p1q0)

= (p0 + p1)(p0 + q0)(q1 + p1)(q1 + q0)(p0 + q1 + p1 + q0), (C3)

�15,2 = ¬(p0q2 · p1q1 · p2q0 + p0q2 · p1q1 · p2q0 + p0q2 · p1q1 · p2q0 + p0q2 · p1q1 · p2q0)

= (p0q2 + p1q1 + p2q0)(p0q2 + p1q1 + p2q0)(p0q2 + p1q1 + p2q0)(p0q2 + p1q1 + p2q0). (C4)

For column 3, paths starting at either the orange-colored “7” node or “15” node on the same horizontal position in Fig. 5(a) are
considered. Failed paths p1q2 · p2q1 = 1, p1q2 · p2q1 = 1 starting at the orange-colored “7” node, and failed paths p1q2 = 1,
p1q2 · p2q1 = 1 starting at the “15” node in column 3 are identified. To distinguish between these two distinct failed paths, we
introduce auxiliary variables lA, lB ∈ 0, 1, with values set to 1 only if the “7” (“15”) node is “passed-through.” The Boolean
subformula corresponding to column 3 is then expressed as

�15,3 = {lA → ¬(p1q2 · p2q1 + p1q2 · p2q1)}{lB → ¬(p1q2 + p1q2 · p2q1)}
= {lA → (p1 + p2)(p1 + q1)(q2 + p2)(q2 + q1)(p1 + q2 + p2 + q1)}

× {lB → (p1 + q2)(p1 + p2 + q1)(q2 + p2 + q1)}
= {lA + (p1 + p2)(p1 + q1)(q2 + p2)(q2 + q1)(p1 + q2 + p2 + q1)} · {lB + (p1 + q2)

× (p1 + p2 + q1)(q2 + p2 + q1)}, (C5)

where lA is expressed in terms of the sum of nonfailed paths in column 2: p0q2 · p1q1 · p2q0 = 1, p0q2 · p1q1 · p2q0 = 1, and
p0q2 · p1q1 · p2q0 = 1, which lead to the orange-colored “7” node

lA = p0q2 · p1q1 · p2q0 + p0q2 · p1q1 · p2q0 + p0q2 · p1q1 · p2q0, (C6)

and lB is expressed in terms of the nonfailed path p0q2 · p1q1 · p2q0 = 1 in column 2, which leads to the “15” node

lB = p0q2 · p1q1 · p2q0. (C7)

Substituting lA, lB into �15,3 yields a Boolean equation in terms only of p, q.
Simplifying �15 involves utilizing the fact that �15,0 = p0q0 = 1, as single variable clauses p0 and q0 trivially result in values

of p0 and q0 as 1. Substituting p0 = q0 = 1, the expressions for �15,1, �15,2, lA, and lB become

�15,1 = (p1 + q1)(p1 + q1), (C8)

�15,2 = (q2 + p1q1 + p2)(q2 + p1 + q1 + p2)(q2 + p1q1 + p2)(q2 + p1 + q1 + p2)

= (q2 + p1 + p2)(q2 + q1 + p2)(q2 + p1 + q1 + p2)(q2 + p1 + p2)(q2 + q1 + p2)(q2 + p1 + q1 + p2)

lA = q2 · p1q1 · p2 + q2 · p1q1 · p2 + q2 · p1q1 · p2 = q2 p1q1 p2 + q2 p1q1 p2 + q2 p1 p2 + q2q1 p2, (C9)

lB = q2 p1q1 p2. (C10)

Substituting lA and lB into �15,3 yields

�15,3 = {(q2 + p1 + p2)(q2 + q1 + p2)(q2 + p1 + q1 + p2)(q2 + p1 + p2)(q2 + q1 + p2) + (p1 + p2)(p1 + q1)

× (q2 + p2)(q2 + q1)(p1 + q2 + p2 + q1)}{(q2 + p1 + q1 + p2) + (p1 + q2)(p1 + p2 + q1)

× (q2 + p2 + q1)}
= (q2 + p1 + p2)(q2 + q1 + p2)(q2 + p1 + q1 + p2). (C11)

Multiplying every subformula for each of the columns 0, 1, 2, and 3 results in the following form:

�15 = p0q0 × (p1 + q1)(p1 + q1)(q2 + p1 + p2)(q2 + q1 + p2)(q2 + p1 + q1 + p2)

× (q2 + p1 + p2)(q2 + q1 + p2)(q2 + p1 + q1 + p2)(q2 + p1 + p2)(q2 + q1 + p2) · (q2 + p1 + q1 + p2). (C12)
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After simplification using Boolean identities A(A + B) = A and (A + B)(A + B) = A, the SAT formula corresponding to the
problem of factoring p × q = 15 is obtained as

�15 = (p1 + p2)(q1 + q2)(p1 + q1)(p1 + q1)(p1 + p2 + q2)(q1 + q2 + p2)p0q0. (C13)
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