
Chapter 4
Optimal Pulse Shaping for Ultrafast Laser
Interaction with Quantum Systems

Hyosub Kim, Hangyeol Lee, Jongseok Lim and Jaewook Ahn

Abstract Coherent control method steers a quantum system to a desirable final
quantum state among a number of final states otherwise possible in a given light-
matter interaction, by using a specially shaped light form programmed in its spectral
and/or temporal domain. In this chapter, we briefly review a number of light-form
shaping methods previously considered for coherent control of ultra-fast laser interac-
tion with atoms, and provide their application examples along with their experimental
demonstrations.

4.1 Introduction

Latest development in laser optics manifests a new capability of light, other than
the traditional use of light as a viewing tool, which is the use of light as a control
tool. In particular, along with the advent of ultra-fast optical techniques, it becomes
possible that the versatile light forms are newly engineered by programming the
amplitude and shape functions of the broad frequency range of an ultra-fast optical
pulse. As a result, the programmed spectral and/or temporal shape of a laser pulse
can be used as a quantum-mechanical means to control the dynamics of a quantum
system. This field of optical research is refereed to as coherent control, or quantum
control, or more specifically to emphasize the usage of ultra-fast laser, “ultra-fast
quantum control.”

Examples of the coherent control concepts demonstrated in terms of shaped light-
matter interactions can be found in numerous experiments. To list a few, historically
Wilson and coworkers [1] experimentally realized closed-loop feedback control of
optimal pulse shape for efficient population transfer in molecular system. Gerber
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and coworkers [2] also demonstrated the coherent control in the photo-dissociation
process of molecules, by using shaped ultra-fast optical pulses which were adaptively
programmed in a closed control loop consisted of a laser programming apparatus
and a photo-fragment mass spectroscope. Although the adaptive control methods are
powerful in many real applications, we leave this class of coherent control meth-
ods aside and focus on the open-loop coherent control method, where the laser
pulse shape is first designed by solving the Schrödinger equation for the given light-
matter interaction. In that context, Silberberg and coworkers [3] initiated the pulse
shape design research in terms of coherent control in their demonstration of atomic
nonlinear absorption process. Other examples can be found, for example, in optical
second-harmonic generation [4], optical third-harmonic generation [5], multi-photon
absorption [6, 7], and coherent anti-Stokes Raman scattering [8]. More advanced
applications can be found in in-vivo fluorescence microscopy [9], coherent control
quantum bits in Rydberg atoms [10], and semiconductor [11] to list a few.

The research of coherent control of quantum dynamics has become possible in
many ways thanks to the development of laser pulse shaping apparatus in the last
two decades [12]. Among many apparatus, spatial light modulators (SLM), in par-
ticular, allow a relative easy way to engineer the interference among the transition
pathways of a multi-photon absorption process, because of their Fourier domain
spectral shaping capability [3, 6]. Also, acousto-optic programmable dispersive fil-
ters (AOPDF) provide more sophisticated ways of pulse-shaping in the context of this
chapter, showing its capability, for example, in the strong-field multi-photon absorp-
tion control of alkali atoms [7, 13]. A combination of those pulse-shaping devices
can transform a well-defined gaussian-shape pulse to an arbitrary pulse shape of
programmed spectral phase, amplitude, and also polarization [14–18].

4.2 Types of Pulse Shaping

Before we begin to describe the coherent control experiments, we categorize the
ways of pulse shaping methods. To do that, we first need to define an ultra-fast laser
pulse.

The ultra-fast laser pulse can be represented either in time domain as E(t), or in
frequency domain Ẽ(ω), where their mutual relation is given by the complex Fourier
transform (F ). The most interesting case in this context of ultra-fast optical pulse
shaping is a moderately short pulse, which means the center carrier frequency ω0,
and the bandwidth of the pulse Δω are related as Δω � ω0 [19]. Then, without a
loss of generality, the electric field is factored into the envelope and carrier functions
given by

E(t) = 1

2
ε(t)eiφ(t)eiω0t + c.c., (4.1)
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and its frequency domain representation is given by

Ẽ(ω) = F {E(t)} = |Ẽ(ω)|eiΦ(ω), (4.2)

where the tilde denotes a complex value and, since E(t) is real function, a relation
Ẽ(ω) = Ẽ∗(−ω) holds.

It is noted that we neglect the spatial profile of the laser pulse, which often plays
an important role in nonlinear optical process in terms of spatial average effect [20],
but we assume the given light-matter interaction is performed in an uniform spatial
intensity region only.

As seen in (4.1), the electric field of the pulse is described by its center carrier
frequency ω0 and its transient envelope function ε(t). The Fourier transform of this
temporal profile yields the same analogy in the frequency domain, which is centered
at ω0. Here, we call |Ẽ(ω)| as a spectral amplitude and Φ(ω − ω0) as a spectral
phase. It is noted that the spectral phase is a function of frequency, and, in particular,
if the spectral phase is a constant over the whole spectrum range, the laser pulse is
referred to as a Fourier transform-limited pulse.

The spectral phase can be expanded into a Taylor series as

Φ(ω) = Φ(ω0) + Φ ′(ω − ω0) + 1

2
Φ ′′(ω − ω0)

2 + 1

6
Φ ′′′(ω − ω0)

3 + · · · , (4.3)

where the constant phase Φ(ω0) is the carrier-envelop phase, Φ ′ is the movement of
pulse envelope along the positive time direction, (which is in fact equivalent to the
frequency shift of ω0), Φ ′′ is the linear spectral chirp, and Φ ′′′ is the quadratic spectral
chirp, etc. As a pulse shape contains both the envelop shape and phase information
at the same time, pulse shaping control is equivalent to both the amplitude and
phase shape manipulation of the laser pulse. Also, as the actually time and frequency
domains are related with respect to the Fourier transform relation, only one of the
domain control, either time or frequency, is sufficient for the generation of a desired
shape programming of a laser pulse.

The pulse shaping device generally operates in spectral domain, to be discussed
in Sect. 4.3, so we can categorize the types of pulse shaping in spectral domain as
following:

1. Amplitude shaping (lose photons: irreversible shaping)

a. Spectral amplitude blocking
b. Wavelength scanning (regular spectroscopy)

2. Phase shaping (temporal rearrangement of spectral components)

a. Spectral chirping
b. Multiple pulses (e.g., 2D-Fourier transform spectroscopy)
c. Spectral phase gating
d. Spectral phase step
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The amplitude shaping methods in spectral domain inevitably lose photons, and,
therefore, this type of pulse shaping methods is intrinsically an irreversible process.
However, to be described in Sect. 4.4, certain light-matter interactions are better
performed with a smaller set of spectral components of light. For example, in the
two-photon absorption case in a three-level atom with an intermediate energy level,
a certain part of laser spectrum participates to the net absorption as a destructive
quantum interference. Therefore, removing those spectral components, to make the
remaining absorption pathways all constructively interfere with each other, could
enhance the net absorption probability. This method is known as spectral blocking
[6, 21, 22]. Another method is a wavelength scanning which could be implemented
by allowing only a narrow spectral region of an ultra-fast pulse and blocking the
others.

The spectral phase shaping is a way of temporal rearrangement of spectral com-
ponents, and this method allows a variety of ways of spectral manipulation of a laser
pulse. For example, spectral phase gating method provides a narrow spectral window
region (phase-gated window) to be of different phase from the others, and scans the
phase-gated spectral window from one end to the other end of the laser spectrum.
Also, one can make a spectral phase step in a certain spectral location of the spectrum
and scan the phase-step location, or one can implement a modulated spectral phase
function Φ(ω) = A cos(Bω + C) and by controlling the modulation amplitude A,
the modulation frequency B, or the modulation phase C , respectively, the popu-
lation transfer among the energy levels of the given light-matter interaction can be
enhanced or suppressed. Another example is a use of multiple laser pulses, which can
be programmed in the phase-shaping in spectral domain. For example, a set of three
laser pulses with a fixed carrier-envelope phase and variable time delays implements
two-dimensional Fourier transform spectroscopy. One could change the frequency
de-tuning, the spectral linear chirp, or the spectral quadratic chirp by changing Φ ′,
Φ ′′, or Φ ′′′, respectively, which subject will be discussed in more detail in Sect. 4.5.
Lastly, if the transition phase information is completely known a priori, then a spec-
tral phase function which maximizes the given transition can be programmed to be
discussed in Sect. 4.6.

4.3 Pulse Shaping Devices

Although the pulse shaping methods are performed in both the Fourier and time
domains, the tailored pulse can be described in either domain completely. Thus we
concentrate on the frequency domain1 shaping here. When we deal with a pulse at
frequency domain, angular dispersive optical elements, such as a prism or a diffrac-
tion grating, can be used [23, 24]. As such optical elements disperse each chromatic
component at a different spatial position in the real plane, managing each chromatic

1 We notice that Fourier domain and frequency domain have the same physical meaning in this
chapter.
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Fig. 4.1 An optical pulse shaper combined with a pair of diffraction gratings and a liquid crystal
SLM. Phase, and amplitude, or both phase and amplitude are controllable according to respective
types of configurations of an SLM, inserted wave plates, and polarizers. The image is from [27]
with permission by the publisher

ray at different position would possibly manipulate the shape of the pulse in the
frequency domain. In the contrary to frequency domain, time domain control can
be done by acousto-optic effect [16]. Programmable acoustic waves generated by
piezo-electric transducer in an acousto-optic crystal convolute with incident pulses
and generate desired pulse shape.

Spectral amplitude and phase functions can be controlled either by a fixed
mask [23], or by a variable masks: For example, SLM [25, 26], AOPDF [17], and
etc [27]. We briefly describe the working principles of SLM and AOPDF, before we
start to discuss the experiments performed with these devices.

4.3.1 Spatial Light Modulator

SLM is an array of optical phase or amplitude (or both) modulators made out of liquid
crystals. The liquid crystal in a nematic phase is a uniaxial birefringent material and
its molecular orientation is easily controllable by means of an applied electric field.
A usual setup, shown in the Fig. 4.1, is used as an optical pulse shaper, where an
SLM pulse shaper is located in the Fourier plane of a 2f-to-2f configuration of lens
and diffraction grating setup, also known as Martinez zero-dispersion stretcher setup
[27, 28]. The phase of light transmitted through each liquid crystal pixel is given as
a function of both the incident polarization and the electric field applied to the pixel.
For example, in the case of a phase-only modulation SLM, the extra-ordinary axis of
the liquid crystal is oriented originally parallel to incident polarization and, when the
electric field is applied to the propagating direction of light, optical path length can be
managed without birefringence. With appropriate combinations of half-wave plates
and polarizers, amplitude-modulation and both amplitude-and-phase modulation are
also possible.
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Fig. 4.2 Schematic of the AOPDF. Traveling acoustic wave diffracts phase-matched optical mode.
The image is from [17] with permission by the publisher

4.3.2 Acousto-Optic Programmable Dispersive Filter

The working principle of AOPDF is based on collinear acousto-optic interaction,
where a programmed acoustic wave diffracts different spectral components, of an
ultra-fast laser pulse, that are respectively phase-matched with different acoustic
modes in the AOPDF [16]. Thus, the output laser spectral amplitude Eout is pro-
grammed as Eout ∝ Ein S(αω), where Ein is the input laser spectral amplitude and
S(αω) is the acoustic mode amplitude and α is the ratio between the speed of sound
and the speed of light in the crystal (Fig. 4.2).

4.4 Spectral Amplitude Blocking

4.4.1 A Ladder-Type System

As the first example of coherent control experiments, we consider the spectral block-
ing among spectral amplitude shaping methods. The quantum system under consid-
eration is the three-level system in a ladder configuration of atomic rubidium (Rb).
The three energy levels are the 5S (the ground state), 5P1/2 (the intermediate state),
and 5D states (the final state), as shown in the Fig. 4.3. The coherent light source is
from a mode-locked Ti:sapphire laser, of which the wavelength center is at 778 nm
and the broad wavelength width of 18 nm in FWHM (the full width at half maximum)
covers both the upper and lower intermediate states energy separation.

The transition probability amplitude to the final state is given by the second order
time dependent perturbation theory [6] as,

c(2)(t) = − 1

�2

∑

i

μ f iμig

t∫

−∞

t1∫

−∞
E(t1)E(t2)e

iω f i t1 eiωig t2 dt2dt1, (4.4)
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Fig. 4.3 Energy level diagram
of the ladder-type two-photon
absorption
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where μ f i and μig are the transition dipole moments. The angular frequency is
defined as energy spacing between the two levels as ωi j ≡ (Ei − E j )/�. We consider
an electric field E(t) given as a pulse as,

E(t) = 1√
2π

∞∫

−∞
Ẽ(ω)e−iωt dω. (4.5)

Now, the both E(t1) and E(t2) are substituted into (4.4) and the complex integral
is conducted with an assumption that fast transient is neglected, or the integration
time t is large enough compared to the pulse duration. When the spectral bandwidth
covers both the transitions ω f i and ωig , respectively, from the ground state to the
intermediate state and from the intermediate state to the final state, the solution is
given by

c(2)
f g = − 1

i�2 μ f iμig[iπ Ẽ(ωig)Ẽ(ω f g − ωig) + P

∞∫

−∞

Ẽ(ω)Ẽ(ω f g − ω)

ωig − ω
dω],

(4.6)

where the first term corresponds to the resonant two-photon transition and the sec-
ond term, the Cauchy integral term, exhibits the broad non-resonant behavior of the
two-photon absorption. Such a broad spectral response is originated from the short
temporal mediation of the intermediate state and thus a large uncertainty in energy
occurs [6], but, as the excited state has a rather long lifetime, the total energy of two
photons is conserved. It is noted that the transition probability amplitude of the res-
onant and non-resonant components have different phase. Especially the constituent
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Fig. 4.4 a A movable slit blocks the spectral wings. b Two photon absorption fluorescence signal
with respect to the cutoff wavelength and the corresponding average power. c Comparison between
the transform limit pulse and the optimized two-photon absorption pulse. The image is from [6]
with permission by the publisher

contributions in the non-resonant term destructively interfere within themselves.
Therefore, definitely, a transform-limit pulse is not optimal for the given two-photon
absorption. Figure 4.4 shows experimental demonstration that the spectral ampli-
tude blocking of the spectral component dramatically increases transition probability
amplitude while the pulse energy significantly decreases. In the described experi-
ment, the spectral blocking experiment was carried out by a mechanical slit in the
Fourier domain.

4.4.2 Spectral Amplitude Blocking in a V-Type System

The spectral blocking method can be also used for a V -type three level system. To
summarize the working principle, the experimental example is explained below.

As shown in Fig. 4.5, the system under consideration is the three energy levels
of atomic rubidium, |g〉 = 5S, |a〉 = 5P1/2, and |b〉 = 5P3/2. The two fine struc-
ture levels |a〉 and |b〉 are simultaneously excited by an ultra-fast laser pulse from
the common ground state |g〉 [21]. The particular transition that we try to control
is the two-photon transition from |a〉 to |b〉 via |g〉, the V -type two-photon transition.
The corresponding transition probability amplitude can be calculated in a similar
manner to the ladder type case, and the resulting formula as a result of the second
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Fig. 4.5 The V-type system of
Rb atom. Two-adjacent levels
are forbidden transitions
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order time dependent perturbation calculation is given by [22],

c(2)
ba = 1

i�2 μgaμgb[−iπ Ẽ∗(ωag)Ẽ(ωbg) + P

∞∫

−∞

Ẽ∗(ω)Ẽ(ωba + ω)

ωag − ω
dω], (4.7)

where it is noted that the one electric field is the conjugate pair compared to the result
in (4.6) of which the feature is originated from the down and upward sequence of
the participating three energy states transition.

The experimental observation of the V -type transition to |b〉 from |a〉 via |g〉,
which is carried out by detecting the population of |b〉, needs to be differentiated
from the simple one photon transition to |b〉 from |g〉. Therefore, the experiments
were performed by using a two-dimension Fourier transform spectroscopy technique.
By using three optical pulses (the initial preparation pulse, the control pulse, and the
final interference pulse, respectively) with different phase oscillation between each
states. At the same time, the control pulse was spectrally shaped to implement the
spectral blocking for the V -type transition by using AOPDF.

Figure 4.6 shows the experimental results of the enhancement of the two-photon
absorption in the V -type system. As evident from the result, the shaped pulse, which
has lesser energy than a transform-limited pulse, demonstrates the enhancement of
the two-photon transition probability amplitude in the given atomic systems. This
results contradicts our intuition that the given non-linear transition is maximized
by a transform-limited pulse, which has the maximal peak intensity. However, as
the theoretical formula predicts, the given broad-band two-photon transition should
be enhanced by eliminating the destructive interference contributions. In the same
line of thought, then one could come up with a more efficient way to increase the
transition not only by eliminating the destructive interference contributions but by
controlling them to constructively interfere with the rest of the transition components,
in particular by spectral phase shaping, to be explained in Sect. 4.6.1
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Fig. 4.6 5P1/2-5P3/2 two-photon transition probability amplitude controlled by the spectral ampli-
tude blocking method. Dots represent the experimental measurement and the dark line the theoret-
ical calculation. The grey line shows the spectrum of the laser pulse. Inset shows the way how the
spectrum is blocked. The image is from [21] with permission by the publisher

4.5 Spectral Chirp Control

Chirping is also a crucial parameter for manipulating coherent population control
in atom-light interaction. Chirping and quadratic chirping in the frequency domain
are described in (4.3) as a Taylor expansion of spectral phase near the center fre-
quency. However, the physical meaning of the linear chirp, or linear spectral chirp,
is rather simply understood at the time domain; the oscillating period ω0 changes
as a time dependent variable as ω0 + βt , where the chirp parameter is defined
by β = 2Φ ′′/(τ 4

0 + 4Φ ′′2) with the time duration τ0 defined for a corresponding
transform-limited pulse (field).2

4.5.1 Chirps in a 2 + 1 Photon Transition

The first example of chirp-control experiment is the 2 + 1 photon transition in an
asymmetric three-level ladder system of atomic sodium as shown in Fig. 4.7 [7]. The
three-level energy ladder is consisted of the 3S, 4S, and 7P energy states, and the
first 3S–4S transition is a two-photon transition, and the second 4S–7P transition is
a one-photon transition.

The laser pulses from the femto-second laser amplifier operating at a repetition
rate of 1 kHz have the transform-limited pulse duration of 37 fs. Within the allowed

2 (field) means that the description is about electric field. Readers should care whether (field) or
(intensity) arise at the end of a description.
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Fig. 4.7 The asymmetric three-level energy ladder in atomic sodium and the 2+photon transition
pathway from 3S to 7P via 4S. The direct four-photon ionized atom signal is 1,000 times smaller
than the 4S-7P sequential 2 + 1 photon transition, thus the system is valid as a closed three-level
system. The image is from [7] with permission by the publisher

laser bandwidth there is no intermediate state during the two-photon 3S–4S transition,
and, therefore, the 3S–4S transition is non-resonant.

When the chirp rate was controlled by AOPDF, as in Fig. 4.8, the 7P state popu-
lation was measured as a function of the chirp rate of the excitation laser pulse. The
experimental results show highly asymmetric behavior of the three photon excited
state population given as a function of the chirp rate. The physical origin of the
asymmetry can be explained by the different excitation pathways: One is the 4S-
state mediated sequential 2 + 1 photon excitation path and the other is a direct three
photon excitation path. In the case of the former path, the first two-photon excita-
tion has a higher frequency (777 nm) and the last one-photon excitation has a lower
frequency (781 nm), thus the transient character of the excitation process prefers a
negative chirp rate and, therefore, is the main reason of the observed asymmetry.
The latter path has no reason to have such an asymmetry, rather it shows symmetric
behavior with zero population at zero chirp rate, which can be easily observed in
the green dot-dashed line in Fig. 4.8. The reason can be understood based on the
effect of the dynamic Stark shift which makes the intensity proportional resonance
level de-tuning in the presence of the laser pulse [29]. In this scenario, the zero chirp
point has the highest intensity, because the largest dynamic Stark shift occurs, and
the direct three photon transition path becomes far off de-tuned from the resonance
energy condition, which explains the symmetric nature of the intensity shape with
a dip at the zero chirp region. Interference between direct path and sequential path
causes also considerable effect in multi-photon transition system [30]. However, in
the 2 + 1 photon system, calculation based on perturbation theory shows that chirp
rates in the experiment are not enough to observe interference fringes.
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Fig. 4.8 Sodium 2 + 1 photon transition measured as a function of the chirp rate. Experimental
results plotted by dots are compared with the theoretical calculation (the lines). The 2 + 1, photon
sequential transition pathway is in the blue dashed line and the three photon direct transition is in
the green dot-dashed line which are asymmetric and symmetric respectively. The black solid line
represents the total absorption rate. The image is from [7] with permission by the publisher

4.5.2 Chirps in Two-Photon Transitions

The excitation suppression due to the dynamic Stark effect can be better identified by
observing the 3S−4S two-photon transition. As shown in Fig. 4.9, 3S–4S two-photon
direct transition path is dominant compared to the four-photon sequential transition
path,3 and, therefore, an observation of the 4 s state population as a function of the
chirp rate provides a clear evidence for the dynamic Stark effect induced transition
reduction.

Experimental result in atomic cesium also finds a similar effect. As a two-photon
transition without any resonant intermediate transition, which often referred to as a
non-resonant two-photon transition, the 6S–8S transition in cesium is strongly influ-
enced by the dynamic Stark shift in the presence of an intense laser field. In the
experiment carried out with a laser intensity around 1012 W/cm2, or in the strong
field regime, the chirp rate dependence on the two-photon transition has been inves-
tigated [13].

Theoretical consideration for the 3S −4S two-photon transition probability gives
an analytical formula given as a function of the chirp rate and the pulse intensity, for

3 Four-photon sequential path is 3S−4S−7P 2+1 photon process in addition to 7P−4S one-photon
de-excitation. In this experiment, several order of magnitude is smaller than two-photon direct path.
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Fig. 4.9 Sodium two-photon
absorption rate measured
as a function of the chirp
rate. The two-photon direct
transition path turns out much
larger than the four photon
sequential transition path.
The image is from [7] with
permission by the publisher

the case of a zero de-tuning from the two-photon resonant condition, by

Pe ∝ 1√
1 + 4a2

2/τ 4
0

exp[− πη2 I 2
0 τ 2

0

8(1 + 4a2
2/τ 4

0 )
], (4.8)

where a2, τ0, and I0 are the chirp rate,4 transform-limited pulse width (intensity)
defined by exp(−t2/τ 2

0 ), and the peak intensity respectively. η in the equation has
complicated physical origin, thus we just treat it as a fitting constant here.5 Exper-
imental result obtained as a function of the chirp rate and the pulse intensity is
shown in Fig. 4.10. As the pulse intensity increases, a single peak centered at the
zero chirp region becomes divided into double peaks with a sharp dip in the zero
chirp, which behavior is similar to the case of Fig. 4.9. The exponential decay term in
(4.8) properly describes such a behavior: As the pulse intensity is big enough so that
the dynamic Stark shift plays a role, the signal given as a function of the chirp rate
appears with a dip point around the zero chirp with a symmetric double side peaks
as shown in Fig. 4.10b. However, when the pulse intensity is low, the signal shows
a usual behavior of a single peak around the zero chirp, as shown in Fig. 4.10c. The
contour lines in Fig. 4.10 are theoretically calculated from (4.8).

4 The linear spectral chirp Φ ′′ in (4.3) and a2 here is identical parameter.
5 For more detailed description, we would recommend readers to read [13].
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Fig. 4.10 a Two-photon transition probability to cesium 8 s state from the ground 6 s state measured
as a function of chirp rate and pulse intensity. b and c show the behaviors in the strong and weak
interaction regimes, respectively. The image is from [13] with permission by the publisher

So far, we have seen that the effect of dynamic Stark shift can decrease the
two-photon transition in the strong field regime. The chirp rate, both negative and pos-
itive, could increase the transition rate by reducing the amount of energy level shift.

4.5.3 Optimal Pulse Shaping of a Two-Photon Transition

Then, one can also consider a case that a more sophisticated pulse shaping method
could even compensate for the dynamic energy level shift to increase the transi-
tion [31]. The idea has been experimentally realized in the Cesium 6S–8S non-
resonant two-photon transition case [32].

The cesium 6S–8S non-resonant two-photon transition can be described by a
two-level system Hamiltonian [32],

H(t) = �

[
0 1

2Ω(t)e2iφ(t)

1
2Ω(t)e−2iφ(t) Δ + δ(t)

]
, (4.9)

by appying the unitary transformation U (t) = |g >< g| + e−2iφ(t)|e >< e|,

H(t) = �

[
0 1

2Ω(t)
1
2Ω(t) Δ + δ(t) − 2φ̇(t)

]
, (4.10)
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Fig. 4.11 Two-photon
transition rate between the
cesium 6S and 8S energy
levels given as a function
of the two control parame-
ters a1 and a2 defined in
(4.11). Measurements were
carried out at the laser inten-
sity of 0.21 × 1011 W/cm2.
The image is from [32] with
permission by the publisher

where Ω(t) is the two-photon Rabi frequency and φ(t) is the phase of electric field.
Δ = ωe − ωg − 2ω0 is the de-tuning and δ(t) is the effective dynamic Stark shift.
The δ(t) is proportional to intensity I (t).

It is known that the population transfer by the Hamiltonian, (4.10) can be max-
imized by making the diagonal term of the Hamiltonian zero [31]. For this, the
temporal pulse phase should satisfy the condition 2φ̇(t) = Δ + δ(t), or the system
maintains dynamically the resonant condition. To compensate the dynamic Stark
shift, δ(t), which is proportional to the temporal pulse intensity exp(−t2/τ 2), we
expand δ(t) as a Taylor series up to second term. Then, the compensation condition
is given by,

2φ(t) = (Δ + δ(0))t − 1

3

δ(0)

τ 2 t3 = 2a1t + 2a2t3 (4.11)

The temporal phase is described by a polynomial form similar to the (4.3) of the
spectral phase. The zeroth order and the second order terms of the temporal phase
have the same physical origins, respectively, as those of spectral phase, which are
carrier envelop phase and chirp rate, respectively. While, the first order term of
temporal phase, on the other hand, is different from that of spectral phase. The former
corresponds to a shift of the frequency envelope and the latter the time envelope. The
third order term of the temporal phase is hardly described by the spectral phase
components only, because it needs both controls of the spectral amplitude and phase
at the same time.

The experimental result in Fig. 4.11 shows a good agreement with the calculation
that is depicted by the black contour lines. The calculation is the numerical result of
the time dependent shröedinger equation based on the Hamiltonian in (4.10). The
approximation terms of the dynamic Stark shift δ(t) up to second order is used.
The intensity are kept low enough to prevent loss through the ionization passage.
The parameter a1 shifts the two-photon energy of the laser pulse toward the shifted
8S energy level near the resonant condition, and a2 bends the temporal frequency
shape to have a more overlapped temporal region with the temporal shape of the
dynamic Stark shift. Higher order terms neglected in (4.11) would better supplement
the compensation if considered.
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4.5.4 Chirps in a V-Type System

It is worth to mention the effects of chirps on the V -type two-photon transition [22].
The transition probability of (4.7) for the V -type two-photon transition can be sim-
plified when the pulse envelope is assumed to be of a gaussian shape, and the spectral
phase has a chirp (a2) and a quadratic chirp (a3) only. After a straightforward algebra,
the given 2-photon transition can be written as

c(2)
ba = i

μ̃ba

�2 [iπ Ẽ (ω̄) − P

∞∫

∞

Ẽ (ω)

ω̄ − ω
dω], (4.12)

where μ̃ba = μgaμbg exp [−ω2
ba/2Δω2 + ia3ω

3
ba/24], ω̄ = (ωag + ωbg)/2, and

Ẽ (ω) = |Ẽ(ω)|2 exp (iωbadφ/dω) is the effective electric field. We just write down
the one-photon de-excitation probability amplitude calculated by first order pertur-
bation [22],

c(1)
ge = iμeg E0

�

t∫

−∞
exp (− t ′2

τ 2
c

) × exp {−i[(ωeg − ω0)t
′ − αt ′2]}dt ′

F.T=
μeg

�
[iπ Ẽ∗(ωeg) − P

∞∫

−∞

Ẽ∗(ω)ei(ω−ωeg)t

ωeg − ω
dω], (4.13)

where τc = τ0

√
1 + a2

2/τ 4
0 , α = 2a2/(τ

4
0 + 4a2

2), and τ0 is the transform-limited
pulse width (field) [22]. The readers should notice that the linear chirp rate is intro-
duced in the de-excitation pulse for the case of (4.13). At time t = 0, (4.12) and the
second (4.13) are of a similar form. Thus, the V-type two-photon transition process
may be reduced to a one-photon de-excitation process. We conduct inverse Fourier
transformation of (4.12) with an appropriate substitution of the effective electric field
Ẽ (ω) by a temporal shift t̃ = ωbaa2 and a chirp ã2 = −ωbaa3. We can find its time
domain form of (4.12) as

c(2)
ba = − μ̃ba E2

0eiθ

�2

Δω√
τ̃c/τ̃0

t̃∫

−∞
exp (− t ′2

τ̃ 2
c

)

× exp {−i[(ω̄ − ω0)t
′ − α̃t ′2]}dt ′ (4.14)

where θ = − 1
2 tan−1 2ã2/τ̃

2
0 + (ω̄ −ω0)t̃ , τ̃0 = 2

√
2/Δω, τ̃c = τ̃0

√
1 + ã2

2/τ̃ 4
0 , and

α̃ = 2ã2/(τ̃
4
0 + 4ã2

2).
We note that the V -type two-photon transition probability amplitude in (4.7) is a

result of infinite temporal integration, but the reduced probability amplitude in (4.14)
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exhibits a time dependent-like form. The time dependence is in fact originated from
the fact that the effective electric field is time-shifted proportional to the chirp rate,
t̃ = ωbaa2. Interestingly, the V -type transition shows a coherent transient (CT)-like
behavior as the chirp rate is controlled, although it should be distinguished from the
real CT effect observed in pump-probe experiments [33–35].

Experimental result shown in Fig. 4.12I indeed exhibits the fore-mentioned
CT-like behavior as a function of chirp rate. It is noted that three-pulse two-
dimension Fourier transform spectroscopy can recover both the amplitude and phase
of probability amplitude as shown in Fig. 4.12II.6

4.6 Spectral Phase Programming

One can also consider an arbitrary spectral phase function programming for the
purpose of an optimized multi-photon transition. In particular, if the constituent
transition pathways of the given transition are fully understood in terms of their
respective phase information, maximally constructive quantum interference can be
achieved by properly encoding the spectral phase function of the control laser pulse.

4.6.1 Spectral Phase Programming for a V-Type Transition

We consider the V -type two-photon system again, as an example. The target
transition, between the adjacent fine structure energy levels through the ground
state, is controlled by programming a spectral phase step at the spectral region
[ωag, ωag + ωba]. The governing equation is given in (4.7), where the integral term
of (4.7) is decomposed into two part [21] as follows:

c(2)
ba 
 i

μgaμgb

�2 [iπ Ẽ∗(ωag)Ẽ(ωbg)

− eiφb

ωag∫

ωag−ωba

Ẽ∗(ω)Ẽ(ωba + ω)

|ωag − ω| dω

+ e−iφb

ωag+ωba∫

ωag

Ẽ∗(ω)Ẽ(ωba + ω)

|ωag − ω| dω], (4.15)

6 Three ultra-fast pulses are incident on the target, with separately controllable pico-second scale
time delays τ1 and τ2 between each consecutive pulse. The excited states induced by each pulse are
interfered and the final fluorescence signal I (τ1, τ2) is recorded. Two-dimensional Fourier transform
of I (τ1, τ2) acquires both amplitude and phase information. Detailed theoretical description on this
experiment can be found from [22].
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Fig. 4.12 Coherent transition-like behavior of the V -type two-photon transition as a function of
linear chirp. The quadric chirps are given as a −5 × 104 f s3, b −1 × 104 f s3, c 3 × 104 f s3, and
d 7 × 104 f s3. Sublabel I is the transition probability amplitude and II is the amplitude including
the phase in complex plane. Solid lines are simulation and dots are experimental results. The image
is from [22] with permission by the publisher

where the phase φb is the phase of the region [ωag, ωag + ωba], and the other regions
have zero phase. The off-resonant components far from ωag are negligibly small thus
omitted here.

The phase of the resonant part is fixed and the two non-resonant parts have rotat-
ing and counter-rotating phase, respectively. As the non-resonant components are
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Fig. 4.13 a Transition amplitude with respect to the block spectral phase. Dots are experimental
data, the dashed line is the simulation result based on (4.15), and the solid line is the simulation
result with experimental systematic error. b–d Phase directions of each transition components of
(4.15) with respect to the block spectral phase. The image is from [21] with permission by the
publisher

initially, respectively, 90◦ out of phase from the resonant component, by manip-
ulating the phase of the given spectral block, the transition amplitude shows an
interference between the resonant and non-resonant components. The experimental
and simulation results are shown in Fig. 4.13. The transition probability amplitude
oscillates as the phase of the spectral block in [ωag, ωag + ωba] increases.

4.6.2 Spectral Phase Programming for a Non-resonant
Two-Photon Transition

Another appreciable problem is the non-resonant two-photon transition [3]. As the
non-resonant two-photon transition probability amplitude is written as a result of the
second-order perturbation calculation as

c(2)
nr ∝

∞∫

−∞
|E(ω0/2 + ω)E(ω0/2 − ω)|ei[φ(ω0/2+ω)+φ(ω0/2−ω)]dω, (4.16)

the transition has maximum when the spectral phase becomes antisymmetric (φ(ω0/

2 + ω) = −φ(ω0/2 − ω)) or zero. However, it is more complicated when the
spectral phase is symmetric. The transition probability can be zero or not. For the
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Fig. 4.14 Two-photon
fluorescence with respect
to modulation depth, A. The
Circle and square data points
are C = 0 and C = π respec-
tively. B is fixed at 220 fs.
The image is from [3] with
permission by the publisher

case of sinusoidal phase function, given by A cos(Bω + C), the experiments has
been performed with atomic cesium as in Fig. 4.14.

Then the two photon fluorescence signal measured as a function of the modulation
depth A, for the cases of symmetric (circle) and antisymmetric (square) phase func-
tion. The antisymmetric sine phase predicts a flat, monotonic, two-photon transition,
although it decays as the modulation depth grows. However, the result for a sym-
metric cosine phase shows much faster decay with periodic nodes, which behavior
is well understood by the theoretical consideration in (4.14).

4.7 Conclusion

We have discussed various types of laser pulse shaping methods for coherent control
of multi-level atomic systems. Spectral amplitude blocking in the ladder-type three-
level two-photon transition in rubidium, and also in the V -type three-level two-photon
transition in rubidium, has shown transition enhancements albeit the loss of pulse
energy. Even in a simple two-level two-photon transition, coherent controls with
spectral chirps have enhanced the transition in the strong field interaction case, due
to the dynamic Stark shift, contradicting the common wisdom of nonlinear optics.
Furthermore, the use of higher order chirps for the two-photon transition in a V -type
three-level system has mimicked coherent transient-like behaviors. Ultimately, it has
been found that optimal pulse shapes can be systematically designed by proper phase
function programming for those transitions whose transition phase information is a
priori known for all transition pathways. It is hoped that the pulse shaping method
finds its versatile usage of ultra-short and ultra-broadband laser field not only for
monitoring short time dynamics but also for surgically selective and diverse ways of
quantum system controls.
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