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We present an entanglement scheme for Rydberg atoms using the van der Waals interaction phase
induced by Ramsey-type pulsed interactions. This scheme realizes not only controlled phase operations
between atoms at a distance larger than Rydberg blockade distance, but also various counterintuitive
entanglement examples, including two-atom entanglement in the presence of a closer third atom and
W-state generation for three partially blockaded atoms. Experimental realization is conducted with single
rubidium atoms in optical tweezer dipole traps, to demonstrate the proposed entanglement generations with
an entanglement fidelity of F ¼ 0.59� 0.11.
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Quantum entanglement is one of the most bizarre and
intriguing natures of quantum mechanics [1], which plays
an important role in understanding the physics of quantum
many-body systems [2–4] and also empowering various
quantum applications such as quantum computing [5],
quantum sensing [6], and quantum communications [7].
Currently, there is a strong interest for the generation,
manipulation, and detection of quantum entanglements,
being investigated in many physical systems including
photons [8], atoms [9–12], ions [13], and solid-state
systems such as superconducting circuits [14] and defective
diamonds [15]. However, in most of the systems, entan-
glement skills need further improvements even to operate a
small-scale quantum computer.
Entanglement of arbitrary qubit pairs, especially ones that

are not in the proximity, is of particular importance for
scalable quantum systems of good connectivity. Although it
has been achieved, for example, in trapped ions by common-
mode motion [16,17] and in superconducting circuits by a
cavity bus [18], it has not been realized inmost other systems
including Rydberg-atom systems, of particular relevance in
the context of the present work. The widely used entangle-
ment schemeofRydberg atomsystems [9–12] is based on the
Rydberg-blockade effect [19], which prohibits double exci-
tation to a Rydberg energy state among atoms closer than the
blockade radius rb ¼ ðC6=ΩÞ1=6 defined by Rabi frequency
Ω and van der Waals interaction strength C6. In this scheme
(model B of Ref. [19]), therefore, all and only the pairs of
atoms within rb are to be simultaneously entangled, making
these entanglements short-ranged (d < rb).
In this Letter, we experimentally demonstrate atom-pair

entanglement in the weak-coupling regime (d > rb), which
is closely related to model A in Ref. [19]. With this, long-
ranged atom entanglements are enabled beyond the Rydberg
blockade distance, even in the presence of closer atoms that
are to be left unentangled. In the weak-coupling regime, the
doubly excited Rydberg state of two atoms separated by a

distance d gains interaction phase α ¼ τC6=d6, i.e., j11i →
expð−iαÞj11i, during an interaction time τ, where the
pseudospin states j1i and j0i represent the Rydberg and
ground states, respectively. So, a pair of atoms separated by
dπ ¼ ðτC6=πÞ1=6 undergoes a controlled π-phase gate and
d2π ¼ ðτC6=2πÞ1=6 a controlled 2π-phase gate that is the
Null gate. Utilizing this interaction phase, we present three
entanglement examples: First, we generate the entanglement
of two atoms at a distance beyond the blockade radius.
Second,we use three atoms in the linear configuration,ABC,
with dAB > dBC > rb, and operate the controlled π-phase
gate only on the AB pair, while the closer pair BC is left
separable. Third, we produce the W state of three partially
blockaded atomsusing a two-pulse coherent control scheme.
We use Ramsey interferometry to generate and measure

the two-atom entanglements in the weak coupling regime.
As in Fig. 1(a), two resonant π=2 pulses time separated by τ
interact with two atoms A and B separated at a distance d
(>rb) and initially in the ground state j00i. The first
Ramsey pulse rotates each atom about the y axis to prepare
the superposition state jþþi, in which jþi ¼ ðj0i þ
j1iÞ= ffiffiffi

2
p

of each atom. During the time interval τ, van
der Waals interaction induces a phase factor e−iα to the
doubly excited state j11i. Finally, the second Ramsey pulse
rotates each atom by π=2 about the axis n̂ϕ ¼ cosϕŷ−
sinϕx̂, where ϕ is the laser phase that fine controls the
azimuthal angle of the Bloch vector with respect to the y
axis. The given optical process is described by the follow-
ing unitary operation defined for the two-qubit Hilbert
space as

Uðα;ϕÞ ¼ Rπ=2
n̂ϕ;A

⊗ Rπ=2
n̂ϕ;B

e−inAnBαRπ=2
ŷ;A ⊗ Rπ=2

ŷ;B ; ð1Þ

whereRπ=2
ŷ andRπ=2

n̂ϕ
are single-qubit π=2 rotations about the

axes, ŷ and n̂ϕ, respectively; and nA;B are the excitation
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number of the atoms.An equivalent quantumcircuit is shown
in Fig. 1(b), including an additional state-independent local
phase β which will be explained in the experiment. After the
entanglement generation (enclosed by a dashed box) the two-
atom state evolves to

jψðτÞi ¼ 1

2
ðj00i þ j01i þ j10i þ e−iαj11iÞ; ð2Þ

which is maximally entangled at α ¼ ð2nþ 1Þπ, for an
integer n, or loses entanglement at α ¼ 2nπ. The resulting
entanglement can be characterized by a Ramsey-type meas-
urement [20] with the second π=2 pulse. As a function of the
control phase ϕ, the probability of each atom, projected to
j1i, is given by

PA
1 ¼ PB

1 ¼ 1

2
þ 1

2
cos

�
α

2

�
cos

�
α

2
þ β þ ϕ

�
: ð3Þ

So, the resulting fringe visibility, cosðα=2Þ, manifests the
entanglement: maximal (minimal) visibility for no (maxi-
mal) entanglement.
Experiments were performed with an apparatus previ-

ously reported elsewhere [4,21,22]. In brief, we used
optical tweezers to trap rubidium (87Rb) single atoms
and, with a 2-ms optical pumping, prepared them in the
ground state j0i ¼ j5S1=2; F ¼ 2; mF ¼ 2i. We then turned
off the optical tweezers and excited the atoms to a Rydberg
state j1i ¼ j67S1=2; J ¼ 1=2; mJ ¼ 1=2i, through the off-
resonant intermediate state j5P3=2i, with counterpropagat-
ing 780-nm and 480-nm beams of σþ and σ− polarizations,
respectively. With C6 ¼ 2π × 513 GHz μm6 [23], two-
photon Rabi frequency Ω ¼ 2π × 0.83 MHz gives the
blockade radius of rb ¼ 9.23 μm in the first two experi-
ments. So, a time delay τ ¼ 2.6 μs renders dπ ¼ 1.28rb for
α ¼ π and d2π ¼ 1.14rb for α ¼ 2π. The Ramsey pulses
were produced with an acousto-optic modulator by switch-
ing the 780-nm beam on and off twice, while the 480-nm

beam was left on. The two-photon resonance was main-
tained with the laser-induced ac Stark shift, δac ¼ 2.1 MHz,
taken into account. So, during the time interval, the excited
state of each atom gained the phase β ¼ 2π × δacτ, while
the doubly excited j11i state gained α, as in Eq. (2). After
the interactions of the two π=2 pulses, the optical tweezers
were turned back on to recapture the ground-state atoms,
which were then recorded through 30-ms fluorescence
imaging of the cyclic transition between j5S1=2; F ¼ 2i
and j5P3=2; F0 ¼ 3i. We accumulated about 200–400 times
of successful experiments to obtain P1 (unsuccessful ones
initially with an incomplete atom pair were all discarded),
and repeated the entire process by varying the laser phase ϕ
to obtain P1ðϕÞ.
For a quantitative analysis, Monte Carlo numerical

simulation was performed, taking the following experi-
mental errors into account. (1) The Rabi frequency
error mainly caused by beam pointing fluctuations was
ΔΩ=Ω ¼ 10%, estimated by Rabi measurements. (2) The
atom temperature was T ¼ 22 μK, estimated by Ramsey
and release-recapture [24] measurements. (3) State prepa-
ration and measurement errors were measured as the escape
probability of ground-state atoms of 2% and the recapture
probability of Rydberg-state atoms of 10%. (4) The exci-
tation laser phase noise of Δϕ ¼ 0.2π (standard deviation)
and (5) the distance error of about Δd ¼ 0.14 μm (standard
deviation) were estimated through parameter adjustments
in Monte Carlo simulation.
Figure 2 summarizes the result of the first experiment,

atom-pair entanglements in the weak coupling regime. Two
atoms A and B were placed at a distance of either dπ ¼
1.28rb for maximal entanglement or d2π ¼ 1.14rb for no
entanglement, as shown in Fig. 2(a). Expected quantum
trajectories, of each atom, are plotted on the Bloch sphere in
Figs. 2(b) and 2(c), respectively. In the maximal entangle-
ment case in Fig. 2(b), the quantum state of each atom A or
B evolves from j0i to jþi, due to the first Ramsey
interaction, and then to the center of the Bloch sphere,
driven by the van der Waals interaction of α ¼ π, so the
second Ramsey makes no change to the atom and, as a
result, the Ramsey fringe disappears. While, in the no
entanglement case in Fig. 2(c), the interaction of α ¼ 2π
makes each atom return to jþi, so the Ramsey fringe is
maximally expected. Measured Ramsey fringes for α ¼ π
and 2π are respectively shown in Figs. 2(d) and 2(e).
Measured fringe visibilities are plotted for six different
distances in Fig. 2(f), in which the maximal and minimal
visibilities correspond to α ¼ 2π (c) and π (b), respectively.
The Monte Carlo simulation estimates an entanglement
fidelity of F ¼ 0.59� 0.11 for the maximally entangled
state jψðα ¼ πÞi in Eq. (2).
The above scheme of pairwise entanglements works

even in the presence of additional closer atoms, as long as
they are properly placed. As an example, we consider a
linear configuration of three atoms (A, B, and C), as shown

Entanglement generation

A

B

(a)

(b)

FIG. 1. (a) Ramsey-type double π=2 interactions. (b) Corre-
sponding quantum circuit, in which two atoms A and B undergo
the first Ramsey interactionRŷðπ=2Þ, controlledUpðα ¼ τC6=d6Þ
phase gate, a residual local phase UpðβÞ, and the second Ramsey
Rn̂ϕðπ=2Þ fine controlled by laser phase ϕ.
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in Fig. 3(a), in which A and B are placed at dAB ¼ dπ and
the third atomC satisfies dBC ¼ d2π . Then, dAC ¼ dπ þ d2π
approximates αAC ≈ 0. The corresponding quantum circuit
is drawn in Fig. 3(b), which includes a controlled π-phase
gate between A and B, and a controlled 2π-phase gate
between B and C. Ramsey measurements are shown in
Figs. 3(c), 3(d), and 3(e) for the atoms A, B, and C,
respectively. Entangled atoms, A and B, exhibit low fringe
visibilities of 19% and 18%, respectively, while the
unentangled atom C a high fringe visibility, closer to the
case of an isolated single atom. Therefore, the result
indicates that the remote pair (AB) can be entangled, while
the closer pair (BC) is left unentangled.
In the final experiment, we consider an application of the

weak coupling, for the generation of multipartite entangle-
ments. For example, a system of three partially blockaded
atoms (e.g., of dAB; dBC < rb < dAC in the linear configu-
ration), is never driven perfectly to the superatom state,
jWi ¼ ðj100i þ j001i þ j010iÞ= ffiffiffi

3
p

, by a single resonant
excitation of any pulse area Θ, i.e., RðΘÞj000i ≠ jWi. The
system evolves also to unwanted leakage states jW0i ¼
ðj100i þ j001i − 2j010iÞ= ffiffiffi

6
p

and j101i, due to the break-
ing of the Rydberg blockade of the AC pair [25]. In order to
produce the jWi state of these three partially blockaded
atoms, we adopt a coherent control method [26] that can

destructively interfere with unwanted transitions and gen-
erate the target state with high fidelity. The first-order
leakage state of the given partially blockade system is
j101i, so the given leakage transition, jWi → j101i, can be
undone by an additional phase-flipped transition, as illus-
trated in Fig. 4(a). Numerical optimization, performed for
three atoms with dAB ¼ dBC ¼ 0.66rb and dAC ¼ 1.31rb
(in this case rb ¼ 8.96 μm and Ω ¼ 2π × 0.99 MHz),
predicts that the given leakage suppression [27] can be
engineered, by two pulses with respective pulse areas 2π=3
and π=3 (with respect to the three-atom collective Rabi
frequency

ffiffiffi
3

p
Ω), and a time delay for the j101i-state phase

flipping, i.e., jψfi ¼ Ryðπ=3ÞUAC
p ðπÞRyð2π=3Þj000i. With

this, all the leakages to unwanted singly excited and
multiply excited states can be simultaneously suppressed,
resulting in a high-fidelity jWi-state generation of
jhWjψfij2 > 98%, as shown in Fig. 4(b). Experimental
results are presented in Fig. 4(c), in which the probabilities
of all singly excited states, Ps¼P100þP010þP001, and of
all multiply excited states, Pm¼P110þP011þP101þP111,
are plotted with filled circles and squares, respectively, and
compared with the corresponding single-pulse experiments
(open circles and squares). The results of the given two-
pulse coherent control scheme exhibit significant improve-
ments at around Θtotal ¼ π, as predicted.
Our entanglement scheme (controlled phase gates in the

weak-coupling regime) can be in principle generalized forN
atoms, by utilizing individual atom addressing [28,29].
However, even in this case, maximally available N, esti-
mated to be Nmax ≈ ð2dmax=dminÞ3 in a three-dimensional
array, is limited by two distance inequalities: (1) The
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FIG. 2. (a) Two atoms A and B separated at a distance of
either dπ for entanglement (α ¼ π) or d2π for no entanglement
(α ¼ 2π). (b),(c) Quantum trajectories of each atom expected for
(b) α ¼ π and (c) α ¼ 2π. (d),(e) Measured Ramsey fringes,
P1ðϕÞ ¼ ðPA

1 þ PB
1 Þ=2, for (d) α ¼ π and (e) α ¼ 2π, compared

with an isolated single-atom Ramsey fringe in blue. (f) Ramsey
fringe visibilities measured at various distances compared with
Monte Carlo simulation (solid line) and j cosðτC6=2d6Þj (dashed
line) of Eq. (3).
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FIG. 3. (a) Linear arrangement of three atoms A, B, C with
dAB ¼ dπ and dBC ¼ d2π . (b) An equivalent three-qubit quantum
circuit (the two controlled gates commute). (c)–(e) Measured
Ramsey fringes P1ðϕÞ of (c) atom A, (d) atom B, and (f) atom C,
in comparison with that of an isolated single-atom in blue.
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distance of nearest pairs needs to be larger than the Rydberg
blockade radius, i.e., dmin ¼ rb, and (2) the dephasing time
T2 limits the maximal distance, i.e., dmax ¼ ðC6T2=πÞ1=6.
Our current setup with T2 ¼ 5.6 μs allows Nmax ≈ 25. It is
expected that an increased dephasing time (e.g., 4 × T2), by
sideband cooling [30] and a pulse sequence such as spin
echo [12], and a reduced blockade radius, by an increased
Rabi oscillation frequency (e.g., 5 ×Ω), shall be able to
achieve Nmax > 100.
Monte Carlo simulation modeling the current experiment

estimates the entanglement fidelity of F ¼ 0.59� 0.11 for
the maximally entangled two-qubit state in Eq. (2). The
fidelity errors are mostly from finite atom temperature and
laser phase noise. The simulation also expects that sideband
cooling [30] (below 3 μK) and laser stabilization [12]
(Δϕ < 0.01π) would achieve F > 0.9. It is noted that
model A requires a longer gate time (τ ∼ 1=U ≫ 1=Ω) than
conventional model B (τ ∼ 1=Ω), which makes the entan-
glements achieved in the current scheme limited by the
finite lifetime of the Rydberg state, not directly useful for
quantum information processing. The short lifetime can be
resolved, in future works, e.g., by encoding the qubit on
two hyperfine ground levels [19], with one of the two
momentarily excited by a π pulse (in contrast to the π=2

pulse used in this work) to accumulate the interaction
phase. It is also noted that the interaction phase of a doubly
exited Rydberg state is sensitive to the interatomic distance
(Δα=α ¼ 6Δd=d), so the entanglement method based on
model A requires accurate control of d. In our experiments,
the repulsive force between Rydberg atoms is negligible;
atom displacement by the repulsive force during a con-
trolled π-phase gate is estimated to be less than 8 nm. The
distance errors mainly come from the atom temperature that
causes atom position jitters about 0.13 μm. Numerical data
fitting of experimental data, taking into account the above
errors in Monte Carlo simulation, estimates Δd ≃ 0.14 μm
and Δα=α ≃ 7%.
In summary, we have presented experimental demon-

stration of the Rydberg-atom entanglement in the weak
coupling regime. Our experiments are based on model A of
Rydberg-atom two-qubit gate proposals in Ref. [19], ena-
bling long distance entanglements and multipulse coherent
control methods. The current scheme requires longer gate
time and more accuracy of the interatomic distance than the
conventional method using Rydberg blockade effect.
Monte Carlo simulation estimates the current experiment
achieves the entanglement fidelity of F ¼ 0.59� 0.11,
which can be further improved by using long-lived hyper-
fine states, sideband cooling, and laser frequency stabili-
zation. The entanglement method demonstrated in this
work could be of particular importance in dealing with
entanglements of massive qubit systems, e.g., one-way
quantum computing with geometrically imprinted cluster
states [31].
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