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Quantum interference control of a four-level diamond-configuration quantum system
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We investigate coherent control of the two-photon transition pathways of a four-level atomic system in a
diamond configuration. When an ultrashort laser pulse interacts with this system in the ground state 5S1/2

of rubidium, the two-photon transition probability amplitude of 5D3/2 is obtained by a summation of all
possible resonant and nonresonant two-photon transition probability amplitudes via 5P1/2 and 5P3/2. Second-order
perturbation theory predicts that the maximal constructive interference of the transition probability amplitudes
occurs when the phases of eight different spectrum blocks satisfy four different phase relations. Experiments
carried out with spectrally phase-coded laser pulses show good agreement with the theoretical prediction.
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I. INTRODUCTION

Coherent control of light-matter interactions provides a
quantum-mechanical means to control the dynamics of a
quantum system [1,2]. In particular, coherent control of the
broad spectral components of ultrashort laser pulses and
their coherent interaction with quantum systems enables
the implementation of on-demand quantum interferences
among multiple transition passages of the system. Examples
of coherent control performed with shaped ultrashort laser
pulses are found in experiments [3–10]. Practically important
demonstrations of adaptive control, for instance, molecular
population transfers and molecular photofragmentations, can
be found in [3,4]. The control methods with analytically
designed laser pulses have also drawn keen interest among
many researchers [7–12].

One of the simplest examples considers a three-level atom
in an energy-ladder configuration. When an ultrashort laser
pulse interacts with the atom, the second-order time-dependent
perturbation theory predicts that the two-photon transition
probability amplitude from the ground state |g〉 to the final state
|f 〉 via the intermediate state |i〉 is given in the perturbative
interaction regime by

cfg(t) = −μf iμig

h̄2

∫ t

−∞
dt1

∫ t1

−∞
dt2

×E(t1)E(t2)eiωf i t1+iωig t2 , (1)

where μf i and μig are the dipole moments for the transitions
from |i〉 to |f 〉 and from |g〉 to |i〉, respectively, E(t) represents
the electric field of the laser pulse, and ωij is the frequency
difference between energy levels i and j . The resulting solution
at t → ∞ can be written in the spectral domain as [8]

cfg = −π
μf iμig

h̄2 E(ωig)E(ωf i)

+ i
μf iμig

h̄2 P
∫ ∞

−∞

E(ω)E(ωfg − ω)

ωig − ω
dω, (2)

where E(ω) is the electric field in the frequency domain, i.e.,
the Fourier transform of E(t), and P denotes the Cauchy
principal value. Using a properly shaped spectral phase
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function for the laser pulse can enhance the net two-photon
transition compared to the result with a transform-limited pulse
[8]. The spectral-phase-function solution of a femtosecond
pulse, which maximizes the net two-photon transition in the
three-level ladder-configuration system, is known as φ(ω) = 0,
π/2, and 0 for ω ∈ (−∞,ωig), (ωig,ωf i), and (ωf i, + ∞),
respectively [8]. Likewise, for a three-level V-configuration
system, the solution is known as φ(ω) = 0, 3π/2, and 0
for ω ∈ (−∞,ωig), (ωig,ωf i), and (ωf i, + ∞), respectively
[13,14].

In this paper, we investigate a four-level diamond-
configuration system that comprises a ground state |g〉, two
intermediate states |a〉 and |b〉, and a final state |f 〉. In
the perturbative interaction regime, the two-photon transition
probability amplitude is given by the summation of the two
quantum paths via each intermediate state and is written as

cfg = −π
∑
i=a,b

μf iμig

h̄2 E(ωig)E(ωf i)

+ i
∑
i=a,b

μf iμig

h̄2 P
∫ ∞

−∞

E(ω)E(ωfg − ω)

ωig − ω
dω. (3)

To maximize the given two-photon transition, the two non-
resonant transition contributions in the second term in Eq. (3)
need to constructively interfere with each other and with the
two resonant transitions. In Secs. II and III, we describe a
theoretical argument for the spectral-phase-function solution.
We provide the experimental demonstration and results in
Secs. IV and V and the conclusion in Sec. VI.

II. THEORETICAL CONSIDERATION

The diamond-configuration system comprises the four low-
lying energy states, 5S1/2, 5P1/2, 5P3/2, and 5D3/2, of atomic
rubidium [denoted by |g〉, |a〉, |b〉, and |f 〉, respectively; see
Fig. 1(a)]. We consider the hyperfine Zeeman sublevels in
Sec. III.

To solve the maximal interference problem for the two-
photon transition, we decompose the net transition probability
amplitude in Eq. (3) into spectral subsets. First, we denote the
resonant and nonresonant two-photon contributions as

cfg =
∑
i=a,b

cr
fg,i +

∑
i=a,b

cnr
fg,i = cr

fg + cnr
fg. (4)
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FIG. 1. (Color online) (a) Rubidium energy level configuration
[15]. Four states, 5S1/2, 5P1/2, 5P3/2, and 5D3/2, form a diamond
system, while the two-photon transition to 5D5/2 (gray) via 5P3/2

forms a ladder system. (b) The spectrum blocks described in Sec. II
and the schematic shape of f (ω), the integrand of cnr

fg . (c) Schematic
experimental setup.

Each resonant term, cr
fg,i , is solely contributed by the two-

photon resonant spectral components of the laser pulse, so the
amplitude of cr

fg,i is not affected by the spectral phase function.
However, the nonresonant terms, cnr

fg,i , are integrated over the
whole spectral range, and therefore, they sensitively respond
to the spectral phase function.

Let us assume that the spectral phase of the laser pulse is
constant over the whole spectrum. For convenience, we define

f (ω), the integrand of the total nonresonant part cnr
fg , as

f (ω) =
∑
i=a,b

μf iμig

h̄2

E(ω)E(ωfg − ω)

ωig − ω
, (5)

where the imaginary unit i is omitted from f (ω) because the
relative phase between the resonant and nonresonant parts is
not important here. Then, f (ω) changes its phase at resonant
frequency ωig due to the change in the sign of the denominator
ωig − ω across the resonance for each pathway, |g〉 → |a〉 →
|f 〉 and |g〉 → |b〉 → |f 〉. The interference between the two
pathways introduces another critical frequency, ωc, where
f (ω) changes its sign [see Fig. 1(b)]. ωc is located between
ωag and ωbg and is defined as

ωc = kωag + ωbg

k + 1
, k = μf bμbg

μf aμag

. (6)

Finally, a photon pair that makes up a two-photon transition
satisfies the frequency-sum relation, ωfg = ω1 + ω2, which
appears in the numerator of f (ω), E(ω)E(ωfg − ω). Because
the spectral components are symmetrically added around
ωfg/2, the spectral boundaries are also symmetric around
ωfg/2. Hence, there are seven spectral boundaries, ωag , ωc,
ωbg , ωfg/2, ωf b, ωfg − ωc, and ωf a , making eight spectrum
blocks divided by the boundaries. Within each block, the phase
of f (ω) is the same if the given spectral block has a constant
phase.

To be more specific, we denote the eight spectrum
blocks as A = (−∞,ωag), B = (ωag,ωc), C = (ωc,ωbg), D =
(ωbg,ωfg/2), E = (ωfg/2,ωf b), F = (ωf b,ωfg − ωc), G =
(ωfg − ωc,ωf a), and H = (ωf a,∞) and also define the
positive-definite functions α(ω) and β(ω) as

α(ω) = μf aμag

h̄2

|E(ω)E(ωfg − ω)|
|ωag − ω| , β(ω) = μf bμbg

h̄2

|E(ω)E(ωfg − ω)|
|ωbg − ω| . (7)

Then, the nonresonant part cnr
fg in Eq. (4) is given as

−icnr
fg =

[∫
A

α(ω)dω +
∫

A

β(ω)dω −
∫

H

α(ω)dω −
∫

H

β(ω)dω

]
eiφAeiφH

−
[∫

B

α(ω)dω −
∫

B

β(ω)dω +
∫

G

α(ω)dω +
∫

G

β(ω)dω

]
eiφB eiφG

+
[∫

C

β(ω)dω −
∫

C

α(ω)dω −
∫

F

α(ω)dω −
∫

F

β(ω)dω

]
eiφC eiφF

−
[∫

D

β(ω)dω +
∫

D

α(ω)dω +
∫

E

α(ω)dω +
∫

E

β(ω)dω

]
eiφDeiφE , (8)

where φi denotes the phase of spectrum block i. Note that
the first term in each square bracket in Eq. (8) indicates the
dominant term in each spectrum block, as the function α(ω) or
β(ω) in Eq. (7) shows singular behavior as ω approaches ωag

or ωbg , respectively.
As found in Eq. (8), not all of the phases {φA,φB, . . . ,φH }

are independently controlled. Therefore, we use the first four
phases, A to D, and leave the other four phases, E to H , as
zero. By substituting the spectrum of the laser pulse, Eq. (8)

becomes

cnr
fg = i [cAeiφA − cBeiφB + cCeiφC − cDeiφD ], (9)

where cj for j ∈ {A,B,C,D} is the sum of the integrals in each
square bracket of Eq. (8), labeled with its dominant spectrum
block j . As all the cj ’s are positive, the maximal cnr

fg is obtained
when the following relations are satisfied:

φA = φC = φB + π = φD + π. (10)
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III. HYPERFINE TRANSITIONS

The four energy levels of atomic rubidium have a total of
12 hyperfine levels, F = 2,3 for 5S1/2, F ′ = 2,3 for 5P1/2,
F ′ = 1,2,3,4 for 5P3/2, and F ′′ = 1,2,3,4 for 5D3/2. To
calculate the transition probability amplitude in Eq. (3), we
need to consider all of the individual hyperfine transitions.
The hyperfine transition dipole moments are calculated us-
ing the reduction formulas [16–18], 〈F,mF |erq |F ′,mF ′ 〉 =
〈F ||er||F ′〉〈F,mF |F ′,1,mF ′ ,q〉 and

〈F ||er||F ′〉 = 〈JIF ||er||J ′I ′F ′〉

= 〈J ||er||J ′〉(−1)F
′+J+1+I

{
J J ′ 1

F ′ F I

}
, (11)

where the nuclear spin I = 5/2 for 85Rb. We limit our
calculation to �mF = 0 as our experiment uses linearly
polarized light. We also assume that there is no external
magnetic field, i.e., all Zeeman sublevels are degenerate.
Taking into account the hyperfine splitting, the transition
probability amplitude from a ground sublevel (F , mF ) to a
final sublevel (F ′′, mF ) is described by

cF ′′F,mF
= −π

√
PF,mF

∑
J ′,F ′

J ′

μF ′′F ′
J ′ ,mF

μF ′
J ′F,mF

h̄2

×E(ωF ′′F ′
J ′ )E(ωF ′

J ′F )

+ i
√

PF,mF

∑
J ′,F ′

J ′

μF ′′F ′
J ′ ,mF

μF ′
J ′F,mF

h̄2

× P
∫ ∞

−∞

E(ω)E(ωF ′′F − ω)

ωF ′
J ′F − ω

dω, (12)

where PF,mF
is the statistical probability of the ground

sublevels (F,mF ) and μF ′
J ′F,mF

is the transition dipole moment
for (F,mF ) → (F ′

J ′ ,mF ). F ′
J ′ indicates the hyperfine state F ′

of J ′, and the J ′ summation denotes the sum of all possible
two-photon transitions via 5P1/2 and 5P3/2. Then, the resulting
transition probability from 5S1/2 to 5D3/2 is given by

P5S1/2→5D3/2 =
∑

F ′′,F,mF

|cF ′′F,mF
|2. (13)

However, as E(ω) is slowly varying and the hyperfine sublevels
are nearly energy degenerate for far-off resonant components,
Eq. (12) can be simplified as

cF ′′F,mF
≈ −π

√
PF,mF

∑
i=a,b

μ
(2)
F ′′F,mF ,J ′(i)

h̄2 E(ωf i)E(ωig)

+ i
√

PF,mF

∑
i=a,b

μ
(2)
F ′′F,mF ,J ′(i)

h̄2

∫
|ω−ωig |	0

× E(ω)E(ωfg − ω)

ωig − ω
dω + S, (14)

where μ
(2)
F ′′F,mF ,J ′(i) = ∑

F ′
J ′ (i)

μF ′′F ′
J ′ (i),mF

μF ′
J ′ (i)F,mF

for i = a,b

is the sum of two-photon transition dipole moments via all
possible J ′(i) states. Here, S is the spectral integral near
the hyperfine resonance region, which remains constant in

our experiments because of the limited spectral resolution.
Strikingly, the numerical calculation finds the fixed ratio
between μ

(2)
F ′′F,mF ,J ′(a) and μ

(2)
F ′′F,mF ,J ′(b), or

μ
(2)
F ′′F,mF ,J ′=3/2

μ
(2)
F ′′F,mF ,J ′=1/2

=
√

3

5
, (15)

the result of which is also independent of mF . Therefore,
Eq. (14) is simply reduced to Eq. (3), and even if hyperfine
transitions are considered, ωc in Eq. (6) is a constant for all
possible F and F ′′ pairs.

IV. EXPERIMENTAL DESCRIPTION

For the experiment, broadband laser pulses were produced
by a Ti:sapphire mode-locked laser oscillator operating at
a repetition rate of 80 MHz and were then spectrally pro-
grammed by a spatial light modulator (SLM) [see Fig. 1(c)]
[19]. The laser spectrum was centered at 782 nm, close to
the two-photon resonant wavelength of 778 nm. The SLM
with 128 liquid-crystal pixels was located in the Fourier plane
of the 4f geometry zero-dispersion Martinez stretcher [20]
with a pair of cylindrical lenses (f = 100 mm) and a pair of
gratings (1200/mm). The spectral resolution per pixel for a
liquid crystal cell unit 97 μm wide with 3-μm spacing was
0.5 nm, so the spectral region of each rubidium resonant level
was excluded from the phase shaping. The shaped laser pulses,
with energy up to 0.5 nJ, were focused by a lens with a
focal length of 75 mm inside the rubidium vapor cell, and
the fluorescence signal at 420 nm via 6P was collected by
a photomultiplier tube. The collected signal did not exclude
the two-photon transition to 5D5/2 due to the small splitting
between the two 5D states. However, the ladder transition to
5D5/2, which is only sensitive to the spectral blocks C and
D, did not interfere with the diamond transitions to 5D3/2 in
the perturbative interaction regime. A brief estimation of the
pulse area

∫ ∞
−∞ μA(t)/h̄dt ∼ 0.1, where A(t) is the electric

field envelope, calculated with an estimated peak electric field
of 5 MV/m and pulse duration of 100 fs, confirms that the
interaction is in the perturbative regime [21]. To observe the
quantum interference between the two excitation passages,
|g〉 → |a〉 → |f 〉 and |g〉 → |b〉 → |f 〉, laser pulses with a
wide spectral width, about 45 nm FWHM, were required due
to the energy difference (15 nm) between |a〉 and |b〉.

Phase-step scanning. Before proceeding to the quantum
interference experiment, we performed a phase-step scanning
experiment. The laser pulse was spectrally shaped with a phase
function φ(λ) = π	(λ − λs), where 	(λ) is the Heaviside
step function and λs changes through the laser spectrum. As
shown in Fig. 2(a), the π -phase step was swept to calibrate the
spectral position of the SLM pixels. When the π -phase step
was located at a resonant frequency, it inverted the base sign of
the nonresonant transition probability amplitude in Eq. (3), and
part of the destructive interference was removed. As a result,
at each resonant frequency position, the two-photon transition
probability increased, and a sharp peak occurred. Figure 2(b)
shows the experimental results of the phase-step sweeping and
identifies the rubidium resonant-level locations in the SLM.
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FIG. 2. (Color online) Phase-step scanning experiment: (a) Laser
spectrum after the SLM (solid line) and phase-step function (dashed
line), where the spectral tails were cut for better spectral resolution.
(b) The fluorescence signal (solid line) obtained by sweeping the
spectral π -phase step, overlaid with the numerical calculation (dashed
line). Each peak is labeled with the corresponding resonant frequency.

V. RESULTS

The phase programming of spectrum blocks aims to control
the interference between the two passages of rubidium two-
photon transition from |g〉 to |f 〉. Assume that the laser pulse
has a constant phase over the spectrum. Then, as described in
Eq. (9), destructive interference occurs due to the base phase
differences in the transition probability amplitude components.
We can represent this behavior in a vector diagram, as in
Fig. 3(a). The phases of the resonant and nonresonant transition
probability amplitude components are shown as vectors, with
the proper labeling introduced in Eq. (9). For convenience, we
define

cnr
+ = cAeiφA + cCeiφC , cnr

− = cBeiφC + cDeiφD . (16)

A + C phase rotation. The first experiment considered the
interference control of A and C with respect to B + D and the
resonant components. The vector diagram in Fig. 3(b) shows
the schematics of this experiment, where we applied a −π/2
to 2π phase to A and C independently with π/10 steps. As the
phase increased, the nonresonant components corresponding
to A and C rotated counterclockwise, and the initial destructive
interference was gradually removed. Figure 3(d) shows the
result. As the phases of A and C respectively reached π/2, the
two-photon transition probability increased and a maximum
occurred. Note that the maximum point shifted toward π in
both the φA and φC directions because of the other nonresonant
components B and D, in which the phase differences with
respect to A and C are inherently π .

B + C phase rotation. The second experiment used the
phases of B and C to control the interference with respect to
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TABLE I. Phase function solution of the four-level diamond-configuration system.

Block

A B C D E F G H

ω (−∞,ωag) (ωag,ωc) (ωc,ωbg) (ωbg,
ωfg

2 ) (
ωfg

2 ,ωf b) (ωf b,ωfg − ωc) (ωfg − ωc,ωf a) (ωf a,∞)
φ(ω) π

2 − φH − π

2 − φG
π

2 − φF − π

2 − φE φE φF φG φH

A + D and the resonant component. The vector diagram in
Fig. 3(c) describes the concept of this experiment. For this, we
applied a −π/2 to 2π phase to B and C independently with
π/10 steps. Unlike in the previous case of A and C control, B

and C were initially in opposite directions from each other, or
with the phase difference of π . Hence, the maximal occurred
near φB = π/2 and φC = 3π/2, as shown in Fig. 3(e).

AC + BD phase rotation. Finally, we applied interference
control to all nonresonant components with respect to the
resonant component. Direct phase shaping of a resonant
frequency component was not available via our SLM due to
the limit of the frequency resolution. Therefore, we controlled
the nonresonant components to align them with the resonant
one. In this experiment, θ , the phase of A and C, which has
an inherent phase of π/2, was simultaneously varied from 0
to 2π , while the phase of B and D, which has an inherent
phase of 3π/2, was varied from 0 to −2π , i.e., −θ . Then, as
described in Fig. 4, the nonresonant component cnr

+ rotated
counterclockwise, and cnr

− rotated clockwise. After θ = π/2
rotation, the two nonresonant components and the resonant
component were all aligned, and the maximal transition
probability was achieved. Another local maximum occurred
at θ = 3π/2 as a consequence of the antiparallel resonant and
nonresonant components. Figure 4 shows the experimental
results of the interference control. The data were fitted with
the empirical formula

cfg = −r + xei(θ+π/2) + yei(−θ−π/2), (17)

where r is |cr
fg|, x is |cnr

+ |, y is |cnr
− |, and θ is the phase applied

to the spectrum blocks. The result confirms the phase function
solution summarized in Table I, that A and C should be π/2
phase shifted from resonant transitions and π phase shifted
from B and D.

VI. CONCLUSION

In summary, we considered the coherent control of the four-
level (5S1/2, 5P1/2, 5P3/2, and 5D3/2) diamond-configuration
system of atomic rubidium. The second-order perturbation
theory predicts that the phase function solution satisfying
the maximal constructive interference of the two two-photon
transition pathways from 5S1/2 to 5D3/2 is obtained as four
relations of φA + φH = π/2, φB + φG = −π/2, φC + φF =
π/2, and φD + φE = −π/2, where φA, φB, . . . , and φH

are the uniform phases of the eight spectrum blocks given
in Sec. II. Experiments performed with spectrally phase-
shaped femtosecond laser pulses confirmed the obtained phase
function solution.
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