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Quantum simulation of Cayley-tree Ising Hamiltonians with three-dimensional Rydberg atoms
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Significant efforts are being directed toward developing a quantum simulator capable of solving combinatorial
optimization problems. The challenges are Hamiltonian programming in terms of high-dimensional qubit
connectivities and large-scale implementations. Here, we report a quantum simulation demonstration of Ising
Hamiltonians with up to N = 22 spins mapped on various Cayley-tree graphs. For this, we use three-dimensional
arrangements of Rydberg single atoms arranged in such a way that their Rydberg atoms and blockaded strong
couplings respectively represent the vertices and edges of each graph. Three different Cayley-tree graphs of
Z = 3 neighbors and of up to S = 4 shells are constructed, and their many-body ground states and Néel’s
order formations are experimentally probed. The antiferromagnetic phase in regular Cayley trees and frustrated
competing ground states in a dual-center Cayley tree are directly observed, demonstrating the possibilities of
high-dimensional qubit connections in quantum simulators.
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I. INTRODUCTION

In recent years, quantum simulations have received signif-
icant attention because quantum annealing in particular has
the potential to solve complex computational problems which
are often intractable with nonquantum computational methods
[1–4]. Quantum annealing is a procedure of making Hamil-
tonian H (t ) of a quantum many-body system adiabatically
evolve from Ĥi to Ĥf ,

Ĥ (t ) = Ĥi − t

t f
(Ĥi − Ĥf ), (1)

so that the quantum state |�(t )〉 initially prepared in the
ground state of the former reaches the ground state of the
latter. Quantum annealing machines are considered with su-
perconducting qubits [5–8] and trapped-ion qubits [9–12],
aiming for various combinatorial optimization problems such
as quantum simulations [13], classfications [14], and plan-
ning [15]. While many efforts in quantum annealing are
being focused on large-scale implementations [16–20] toward
quantum speedup [21–24], here, we explore the possibility
of high-dimensional qubit connectivities. Theoretical pro-
posals emphasize and thus utilize qubit connectivities for

*Present address: Department of Physics, University of Wisconsin-
Madison, 1150 University Avenue, Madison, Wisconsin 53706,
USA.

†Present address: Department of Computer Science and Engineer-
ing, Seoul National University, Seoul 08826, Republic of Korea.

‡jwahn@kaist.ac.kr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

nondeterministic polynomial time (NP)-hard optimization
problems: for example, the Lechner-Hauke-Zoller scheme
[25,26] proposed a quantum annealing architecture for all-
to-all connectivities using local interactions, and quantum
optimization protocols are considered, e.g., for maximum
independent set problems utilizing the nature of long-range
couplings especially in Rydberg-atom quantum simulators
[27]. In the context relevant to this paper, Rydberg-atom quan-
tum simulators [28,29] draw attention because of their high
tunability in qubit connectivities [30–34] as well as many-
body controllability in adiabatic processes [35–39].

In this paper, we consider, as a prototypical fractal struc-
ture, Cayley-tree graphs of neutral atom arrangements in
which atoms and strongly interacting atom pairs respectively
represent vertices and edges of the graphs (see Fig. 1). Cayley
trees are homogeneous and isotropic tree graphs of a fixed
number of edges and no loop [40,41]. Their infinite version
is a Bethe lattice, widely used in various physics areas as
a fundamental theoretical platform, often providing exactly
solvable models in classical and quantum problems [42]. In
experiments to be described below, we use three-dimensional
(3D) arrangements of neutral atoms to construct atomic Cay-
ley graphs of coordination number Z = 3 and shell number up
to S = 4, as in Fig. 1(a), and run quantum simulation to probe
the many-body ground states of the corresponding Cayley-tree
Ising-Hamiltonians.

II. CAYLEY-TREE ATOM ARRANGEMENTS IN 3D SPACE

Neutral atoms (rubidium, 87Rb) are arranged in 3D space
with optical tweezers (far-off resonant optical dipole traps)
[34,43] (see Sec. VI for technical details). Three different
Cayley-tree graphs are constructed. The first one is the three-
shell (S = 3) Cayley tree, shown in Fig. 1(b), which can be
denoted by G10 = (0s)(1s)3(2s)6, having one atom in the first
(center) shell, three in the second shell, and six in the third
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FIG. 1. (a) A generic Cayley-tree graph of coordination number Z = 3, with vertices and edges representing atoms and Rydberg-blockaded
atom pairs, respectively. (b) A three-shell Cayley tree (G10) of 10 atoms of interatom distance d . (c) A four-shell Cayley tree (G22) constructed
in three planes at z = 0, ±h (h = d/1.2), where the last-shell branches are rotated by 72◦ to avoid unwanted couplings. (d) A dual-center
Cayley tree (G14) of 14 atoms. (e)–(g) Plane-by-plane fluorescence images of the corresponding atom arrangements.

shell. The second one is the four-shell (S = 4) Cayley tree,
G22 = (0s)(1s)3(2s)6(3s)12, having 10 atoms in G10 and 12
in the fourth shell, as in Fig. 1(c). The last one is G14 =
(0s)2(1s)4(2s)8, a dual-center Cayley tree, having two first-
shell atoms, four second-shell atoms, and eight third-shell
atoms, as in Fig. 1(d).

In our atom arrangements, each atom represents a vertex
of a Cayley-tree graph and each pair of strongly-interacting
atoms an edge. Nonconnected atoms are supposed to interact
with each other much weaklier than connected atoms. The
Hamiltonian of these atoms being coherently and simultane-
ously excited to a Rydberg energy state is given (in units of
h̄ = 1) by

Ĥ = 1

2

N∑

j=1

[
�σ̂ ( j)

x − �σ̂ ( j)
z

] +
∑

j<k

Ujkn̂( j)n̂(k), (2)

where N is the number of atoms, � is the Rabi frequency, � is
the detuning, and Ujk = C6/|�r j − �rk|6 is the pairwise atom in-
teraction in the van der Waals interaction regime [37,38]. Pauli
operators σ̂x,z are defined for a pseudospin 1

2 system composed
of the ground state |↓〉 = |5S1/2, F = 2, mF = 2〉 and Ryd-
berg state |↑〉 = |71S1/2, mJ = 1

2 〉 of each atom, and n̂ = (1 +
σ̂z )/2. For the strong and weak interactions of connected and
nonconnected atom pairs, respectively, we set the distances of
connected atoms the same and within the Rydberg-blockade
radius, i.e., |�r j − �rk| = d < rb ≡ (C6/h̄�)1/6 = 9.8 μm, for
( j, k) ∈ E (the edge set of a graph G), and the distances of
all others are |�r j − �rk| > rb.

The two-dimensional (2D) arrangement of G10 is made
with d < rb <

√
3d to satisfy the above condition, in which,

as shown in Fig. 1(e), the last-shell atoms of different branches
are separated more than

√
3d , having significantly weaker

interactions (at most 1
27 times smaller) than U ≡ C6/d6 of

the connected atom pairs. However, G22 and G14 cannot be

constructed to be planar because, in 2D arrangements, atoms
of different outermost branches are too close, requiring non-
planar, 3D arrangements. As shown in Fig. 1(c), we rotate the
last-shell branches of G22 by an angle of 2π/5 about the axes
along the previous branches, so that all the last-shell atoms
are well separated (more than

√
3d) from each other. In G14,

some last-shell branches are rotated similarly, as shown in
Fig. 1(d). As-constructed atom arrangements are shown in
Figs. 1(e)–1(g), respectively, for G10, G22, and G14.

III. PHASE DIAGRAMS OF CAYLEY-TREE ISING SPINS

With atoms arranged on one of the above Cayley-tree
graphs, we perform quantum simulation to find the many-
body ground state of a target Hamiltonian. The atoms are
initially prepared in |↓↓ · · · ↓〉 (the para-magnetic down
spins, which we denote by Phase I), which is the ground
state of the initial Hamiltonian Ĥ (� = 0,� < 0, |U | 
 |�|)
in Eq. (2). The target (final) Hamiltonian is

ĤG(U,� f ) = U
∑

( j,k)∈E

n̂( j)n̂(k) − � f

2

N∑

j=1

σ̂ ( j)
z , (3)

where E is the edge set of G ∈ {G10, G22, G14}, � f is the final
detuning, and no couplings are assumed for unedged atom
pairs. We note that ĤG is an Ising spin-glass Hamiltonian,
given by

ĤG = J
∑

( j,k)∈E

σ̂ ( j)
z σ̂ (k)

z + hC
z

∑

j∈C

σ̂ ( j)
z + hV

z

∑

j∈V

σ̂ ( j)
z , (4)

where J = U/4 is the coupling, hC
z = 3U/4 − � f /2 and hV

z =
U/4 − � f /2 are the local fields, and C and V denote the ver-
tices in the core (inner shells) and valence (outermost) shell,
respectively, of a Cayley-tree graph G(E ,C + V ). In general,
as the ground states of an Ising Hamiltonioan depend on the
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FIG. 2. Phase diagrams of Cayley-tree Ising Hamiltonians
(a) ĤG10 and ĤG22 and (b) ĤG14 , in which ground-state spin config-
urations are paramagnetic down spins (Phase I), para-magnetic up
spins (Phase II), antiferromagnetic phase (Phase III), and antiferro-
like phases with center spins |↑↑〉 (Phase IV) and (|↑↓+ ↓↑〉)/

√
2

(Phase V). Circled numbers indicate the Hamiltonian parameters of
the experimental data in Figs. 3 and 4: 1© (U/�0, � f /�0) = (1.82,
2) in Phase III of G10, 2© (2.25, 2) in Phase III of G22, 3© (1.67, 2)
in Phase IV of G14, 4© (2.70,2), and 5© (5.41,2) in Phase V of G14.
�0 = 1.1 (2π ) MHz in all experiments.

specific atom arrangement of G, finding such arrangement-
specific ground states of an arbitrary Ising-spin graph is an
NP-complete problem [44].

However, Cayley-tree graphs allow heuristic understanding
of their phase diagrams in Fig. 2 as follows: Cayley trees have
more atoms on the valence shell than on the rest (the inner
shells). Therefore, with Hamiltonian ĤG in Eq. (3) (of positive
coupling U > 0 in our consideration), the valence spins are
all aligned either up or down depending upon � f > 0 or
� f < 0, respectively, resulting in the � f = 0 phase bound-
ary. For � f < 0, inner-shell spins, adjacent to the valence
spins, also favor down spins, as their couplings Un̂( j)n̂(k) to
adjacent outer-shell down spins are zero, which subsequently
results in all down spins (so paramagnetic down spins, Phase
I). For � f > 0, single-spin flipping energy (� f ) competes
with adjacent antiferromagnetic couplings. For � f > 3U , the
former is always higher than the latter (of max 3U ), so all
spins are up (paramagnetic up spins, Phase II). In between,
0 < � f < 3U , the antiferromagnetic coupling is stronger,
thus favoring the antiferromagnetic phase (Phase III) of shell-
by-shell alternating spins. The resulting ĤG phase diagram is
shown for G10 in Fig. 2(a), in which the antiferromagnetic
phase (Phase III) has up spins on the first and third shells
and down spins on the second. The phase diagram for G22

differs from G10 only in Phase III, where the odd-numbered
shells are down spins and the even-numbered shells are up
spins. In short, the phase diagram of ĤG (of positive U ) for
regular Cayley graphs (G10 and G22 in our consideration) has
the para-antiferro phase boundaries determined by � f = 3U
and � f = 0, so the antiferromagnetic ordering is expected in
the region 0 < � f < 3U (Phase III), as in Fig. 2(a).

The phase diagram for G14, the dual-center Cayley tree,
is a little more complex than regular Cayley trees because of
the frustrations of the center spins. Exact diagonalization of
ĤG14 finds the phase diagram as shown in Fig. 2(b), in which
the paramagnetic phases (Phases I and II) are the same as
G10, but Phase III is split to Phases IV and V of respective

center-spin configurations of |↑↑〉 and (|↑↓+ ↓↑〉)/
√

2. The
new phase boundary is U = � f , along which the single-spin
flipping cost equals the additional frustration cost of the center
spins. It is noted that, in Phase V, other energy-degenerate
ground states, with respective center-spin configurations of
|↑↓〉, |↓↑〉, and (|↑↓− ↓↑〉)/

√
2, are all dark states (not cou-

pled by Ĥ to the given initial state) due to the symmetry of Ĥ
in Eq. (2).

IV. EXPERIMENTAL VERIFICATION OF
CAYLEY-TREE ISING PHASES

Experiments are performed to verify the antiferrolike
ground states (Phases III, IV, and V) of Cayley-tree Ising
spins (see Sec. VI for technical details). Quantum annealing
proceeds with three stages of time evolution, along a vertical
control path from Phase I to either Phase III, IV, or V in Fig. 2.
In the first stage (0 < t < 0.1t f ), Rabi frequency is slowly
turned on from �i = 0 to �0 = 1.1(2π ) MHz, while detuning
is maintained at � = −2�0 for the paramagnetic down-spin
ordering (|hC,V

z | � J) of Phase I. In the second stage (0.1 <

t/t f < 0.9), the detuning is swept from −2�0 to 2�0, while
the Rabi frequency is maintained at �0. In the final stage
(0.9 < t/t f < 1), the detuning is maintained at � f = 2�0

(for antiferromagnetic ordering 0 < � f < 3U ) and the Rabi
frequency is slowly turned off from �0 to � f = 0. The total
operation time t f = (2π )3.2/�0 = 2.9 μs is experimentally
chosen long enough to maximize the ground-state probability
of G10 within the coherence time of 10 μs [43] and used for
all experiments including G14 and G22. With the given control
path, nonadiabatic leakages occur during the evolution; how-
ever, numerical simulations find that resulting excited-state
probabilities are significantly smaller than the ground states
for all three graphs. After the time evolution, a resulting spin
configuration is detected with the fluorescence of ground-state
atoms during 40 ms cyclic transitions to |5P3/2, F ′ = 3〉, and
the procedure is repeated until the probability distribution of
all spin configurations is obtained. The final Hamiltonians
ĤG(U,� f = 2�0) are chosen at various phases in Fig. 2: 1©
and 2© for Phase III of G10 and G22, respectively; 3© for Phase
IV of G14; and 4© and 5© for Phase V of G14.

Measured probability distributions are shown in Figs. 3(a)–
3(c), which plot the probability distributions, respectively
measured at 1©, 2©, and 4©, for all spin configurations of
the Cayley-tree Ising spins. Spin configurations are rep-
resented in the bare-atom basis with binary enumeration
of |↓〉 = |0〉 and |↑〉 = |1〉 [45]. After the quantum an-
nealing, the wave function of the atoms is expectedly
driven near the ground state of ĤG(U,� f ), so the cor-
responding spin configuration is measured with a high
probability. In Fig. 3(a), Phase III of G10 is probed at 1©.
The observed max-population state is |↑; ↓↓↓; ↑↑↑↑↑↑〉 =
|29 + 25 + 24 + 23 + 22 + 21 + 20〉 = |575〉, which is the an-
tiferromagnetic phase of shell-by-shell alternating spins,
agreeing with the expected ground state of ĤG10 in Phase
III. Likewise, in Figs. 3(b), Phase III of G22 is probed at 2©,
and the observed |↓; ↑3; ↓6; ↑12〉 = |1839103〉 agrees with the
ground state of ĤG22 in Phase III. In Fig. 3(c), which shows
the measurement of G14 at 4© in Phase V, high populations
are observed for |↓↑; ↓4; ↑8〉 = |4351〉 and |↑↓; ↓4; ↑8〉 =
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FIG. 3. Probability distribution of all spin configurations in enumerated bare-spin basis: (a) G10 Cayley-tree atoms measured at 1© in Phase
III and accumulated over 672 events. (b) G22 at 2© in Phase III (2208 events). (c) G14 at 4© in Phase V (5113 events). Max populations are
ground states (highlighted in red), and smaller peaks are identified as near-ground excited states in numerical simulations. (d)–(f) Fluorescence
images of ground-state (|↓〉) atoms in characteristic spin configurations.

|8447〉, agreeing with the ground superposition state (of center
spins in (|↑↓〉 + |↓↑〉)/

√
2) in Phase V of ĤG14 . Atom images

(the fluorescence of ground-state atoms) of characteristic spin
configurations are shown in Figs. 3(d)–3(f), including the
max-population states (of star marks).

Phase IV of G14 is also probed across the IV-V phase
boundary, with three different Cayley trees of respective edge
lengths d/rb = 0.76, 0.86, and 0.92, which correspond to 5©,
4©, and 3© in the phase diagram. In Fig. 4, the probabilities of

three high-population states, of respective center-spin config-
urations |↑↑〉, |↓↓〉, and (|↑↓〉 + |↓↑〉)/

√
2, are plotted. The

max-populated state changes from |↑↑〉 (d < dc = 0.89rb,
Phase IV) to (|↑↓〉 + |↓↑〉)/

√
2 (d > dc, Phase V), agreeing

with the phase boundary given by U (dc) = � f . It is noted
that the higher-order, long-range couplings which are ignored
in Eq. (3) play little role in the tested parameter region and
that other ground states (of center-spin states |↓↑〉, |↑↓〉, and
(|↑↓〉 − |↓↑〉)/

√
2) are forbidden by the Hamiltonian sym-

metry in Ĥ . Also, we observe nonadiabatic leakages to the
first excited state, which changes from (|↑↓〉 + |↓↑〉)/

√
2 to

|↓↓〉 and then to |↑↑〉 from left to right, in accordance with
numerical computer simulation.

V. NÉEL’S ORDER FORMATION DYNAMICS

Furthermore, we measure the phase formation dynamics
during the quantum annealing process. Figure 5 shows
the time evolution of Néel’s order, defined by ON ≡
−∑

(i, j)∈E 〈σ̂ (i)(t )σ̂ ( j)(t )〉/||E ||, where ||E || is the number of
edges, along with the up-spin probabilities of individual atoms
in G10. With the snapshot measurements, the adiabatic order

formation is clearly observed from the initial paramagnetic
phase to the final antiferromagnetic phase. The oscillatory
behavior is attributed to the finite size effect. In comparison, a
numerical calculation (solid lines) is performed with Lindblad
master equations, considering state-preparation-and-detection
(SPAM) errors (P(|↓〉||↑〉) = 0.18, P(|↑〉||↓〉) = 0.02),

FIG. 4. Probabilities of the low-energy states of Cayley-tree
Hamiltonian ĤG14 (U (d ), � f = 2�0 ) measured for three different
edge lengths d/rb = 0.92, 0.86, and 0.76, which correspond to 3©,
4©, and 5©, respectively, in the G14 phase diagram in Fig. 2(b).
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FIG. 5. Quantum annealing dynamics of the Néel’s order in the
G10 Cayley tree are probed as a function of the evolution time
and compared with numerical calculations. At chosen times, the
Rydberg-state probabilities 〈n̂〉 j of all atoms ( j = 1, . . . , 10) are
shown, being plotted at their respective atom sites.

individual dephasing (∼36 kHz 
 �0) due to the spontaneous
decay during Rydberg excitations, and collective dephasing
(∼3 kHz) from laser phase noise [46]. The numerical
calculation in accordance with the observed maximal Néel’s
order of ON (t f ) = 0.48(2) indicates that errors are largely
due to the SPAM errors accumulated for N = 10 atoms.
The calculation also suggests that the maximal Néel’s order
before measurements was ON (t f ) = 0.82 and that the final
ground-state probability was 61%.

VI. EXPERIMENTAL DETAILS

The above experiments were performed with a Rydberg-
atom quantum simulator previously reported elsewhere
[43,45–47]. In the quantum simulator, rubidium (87Rb) atoms
were initially prepared in the hyperfine ground state |↓〉 =
|5S1/2, F = 2, mF = 2〉 and trapped with optical tweezers. A
spatial light modulator (SLM, Meadowlark ODPDM512) was
used to create the 3D array of 2N optical tweezers, and an
electrically focus-tunable lens (EL-16-40-TC from Optotune)
verified the positions of captured atoms in all atom planes. The
SLM was computer-programed with a weighted Gerchberg-
Saxton (w-GS) algorithm [48,49] so that the resulting electric
field near each target site (x, y, z) was created as E (x, y, z) =
E0

∑
X,Y ei�(X,Y )e−iT , where X,Y are the SLM coordinates

on the Fourier plane of the optical tweezers, �(X,Y )

is the SLM phase pattern, and T = 2π (xX + yY )/ f λ +
πz(X 2 + Y 2)/ f 2λ is the transfer kernel for an optical tweezer
of Fresnel focal length f . The phase pattern � (for 2N
optical tweezers) was obtained with the w-GS condition
given by �(X,Y ) = arg[

∑2N
j=1 w jE j (x, y, z)eiTj /|Ej (x, y, z)|],

where each weighting factor w j for jth optical tweezer was
optimized through adaptive iterations. The number of the w-
GS iterations was about five, taking about 20 ms to generate
an array of 50 tweezers. Deterministic rearrangement of N
atoms to target sites, about 20 μm apart from the initial
atom reservoir, was performed with a consecutive 45 frames
of moving traps programed with phase induction [49]. Over
90% target-occupation probabilities were achieved in 900 ms
reconfiguration, and all measurements were performed with
defect-free arrangements.

After the atom array was prepared, the optical tweezers
were temporarily turned off, and the quantum annealing pro-
ceeded. The atoms were excited to the Rydberg state |↑〉 =
|71S1/2, mJ = 1

2 〉 via the off-resonant intermediate state, |i〉 =
|5P3/2, F ′ = 3, m′

F = 3〉. Two lasers (780 and 480 nm lasers
for |↓〉 → |i〉 and |i〉 → |↑〉, respectively) were used for the
two-photon transition [43]. Here, �(t ) and �(t ) in H (t ) were
programed with a radiofrequency (RF) synthesizer (Moglabs
XRF, 10 MHz) of frequency 780 nm and amplitude 480 nm
modulations. The modulation ranges were 0 � �(t ) � �0

and −2�0 � �(t ) � 2�0, where the maximum Rabi fre-
quency was �0 = �780�480/(2�′) = 1.1 (2π )MHz given
by �780 = 75 (2π )MHz, �480 = 19 (2π )MHz, and �′ =
660 (2π )MHz (the intermediate detuning). The van der Waals
coefficient [50] was C6 = (2π )1004 GHz × μm6 for |71S〉
Rydberg-state atoms, and the Rydberg blockade radius was
rb = (C6/�0)1/6 = 9.8 μm. The frequency error due to alter-
nating current Stark shift was small, below 140 kHz, mainly
caused by the 480 nm laser. After the quantum annealing, the
optical tweezers were turned back on, and the atoms in the
ground state (|↓〉) were measured whether they survived (|↓〉)
or not (|↑〉). Each measurement in Fig. 3 was repeated by 672,
2208, and 5113 times, respectively, for G10, G22, and G14 to
obtain the accumulated probability distributions.

VII. CONCLUSIONS

We have explored the possibilities of Rydberg-atom quan-
tum simulators toward high-dimensional qubit connection
programming. With up to N = 22 rubidium single atoms ar-
ranged in 3D space, we have programed Ising Hamiltonians
on three different Cayley-tree graphs. The antiferromagnetic
phase in regular Cayley trees and frustrated competing ground
states in a dual-center Cayley tree are directly observed, show-
ing good agreement with model calculations. The presented
experiments were performed under the condition that uncou-
pled atoms are of at least

√
3 times larger separations than

connected atoms (i.e., next-nearest-neighbor couplings are
1

27 times the nearest-neighbor couplings), and this choice of
atom arrangements restricts each vertex from being connected
to maximally four neighboring vertices. For more complex
graphs, quantum wire concepts may be necessary [51–53]. It
is hoped that 3D-qubit configurations of Rydberg-atom quan-
tum annealers shall be useful for efficient and programmable
quantum optimization problems.
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