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Subpicosecond X rotations of atomic clock states
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We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of
atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during
Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit
system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap,
shows over 98% maximal population transfer between the clock states.
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I. INTRODUCTION

High-speed operation of qubit logic gates is crucial in deal-
ing with quantum systems of a limited coherence time [1–6].
Since the allowable number of operations is the coherence time
divided by qubit operation time, shortening the operation time
is equally important as increasing the coherence time.

Atomic hyperfine states in the ground state can have a long
coherence time measured up to tens of seconds [7]; because of
this, they are used not only as the clock states in atomic clocks,
which keep the most accurate time and frequency standards
[8], but also as storage qubits in quantum computation [9,10].
Atomic qubits have been controlled with direct microwave
transitions [11–15] or cw-laser Raman transitions [16–20].
Experiments [14,15,19,20] showed below 10−4 infidelity of
single qubit controls, lower than the commonly accepted error
threshold for fault-tolerant quantum computing. The clock
speed of these gates typically is from the kHz to MHz range.
However, the fundamental limit of the speed is given by the
hyperfine energy gap of a few GHz [1,21], so there are rooms
for improvement of the clock speed. It is therefore an important
question whether the hyperfine state transitions can be driven
with an extremely fast optical means, such as femtosecond
laser pulses, which is the subject of this paper.

The timescale of ultrafast optical interactions is on the
order of less than a picosecond, much shorter than the phase
evolution time of atomic hyperfine states with an energy gap
of a few GHz. So, from the interaction Hamiltonian,

Hint = −μ̂E + AFSLS +����
AHFSJ · I, (1)

where the interactions are electric dipole, fine-structure, and
hyperfine interactions, respectively, the hyperfine interaction
(the last term) can be ignored and thus, the nuclear degree
of freedom is unchanged. In other words, subpicosecond-
timescale optical interactions are local unitary operations
acting only on the electronic subspace of the atom, i.e.,
Ûultrafast = ÛJ ⊗ 1̂I. On the other hand, atomic hyperfine clock
states are maximally entangled states of the electronic and
nuclear degrees of freedom, and their entire Hilbert space
should be accessible with local operations and classical com-
munications [22]. Therefore, it is possible to achieve hyperfine-
state qubit gates using only subpicoseond optical local unitary

operations, as long as they preserve entanglement (without
resorting to classical communications).

In this paper, we propose and provide a proof-of-principle
experimental demonstration of subpicosecond-timescale X

rotations of atomic hyperfine clock-state qubits. We first
describe the subpicosecond optical transition of atoms between
fine-structure states and its effect on the hyperfine clock
states, and then how to use this effect to implement an X

rotation of the clock-state qubit in Sec. II. After a brief
experimental procedure in Sec. III, the theoretical analysis for
the subpicosecond optical transitions is presented in Sec. IV
(details are provided in the Appendix). Experimental results
are presented in Sec. V, followed by discussions on maximally
possible gate fidelity, universal single qubit gate scheme, and
estimated overall computational speedup in Sec. VI, before the
conclusion in Sec. VII.

II. CLOCK STATE X ROTATIONS

The atomic clock states are the ground hyperfine
states of mF = 0 and different two F = I ± 1/2; for
example, |0clock〉 ≡ |5S1/2,F = 2,mF = 0〉 and |1clock〉 ≡
|5S1/2,F = 1,mF = 0〉 in 87Rb. These clock states have a
radio frequency energy separation, so in a subpicosecond
timescale (where the nuclear degree of freedom is frozen)
an optical transition is not conveniently described with
the hyperfine state basis. Therefore, we first use the fine-
structure basis, which consist of the ground and excited states
with an optical frequency energy gap, and then utilize the
angular-momentum relations [23] between the ground fine-
structure sublevels |S1/2,mJ = ±1/2〉 and the clock states, i.e.,
|S1/2,mJ = ±1/2〉 = (|0clock〉 ± |1clock〉)/

√
2 ≡ |±〉. (The nu-

clear degree of freedom I is omitted since it is frozen.)
These fine-structure sublevels |±〉 are the eigenstates of the

Pauli X operator in the clock-state Hilbert space of |ψ〉 =
α|0clock〉 + β|1clock〉. Therefore, if there is an optical means
that directly induces the relative phase between |±〉, we achieve
general X rotations of |ψ〉 = (α − β)|−〉 + (α + β)|+〉. Fig-
ure 1 shows a 2π Rabi oscillation (the optical excitation and
return) induced by a σ+-polarized laser pulse, where the |−〉
gains the geometric phase θ [24] while the |+〉 is intact,
i.e., |ψ〉 → (α − β)eiθ |−〉 + (α + β)|+〉 (the X rotation). The
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FIG. 1. Subpicosecond X rotation scheme between
the clock states |0clock〉 = |S1/2,F = I + 1/2,mF = 0〉 and
|1clock〉 = |S1/2,F = I − 1/2,mF = 0〉, where a circularly polarized
(σ+) laser pulse drives the cyclic Rabi oscillation of the ground
fine-structure sublevel |−〉 through the fine-structure excited state
|P1/2,m

′
J = 1/2〉. While, the other ground fine-structure sublevel

|+〉 remains as a dark state due to the selection rule, resulting in the
relative phase θ between |±〉. Note that a π -polarized pulse cannot
make this kind of qubit rotations: because the linear polarized light
(the equal superposition of σ±-polarized lights) drives the same Rabi
oscillations to both |±〉 (so, no relative phase).

final state is given by R̂x̂(θ )|ψ〉 with the rotation matrix

R̂x̂(θ ) =
(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)
eiθ/2, (2)

in the clock-state basis {|0clock〉,|1clock〉}, where the global
phase eiθ/2 is ignored because it plays no role.

The angle θ is given as a function of detuning � = ω − ω0,
where ω and ω0 are the laser frequency and atomic resonance,
respectively. For example, in the Rosen-Zener model case [4],
the angle θ is obtained as θ = 2 arctan(
RZ/�) where 
RZ

is the peak Rabi frequency. In our experimental condition to
be described in the next section, an analytical expression for
θ is not available (due to the dynamic Stark shift from the
D2 transition and the pulse shape), but we will show through
numerical calculation that the full range of θ can be achieved
as a function of �.

III. EXPERIMENTAL PROCEDURE

Experimental investigation of the subpicosecond X rotation
of the atomic clock states was performed in a setup described
in our early works [25–27]. The setup composed of a magne-
tooptical trap (MOT) [28] for cold rubidium atoms (87Rb) and a
femtosecond laser amplifier [29]. The laser was operated with
1-kHz repetition rate and we used a programmable acoustoop-
tic modulator (ADPDF, Dazzeler from Fastlite) [30] to produce
temporal Gaussian pulses with a center frequency detuned up
to 1.5 THz from the D1 resonance (795 nm). Each shaped pulse
had a pulse-bandwidth of 2.5 THz (FWHM) and a pulse-energy
up to 5 μJ, enough to perform up to 4π Rabi oscillation, when
being focused with a lens of 500-mm focal length.

After being cooled in the MOT and depumped from
F = 2 to F = 1, the atoms were prepared in an equal

mixture of the clock state |1clock〉 and the other two
magnetic sublevels of the ground F = 1 hyperfine state,
i.e., ρ̂init = ∑

mF

1
3 |5S1/2,F = 1,mF 〉〈5S1/2,F = 1,mF |.

Then, the laser pulse interacted with the atoms to drive the
D1 transition |5S1/2〉 ↔ |5P1/2〉. After 30 μs (for complete
spontaneous emission of remaining |5P1/2〉 population), the
F = 2 state population was measured through absorption
imaging (10μs exposure, F = 2 → F ′ = 3 D2 transition) as
a function of the pulse-area [31], A = ∫ ∞

−∞ 
(t)dt with Rabi
frequency 
 and detuning �.

IV. TRANSITION PROBABILITIES

We first consider the transition probability between
the ground hyperfine sublevels, from |5S1/2,F = 1,mF 〉 =
|1,mF 〉 to |5S1/2,F = 2,m′′

F 〉 = |2,m′′
F 〉 via |5P1/2,m

′
J 〉 (D1

transition). The given probability is the sum of the direct optical
transition (qubit rotation) from |1,mF 〉 to |2,m′′

F = mF 〉 and
the spontaneous emission from the excited fine-structure states
|5P1/2,m

′
J 〉.

The case of σ+ polarization is given as

P (A,�; σ+,mF )

= |〈2,mF |Û |1,mF 〉|2
+Pse(1/2; σ+,mF )|〈5P1/2,1/2|Û |1,mF 〉|2

= AmF
|1 − 〈5S1/2,−1/2|Û |5S1/2,−1/2〉|2

+BmF
|〈5P1/2,1/2|Û |5S1/2,−1/2〉|2, (3)

where Û (A,�; σ+) is the subpicosecond optical interaction,
given as a function of pulse-area A and detuning �, and
Pse(m′

J ; σ+,mF ) is the conditional probability of spontaneous
emission from |5P1/2,m

′
J 〉 to all magnet sublevels |F = 2,m′′

F 〉
(m′′

F = ±2,±1,0), if the initial state is |1,mF 〉. Using the
Clebsch-Gordan coefficients [23] between the |J,mJ 〉 and
|F,mF 〉 bases, we get for mF = −1,0,1, respectively,

AmF
=

∣∣∣C 1
2 , 3

2 ,2
1
2 ,mF − 1

2
C

1
2 , 3

2 ,1
1
2 ,mF − 1

2

∣∣∣2
= 3

16
,
1

4
,

3

16
, (4)

BmF
=

∑
F ′=1,2,q=0,±1

∣∣∣C 1
2 , 3

2 ,F ′
1
2 ,mF + 1

2
D

F ′,1,2
mF +1,q

∣∣∣2∣∣∣C 1
2 , 3

2 ,1

− 1
2 ,mF + 1

2

∣∣∣2

= 1

6
,

7

24
,
3

8
, (5)

where D
j1,j2,j3
m1,m2 = √

2(2j1 + 1){1/2 1/2 1
j1 j3 3/2}Cj1,j2,j3

m1,m2 , with
curly brackets denoting the Wigner 6-j symbol (see the
Appendix for details). On account of symmetry, the σ+ and
σ− polarization cases are the same, except that mJ and mF are
replaced by −mJ and −mF , respectively.

The π polarization case is given by

P (A,�; π,mF )

=
∑

m′
J =±1/2

Pse(m′
J ; π,mF )|〈5P1/2,m

′
J |Û |1,mF 〉|2

= EmF
|〈5P1/2,−1/2|Û |5S1/2,−1/2〉|2, (6)
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FIG. 2. |5S1/2,F = 2〉 state probability P (A) vs. pulse-area A
for σ+ and π resonant D1 transitions, respectively, where blue circles
(σ+) and red squares (π ) represent the experimental data. The thick
solid and dashed lines are the corresponding numerical calculations,
with the thin lines showing the calculated results for the weak
excitation regime. The error bars indicate the standard error of mean.

where the coefficient is given for mF = −1,0,1, respectively,
by

EmF
=

∑
F ′ = 1,2,q = 0,±1,

mJ = ± 1
2

∣∣∣C 1
2 , 3

2 ,F ′

mJ ,mF −mJ
DF ′,1,2

mF ,q

∣∣∣2∣∣∣C 1
2 , 3

2 ,1
mJ ,mF −mJ

∣∣∣2

= 7

12
,
1

2
,

7

12
. (7)

Note that there is only spontaneous emission contribution, that
is proportional to the transition between the ground and excited
fine-structure states, with no direct |1,mF 〉 → |2,mF 〉 hyper-
fine transition, i.e., |〈2,mF |Û |1,mF 〉|2 = 0 (see the Appendix
for details).

V. RESULTS

In our experiment, the initial state is the mixed state of F =
1 states, or ρ̂init = 1

3

∑
mF

|1,mF 〉〈1,mF |, so the final F = 2
state probability is given by

P (A,�; σ+) = 5
24 |1 − 〈5S1/2,−1/2|Û |5S1/2,−1/2〉|2

+ 5
18 |〈5P1/2,1/2|Û |5S1/2,−1/2〉|2, (8)

P (A,�; π ) = 5
9 |〈5P1/2,−1/2|Û |5S1/2,−1/2〉|2, (9)

which can be obtained from Eqs. (3) and (6) by replacing AmF
,

BmF
, and EmF

with 1
3

∑
mF

AmF
, 1

3

∑
mF

BmF
, and 1

3

∑
mF

EmF
,

respectively, since each ground and excited states pair for each
mF forms independent two-state system and their dynamic
behaviors in fine-structure basis are all the same.

Figure 2 shows the F = 2 state probabilities, P (A; σ+)
and P (A; π ), measured for σ+ and π transitions, respectively,
under the resonant excitation condition � = 0. In this condi-
tion, Û describes the resonant Rabi oscillation between the

ground and excited fine-structure states. P (A; σ+) is given as
the sum of the hyperfine-state rotation (|F = 1〉 ↔ |F = 2〉)
and the spontaneous emission from the population remaining
in |5P1/2〉. P (A; π ) has only the latter contribution, the fine-
structure Rabi oscillation profile, because π -polarized light
induces no hyperfine-state rotation. In the weak-excitation
regime (where the dynamic Stark shift is negligible), their
analytic forms are obtained as

P (A; σ+) = 5

24

(
1 − cos

A
2

)2

+ 5

18
sin2 A

2
, (10)

P (A; π ) = 5

9
sin2 A

2
, (11)

as shown in Fig. 2. When the dynamic Stark-shift (involving
5P3/2, 5D3/2, and 5D5/2) is taken into account, the numerical
calculation of Eqs. (8) and (9) using the time-dependent
Schödinger equation (TDSE) results in a good agreement with
the experiment. Note that max [P (A; σ+)] is 5/6 ≈ 83% at
the complete population return (A = 2π ) in Eq. (10), which
corresponds to 1 (perfect population transfer) if the initial state
is the clock state |1clock〉 with AmF =0 rather than 1

3

∑
mF

AmF
.

We now probe these probabilities by changing both A and
�, i.e., P (A,�; σ+) and P (A,�; π ), with results shown in
Figs. 3(a) and 3(b). The dashed lines at the resonance condition
� = 0 in the figure correspond to Fig. 2. The clock-state
rotation (only) contribution Fig. 3(c) is extracted from the
data in Fig. 3(a), while the pulse-area (x axis) is calibrated
with the data (along the � = 0 line) from Figs. 3(b). Here
we use the fact that the initial state is an equal mixture of
the magnetic sublevels and that each ratio among them for
the hyperfine-state rotation and also the spontaneous emission
are known. After the spontaneous emission is subtracted from
Fig. 3(a), AmF =0/( 1

3

∑
mF

AmF
) factor is multiplied to obtain

the clock state contribution. The corresponding numerical
calculations depicted in Figs. 3(d), 3(e) and 3(f) show a good
agreement with the experimental results.

Using these measurements, we can retrieve the qubit X-
rotation performance. The result is shown in Fig. 4. The
qubit transition probability from |1clock〉 to |0clock〉 is shown
in Fig. 4(a), where the data are from the dotted line in
Fig. 3(c) that corresponds to the complete population re-
turn to the ground states, i.e., Û |1clock〉 = −i sin θ/2|0clock〉 +
cos θ/2|1clock〉. Also, in Fig. 4(b), the correspondingX-rotation
angles θ are extracted and plotted as a function of weak-
excitation regime calculations (x axis). Compared to the
TDSE calculation result (solid line), the experimental data
(diamonds) shows good agreement. The discrepancy between
the TDSE and weak-excitation regime results (dashed line)
is mainly due to the dynamic Stark shift. Our experiment
performed at 350 fs results in over 98% transition prob-
ability, |〈0clock|Û (A,� = 2π × 0.52THz)|1clock〉|2 > 98% in
Fig. 4(a).

VI. DISCUSSIONS

We can also investigate the maximally possible Pauli
X gate fidelity of our scheme through numerical sim-
ulation. Figure 5 shows the TDSE calculation for F =
|〈ψin|X̂†Û (A∗,�∗)|ψin〉|2, where the gate fidelity F is defined
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FIG. 3. (a–b) Experimental results for the population of 5S1/2,F = 2 states after (a) σ+ and (b) π transitions as a function of pulse-area A
and detuning �/2π . (c) Transition probability of the clock-state qubit (mF = 0 only), retrieved using (a), (b), and Eq. (3). (d–f) TDSE results
corresponding to (a–c).

as an average over the set of all input states [32], i.e., |ψin〉 ∈
{|0clock〉,|1clock〉,|+〉,(|0clock〉 + i|1clock〉)/

√
2}. The given re-

sult is obtained through varying the pulse duration (x axis)
while the optimal pulse-area and detuning, A∗ and �∗, are
chosen to maximize F at each pulse duration. The region
of high fidelity is identified between about 285 and 690 fs
(region II). When the pulse duration is too short (region I),
transitions to other states (mainly 5P3/2, 5D3/2, and 5D5/2)
are not negligible. When the pulse duration is too long (region
III), nuclear motion is no longer frozen during the interaction

and, thus, additional Z rotations by hyperfine evolution cause
state mixing of the qubit. Within the subpicosecond time scale
(region II, shaded in Fig. 5), our scheme theoretically predicts
a high fidelity of over 99.99%.

The universal single qubit control requires an extra noncom-
muting rotation gate besides X rotations [33]. If the timescale is
limited in the subpicosecond range, where the interaction about
the nuclear spin degree of freedom is frozen, the possible gates
are only X gates and not generalized to Y or Z gates. This can
be understood based on entanglement arguments about local
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FIG. 4. (a) Qubit transition probability, experimentally retrieved for only clock state contribution (green diamonds), and the corresponding
calculation results (blue solid line) plotted as a function of detuning �/2π . (b) Measured X-rotation angles (blue diamonds) and full calculation
(red solid line) compared to the two-level model calculation (x-axis). The error bars indicate the standard error of mean. The experimental data
are from the complete population return points (dotted line) in Figs. 3(c) and 3(f).
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FIG. 5. Pauli X gate fidelity F vs. laser-pulse duration: The
population transfer |〈0clock|Û (A,�)|1clock〉|2 between hyperfine clock
states is optimized with pulse-area A and detuning �, as varying
the pulse duration. At the optimal points A∗ and �∗ for each pulse
duration (x axis, log scale), the numerical calculation results of the X̂

gate fidelityF = |〈ψin|X̂†Û (A∗,�∗)|ψin〉|2 are shown, and the region
with over 0.9999 fidelity is shaded.

unitary operations [22]. An arbitrary qubit rotation R̂n̂(θ )|ψ〉
is given by

R̂n̂(θ ) =
(

cos θ
2 − inz sin θ

2 −(ny + inx) sin θ
2

(ny − inx) sin θ
2 cos θ

2 + inz sin θ
2

)
, (12)

where n̂ = (nx,ny,nz) and θ are the rotational axis and angle,
respectively. Considering the fact that the bipartite entangle-
ment between electronic and nuclear degrees of freedom is
preserved during a subpicosecond optical cyclic evolution, we
calculate the entanglement entropy [34] of the rotated state

E[Rn̂(θ )|ψclock〉] = −P+ log2 P+ − P− log2 P−, (13)

with P+ = 1
2 |(α + β)(cos θ

2 − inx sin θ
2 ) + (α − β)(ny − inz)

sin θ
2 |2 and P− = 1

2 |(α − β)(cos θ
2 + inx sin θ

2 ) − (α + β)
(ny + inz) sin θ

2 |2/2. The condition, necessary for preserved
entanglement, is obtained as nx = 1 and ny = nz = 0 for
all θ . Thus, the only gate available for subpicosecond
optical interactions is the X rotation, Rx̂(θ ). To achieve
universal single qubit controls, it is necessary to use the
hyperfine interaction in a longer time scale. The hyperfine
interaction is properly described in the clock-state qubit basis
{|0′

clock〉,|1′
clock〉} in the interaction picture, where |0′

clock〉 =
|0clock〉, |1′

clock〉 = e−iωhf t |1clock〉, and ωhf is the ground
hyperfine splitting (about 2π × 6.8 GHz for 87Rb). Then,
the ground fine-structure states |±〉 = |0′

clock〉 ± eiωhf t |1′
clock〉

are no longer eigenstates of the Pauli X operator in general,
and become the eigenstates of the Pauli Y operator after the
quarter hyperfine period, π/2ωhf . Therefore, the time-delayed
X rotation becomes a Y rotation, allowing two distinct
single-qubit rotations sufficient for general single-qubit
rotations. This method could be implemented with pulse
shaping technique [35] or optical frequency combs [36].

An overall speedup of a particular quantum computation
scheme can be estimated using Amdahl’s law [37]. The
speedup S from improving a part (single qubit gates in our
scheme) of the whole system [universal gate set = single qubit
gates + controlled-NOT (CNOT)] is theoretically given by

S = 1

(1 − rp) + rp/n
, (14)

where rp is the ratio of the improved part in the whole system
and n is the speedup of the part. Our scheme suggests an
improved operation speed for all single qubit gates, by a
large factor (>103) compared to the conventional approaches
[11–20], while there is no improvement for CNOT. All quantum
algorithms can be decomposed by two-qubit controlled unitary
operations �(Û ) = |0〉〈0| ⊗ 1̂ + |1〉〈1| ⊗ Û which consist of
three single-qubit gates and two CNOTs [38]. Under the assump-
tion of equal appearance of these five gates, we get the ratio of
single-qubit gate duration rp = 15/16 and 3/23, respectively,
microwave [11–14] and Raman [16–18] schemes in Rydberg-
based neutral atom platforms [10,39–42]. Also, rp = 3/23 for
ion trap platforms, where two-qubit gate is typically over an
order slower than single-qubit gate [15,19,20,43]. Then, it is
expected that our scheme achieves about 1500% (microwave)
and 15% (Raman) of overall speedup improvement in neutral
atoms, and 15% in ions, respectively.

VII. CONCLUSION

In summary, we demonstrate a population transfer between
atomic hyperfine states using a single laser-pulse in the
femtosecond timescale. The reason how in our scheme an
optical pulse with a few THz bandwidth can control the qubit
system with an energy splitting of a few GHz (which seem-
ingly violates the quantum speed-limit theorem [44]) is the
selection rule imposed to subpicosecond optical interactions
that negligibly change the nuclear degree of freedom. Utilizing
the geometric and dynamic phases induced to the hyperfine
states during the subpicosecond optical Rabi oscillation, we
can conclude that X rotations of atomic clock states can be
implemented. Alternatively, more direct demonstrations such
as pure state preparation, mF -selective measurements in a
trapped single-atom system may be possible.
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APPENDIX: DERIVATION OF AmF , BmF , EmF

The subpicosecond optical transition of the rubidium atoms
from an initial F = 1 ground hyperfine sublevel to the F = 2
sublevels is obtained. The initial and final states are written as
a superposition of the fine-structure magnetic sublevels, given,
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respectively, by

|5S1/2,F = 1,mF 〉 =
∑

mJ = ±1/2

C
1
2 , 3

2 ,1
mJ ,mF −mJ

|5S1/2,mJ 〉|I = 3/2,mF − mJ 〉 ≡ |1,mF 〉, (A1)

|5S1/2,F = 2,m′′
F 〉 =

∑
m′′

J = ±1/2

C
1
2 , 3

2 ,2
m′′

J ,m′′
F −m′′

J
|5S1/2,m

′′
J 〉|I = 3/2,m′′

F − m′′
J 〉 ≡ |2,m′′

F 〉. (A2)

1. σ polarization case

The transition probability P (A,�; σ+,mF ) is given as the first line in Eq. (3), which is the sum of the direct optical transition
from |1,mF 〉 to |2,m′′

F 〉 and the spontaneous emission from |5P1/2,m
′
J 〉 to |2,m′′

F 〉, i.e.,

P (A,�; σ+,mF ) =
∑

m′′
F =±2,±1,0

∣∣〈2,m′′
F

∣∣Û |1,mF 〉∣∣2 +
∑

m′
J = ±1/2,

m′
I = ±3/2,±1/2

Pse(m′
J ; mF ,σ+)

∣∣〈5P1/2,m
′
J

∣∣〈I = 3/2,m′
I

∣∣Û |1,mF 〉∣∣2

= ∣∣〈2,mF |Û |1,mF 〉∣∣2 + Pse(1/2; mF ,σ+)
∣∣〈5P1/2,1/2

∣∣〈I = 3/2,mF + 1/2|Û |1,mF 〉∣∣2
. (A3)

The first term (the direct optical transition) is obtained as |〈2,mF |Û |1,mF 〉|2 because

〈2,m′′
F |Û |1,mF 〉 =

∑
m′′

J = ±1/2,

mJ = ±1/2

C
1
2 , 3

2 ,2
mJ ,m′′

F −m′′
J
C

1
2 , 3

2 ,1
mJ ,mF −mJ

〈
5S1/2,m

′′
J

∣∣Û ∣∣5S1/2,mJ

〉〈I = 3/2,m′′
F − m′′

J |I = 3/2,mF − mJ 〉

=
∑

m′′
J = ±1/2,

mJ = ±1/2

C
1
2 , 3

2 ,2
mJ ,m′′

F −m′′
J
C

1
2 , 3

2 ,1
mJ ,mF −mJ

〈5S1/2,mJ |Û |5S1/2,mJ 〉δm′′
J ,mJ

〈I = 3/2,m′′
F − mJ |I = 3/2,mF − mJ 〉

= 〈2,mF |Û |1,mF 〉δm′′
F ,mF

, (A4)

where we use the facts Û = ÛJ ⊗ 1̂I (independent of I ) and the dipole selection rule 〈5S1/2,m
′′
J |Û |5S1/2,mJ 〉 =

〈5S1/2,mJ |Û |5S1/2,mJ 〉δm′′
J ,mJ

. Further, Eq. (A4) can be simplified as

〈2,mF |Û (A,�; σ+)|1,mF 〉 = C
1
2 , 3

2 ,2
1
2 ,mF − 1

2
C

1
2 , 3

2 ,1
1
2 ,mF − 1

2
+ C

1
2 , 3

2 ,2

− 1
2 ,mF + 1

2
C

1
2 , 3

2 ,1

− 1
2 ,mF + 1

2
〈5S1/2,−1/2|Û |5S1/2,−1/2〉, (A5)

because of the selection rule 〈5S1/2,1/2|Û |5S1/2,1/2〉 = 1. So the direct transition probability, the first term in Eq. (A3), can be
obtained in the mJ basis as

|〈2,mF |Û |1,mF 〉|2 = AmF
|1 − 〈5S1/2,−1/2|Û |5S1/2,−1/2〉|2, (A6)

where the Clebsch-Gordon relation C
1
2 , 3

2 ,2

− 1
2 ,mF + 1

2
C

1
2 , 3

2 ,1

− 1
2 ,mF + 1

2
= −C

1
2 , 3

2 ,2
1
2 ,mF − 1

2
C

1
2 , 3

2 ,1
1
2 ,mF − 1

2
is used to get

AmF
=

∣∣∣C 1
2 , 3

2 ,2
1
2 ,mF − 1

2
C

1
2 , 3

2 ,1
1
2 ,mF − 1

2

∣∣∣2
=

∣∣∣C 1
2 , 3

2 ,2

− 1
2 ,mF + 1

2
C

1
2 , 3

2 ,1

− 1
2 ,mF + 1

2

∣∣∣2
. (A7)

Similarly, the second term in Eq. (A3) (the spontaneous emission) is obtained with the selection rule 〈5P1/2,m
′
J |Û |5S1/2,mJ 〉 =

〈5P1/2,1/2|Û |5S1/2,−1/2〉δm′
J ,1/2δmJ ,−1/2 to get

〈5P1/2,m
′
J |〈I = 3/2,m′

I |Û |1,mF 〉
=

∑
mJ = ±1/2

C
1
2 , 3

2 ,1
mJ ,mF −mJ

〈
5P1/2,m

′
J

∣∣Û ∣∣5S1/2,mJ

〉〈I = 3/2,m′
I |I = 3/2,mF − mJ 〉

=
∑

mJ = ±1/2

C
1
2 , 3

2 ,1
mJ ,mF −mJ

〈
5P1/2,1/2

∣∣Û ∣∣5S1/2,−1/2
〉
δm′

J ,1/2δmJ ,−1/2〈I = 3/2,m′
I |I = 3/2,mF − mJ 〉

= 〈5P1/2,1/2|〈I = 3/2,mF + 1/2|Û |1,mF 〉δm′
J ,1/2δm′

I ,mF +1/2, (A8)

and it is further simplified using Eq. (A1) as

Pse(1/2; σ+,mF )|〈5P1/2,1/2|〈I = 3/2,mF + 1/2|Û |1,mF 〉|2

= Pse(1/2; σ+,mF )C
1
2 , 3

2 ,1

− 1
2 ,mF + 1

2
|〈5P1/2,1/2|Û |5S1/2,−1/2〉|2. (A9)
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Pse(1/2; σ+,mF ) in Eq. (A9) is the conditional probability of the spontaneous emission (from |5P1/2,1/2〉 to all ground
F = 2 sublevels) if the initial state is |1,mF 〉. Since the excited fine-structure state, |5P1/2,1/2〉|I = 3/2,mF + 1/2〉 =∑

F ′=1,2 C
1
2 , 3

2 ,F ′
1
2 ,mF + 1

2
|F ′,mF + 1〉, decays to F = 1 or F = 2 with the rate proportional to the square of the transition dipole moment

|〈F,mF |erq |F ′,m′
F 〉|2, the conditional probability of the spontaneous emission to F = 2 is given by

Pse(1/2; σ+,mF ) =

∑
F ′ = 1,2,

q = 0, ± 1

∣∣∣C 1
2 , 3

2 ,F ′
1
2 ,mF + 1

2

∣∣∣2
|〈2,mF + 1 + q|erq |F ′,mF + 1〉|2

∑
F = 1,2,

F ′ = 1,2,

q = 0,±1

∣∣∣C 1
2 , 3

2 ,F ′
1
2 ,mF + 1

2

∣∣∣2
|〈F,mF + 1 + q|erq |F ′,mF + 1〉|2

=
∑

F ′=1,2,q=0,±1

∣∣∣C 1
2 , 3

2 ,F ′
1
2 ,mF + 1

2
D

F ′,1,2
mF +1,q

∣∣∣2
, (A10)

where the denominator is the sum of the decays to F = 1 and F = 2 (via F ′ = 1,2), while the numerator is only to F = 2. The
transition dipole moment is defined between J = 1/2 and J ′ = 1/2 levels by

〈F,mF |erq |F ′,m′
F 〉 = 〈J‖er‖J ′〉(−1)F

′+ 1
2 +1+ID

F ′,1,F

m′
F ,q

, (A11)

where D
j1,j2,j3
m1,m2 = √

2(2j1 + 1){1/2 1/2 1
j1 j3 3/2}Cj1,j2,j3

m1,m2 with Wigner 6-j symbol expressed by curly brackets, and q is the

polarization index of 0, ±1 for π , σ±, respectively. Therefore, BmF
, defined in Eq. (3), is obtained as

BmF
=

∑
F ′=1,2,q=0,±1

∣∣∣C 1
2 , 3

2 ,F ′
1
2 ,mF + 1

2
D

F ′,1,2
mF +1,q

∣∣∣2∣∣∣C 1
2 , 3

2 ,1

− 1
2 ,mF + 1

2

∣∣∣2
. (A12)

2. π polarization case

The transition probability for the π polarization is given by

P (A,�; π,mF ) =
∑

m′′
F =±2±1,0

|〈2,m′′
F |Û |1,mF 〉|2 +

∑
m′

J = ±1/2,

m′
I = ±3/2,±1/2

Pse(m′
J ; mF ,π )|〈5P1/2,m

′
J |〈I = 3/2,m′

I |Û |1,mF 〉|2. (A13)

The first term (the direct transition) vanishes as

〈2,m′′
F |Û (A,�; π )|1,mF 〉

= C
1
2 , 3

2 ,2
1
2 ,mF − 1

2
C

1
2 , 3

2 ,1
1
2 ,mF − 1

2
〈5S1/2,1/2|Û |5S1/2,1/2〉 + C

1
2 , 3

2 ,2

− 1
2 ,mF + 1

2
C

1
2 , 3

2 ,1

− 1
2 ,mF + 1

2
〈5S1/2,−1/2|Û |5S1/2,−1/2〉 = 0, (A14)

due to the facts 〈5S1/2,±1/2|Û |5S1/2, ∓ 1/2〉 = 0 (selection rules) and 〈5S1/2,1/2|Û |5S1/2,1/2〉 = 〈5S1/2,−1/2|Û |5S1/2,−1/2〉
(the same Rabi oscillation) with the Clebsch-Gordan relation. Likewise, using the selection rules and the relation
|〈5P1/2,−1/2|Û |5S1/2,−1/2〉| = |〈5P1/2,1/2|Û |5S1/2,1/2〉|, Eq. (A13) becomes Eq. (6). The remaining procedure to obtain
EmF

is similar to that for BmF
, and finally we get

EmF
=

∑
F ′ = 1,2,q = 0,±1,

mJ = ± 1
2

∣∣∣C 1
2 , 3

2 ,F ′

mJ ,mF −mJ
DF ′,1,2

mF ,q

∣∣∣2∣∣∣C 1
2 , 3

2 ,1
mJ ,mF −mJ

∣∣∣2
. (A15)
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