
Qubit leakage suppression by ultrafast
composite pulses

HANLAE JO, YUNHEUNG SONG, AND JAEWOOK AHN*

Department of Physics, KAIST, Daejeon 305-701, South Korea
*jwahn@kaist.ac.kr
http:uqol.kaist.ac.kr

Abstract: The leakage suppression problem is considered for a three-level ladder-type quantum
system, in which the first two levels are the qubit system and the third is the leakage state
weakly coupled to the qubit system. We show that two (three) phase- and amplitude-controlled
pulses are sufficient for arbitrary qubit controls from the ground (an arbitrary) initial state,
with leakage suppressed up to the first order of perturbation without additional pulse-area cost.
A proof-of-principle experiment was performed with shaped ultrafast optical pulses and cold
rubidium atoms, and the result shows a good agreement with the theory.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum two-level systems are the basic building blocks in quantum information science and
engineering. However, many physical systems that are used to store and process quantum
information are not perfect two-level systems. There are often leakage states weakly coupled
to the two-level qubit systems, in atom and ion systems [1–3], superconducting qubits [4, 5],
and quantum dots [6]. Leakage transitions to unwanted energy levels are often a critical source
of control errors in physical implementations of qubit logic operations. Pulse shaping and
optimal control theories have been developed to deal with the leakages and to improve gate
operations [7–12]. One example is developed through analytic waveform designing, known
as derivative removal by adiabatic gate (DRAG) [4, 13, 14], which is in particular successful
for superconducting qubits [5, 15]. Another is the multiple-pulse approach known as Majorana
decomposition [16, 17], recently proposed and experimentally demonstrated [18].
In this paper, we consider short-pulse controls to remove the leakage. Short-pulse control

schemes are useful for quantum systems with a limited coherence time. Quantum dots, for
example, have a short dephasing time (T2) ranging from 100 ps to ns [19, 20], and pulses
considerably shorter in time than the coherence time have broad spectrum often causing inevitable
leakages. However, neither the DRAG nor Majorana decomposition methods are suitable for
ultrafast-pulse based control schemes: the former requires complex waveforms, and the latter
works for specific target states without individual coupling controls. In that regards, a leakage
suppression scheme for ultra-short time-scale gate operations is worthy to consider.
Our approach is to use a programmed pulse sequence [21, 22] to remove the leakage [23]

through transition pathway engineering. As to be explained below with examples in a three-level
system (of a qubit two-level system and a leakage state), it is found that one subsequent pulse can
suppress the leakage caused after a single-pulse qubit preparation (from the ground initial state
to an arbitrary final state) and that two subsequent pulses for an arbitrary qubit rotation (between
arbitrary initial and final states).

2. Model description

We consider a three-level system (|0〉, |1〉, and |2〉 with energies 0, ~ω1, and ~ω2, respectively) in
the ladder-type configuration (|0〉-|2〉 is dipole-forbidden), in which the first two levels are the
qubit states and the third is the leakage state. The interaction Hamiltonian H (in unit of ~ ≡ 1)
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for electric-field E(t) = E0(t) cos(ωLt + φ) is given, after the rotating wave approximation, by

H =
2∑

m=0
∆mΠm +

2∑
m,n=0
i< j

λmn

2

(
Ωx σ

(x)
mn −Ωy σ

(y)
mn

)
, (1)

where Πm = |m〉〈m| and σ(k)mn are the projection operator and Pauli matrices, respectively, for
k = x, y, z and m, n = 0, 1, 2 (i.e., σ(x)mn = |m〉〈n|+ |n〉〈m|, σ

(y)
mn = −i |m〉〈n|+ i |n〉〈m|). Ωx andΩy

are the real and imaginary parts of the Rabi oscillation frequency defined by Ω = µ01E0 exp(iφ)
between |0〉 and |1〉, where µ01 is the dipole moment. Scaled dipole moments, λmn ≡ µmn/µ01,
are given by λmn = 0 except λ01 = 1 and λ12 = λ, and detunings are ∆1 = ω1 − ωL and
∆2 = ω2 − 2ωL .
Quantum information is carried by the first two states, |0〉 and |1〉, (e.g., initial state |ψi〉 =

ai |0〉 + bi |1〉), so it is convenient to divide the Hamiltonian into two parts [12], namely the
qubit-system Hamiltonian Hq and the leakage Hamiltonian Hl:

Hq =

2∑
m=0
∆mΠm +

λ01
2
(Ωx σ

(x)
01 −Ωy σ

(y)
01 ), (2a)

Hl =
λ12
2
(Ωx σ

(x)
12 −Ωy σ

(y)
12 ). (2b)

Then, the unitary matrix for the total system dynamics can also be conveniently divided into
two parts, i.e., U ≡ U(q)U(l), where U(q) is the qubit-system dynamics and U(l) is the leakage
dynamics, respectively governed by the following equations:

i
dU(q)

dt
= HqU(q), (3a)

i
dU(l)

dt
= U(q)†HlU(q)U(l) ≡ H ′IU

(l). (3b)

Here, Eq. (3a) represents the qubit-system evolution that is uncoupled from the leakage state, and
Eq. (3b) is the additional dynamics due to leakage-state coupling defined on the qubit evolution
basis (Uq). The resulting effective leakage Hamiltonian is given by

H ′I =
λ

2
(Ω∗U(q)10 ei∆2tσ−02 +ΩU(q)10

†
e−i∆2tσ+02) +

λ

2
(Ω∗U(q)11 ei∆2tσ−12 +ΩU(q)11

†
e−i∆2tσ+12), (4)

where U(q)mn are the effective couplings defined by Eq. (3a) and σ±mn = (σ
(x)
mn ± iσ(y)mn)/2. As a

result, the leakage dynamics (UI ) is obtained as a function of the electric field (λΩ) and the
qubit-system dynamics (U(q)).

The leakage is therefore obtained through eliminating the first-order perturbation terms of the
Dyson series, when λ is small (weakly-coupled leakage). The leakage-state coefficient after the
interaction, defined by cl ≡ 〈2|U(t = ∞)|ψ〉, is given by

cl = −
iλ
2

∫ ∞

−∞

Ω
∗
(
aiU

(q)
10 + biU

(q)
11

)
ei∆2tdt. (5)

3. Leakage suppression with two pulses: qubit preparation

Now we consider the leakage suppression (cl = 0) for the case in which the system evolves from
the ground initial state, |ψi〉 = |0〉 (ai = 1, bi = 0), to an arbitrary final state. As a simplest
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Fig. 1. (a) Leakage-state population (|cl |2) with and without the two-pulse leakage
suppression scheme in Eq. (8) is compared for various laser bandwidths (∆ωFWHM).
Numerical calculations performed with λ = 0.34 (scaled dipole moment for atomic rubidium)
corresponds to the experiment in Sec. V. (b) Leakage suppression condition (cl = 0) of
the two-pulse scheme for various laser bandwidths. The short-pulse approximation (SPA)
solution in Eq. (9) (thick solid line) is shown in comparison with Eq. (8) for pulses with
various bandwidths (∆ωFWHM/∆2 = 2.5, 3.4, · · · , 15).

possible approach, we use two time-delayed short pulses to achieve cl = 0, where the second
pulse makes the leakage, cl , made by the first pulse, return exactly to zero in the complex plane.
We define two pulses E1(t) and E2(t), that are temporally sequential and non-overlapping, as

E1(t) + E2(t) = E0e−
t2
τ2 cos(ωLt) + γE0e−

(t−td )
2

τ2 cos[ωL(t − td) + φ] (6)

with respective Rabi frequencies Ω1 and Ω2, where γ and td are the amplitude ratio and the
time delay between the pulses, respectively. We set the carrier-envelope phase φ = 0 without
loss of generality. If we define A(t) =

∫ t

−∞
µ01(1 + γ)E0 exp(−t ′2/τ2)dt ′, the time-dependent

pulse areas for the two pulses are given by A(t)/(1 + γ) and γA(t − td)/(1 + γ), respectively.
The targeted final state is given by |ψf 〉 = cosΘ/2|0〉 − i sinΘ/2|1〉 with the total pulse area
Θ = A(∞). Then U(q)10 in Eq. (5) becomes

U(q)10 (t) = −i cos
A(t)

2(1 + γ)
sin

γA(t − td)
2(1 + γ)

− i sin
A(t)

2(1 + γ)
cos

γA(t − td)
2(1 + γ)

(7)

Then, the condition of leakage suppression (cl = 0), for the ground initial state (ai = 1, bi = 0),
is obtained through substitution of Eq. (7) in Eq. (5) as∫ ∞

−∞

λΩ1(t)
2

sin
A(t)

2(1 + γ)
ei∆2tdt +

∫ ∞

−∞

λΩ2(t − td)
2

cos
A(∞)

2(1 + γ)
sin

γA(t − td)
2(1 + γ)

ei∆2(t)dt

+

∫ ∞

−∞

λΩ2(t − td)
2

sin
A(∞)

2(1 + γ)
cos

γA(t − td)
2(1 + γ)

ei∆2(t)dt = 0. (8)

Figure 1(a) shows the result of the time-dependent Schrödinger equation (TDSE) calculation
for various laser bandwidths (∆ωFWHM, electric-field bandwidth). For a wide range of laser
bandwidth, leakage suppression below 1% is achieved, which is especially successful at the short
pulse limit (∆ωFWHM →∞).

Furthermore, there exists an asymptotic solution at the limit of the large bandwidth compared
to the two-photon detuning ∆2. Under this short-pulse approximation (SPA), the phase factor ∆2t
in Eq. (8) remains constant during the interaction. So, if we set the three terms in Eq. (8) to be
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all in phase, with a time-delay phase φd ≡ ∆2td = π defined between the pulse peaks, a simple
algebraic solution can obtained as

γ =

(
1 −

2
Θ

cos−1 1 + cos Θ2
2

) (
2
Θ

cos−1 1 + cos Θ2
2

)−1

. (9)

This solution is valid for the full coverage of Θ ∈ [0, π], as shown in Fig. 1(b).
In comparison, leakage suppression in other systems, such as V-type and Λ-type three-level

systems, can be also considered. It is simple to show that Λ-type systems provide the exactly
same leakage suppression condition as Eq. (9). In V-type systems, for example, with λ12 = 0 but
λ02 = λ in Eq. (1), the condition is obtained in a slightly different form as

γ(V) =

(
1 −

2
Θ

sin−1 sin Θ2
2

) (
2
Θ

sin−1 sin Θ2
2

)−1

. (10)

4. Experimental verification of leakage-free qubit preparation

Experimental verification of the scheme in Sec. 3 for arbitrary qubit preparation, was performed
with ultrafast laser interactions with cold rubidium atoms. The setup is described in our previous
works [24–27]. In brief, 87Rb cold atoms were prepared in a magneto optical trap (MOT), and
the size of the atomic cloud was kept below about 80% of laser field diameter, to ensure uniform
laser-atom interaction [25]. Ultrafast laser pulses were produced from a Ti:sapphire mode-locked
laser amplifier operating at 1 kHz repetition, and the sequence of two pulses was programmed
with an acousto-optic programmable dispersive filter (AOPDF) [28, 29].

We used 5S1/2, 5P3/2, and 5D states (|0〉, |1〉, and |2〉, respectively). The resonance wavelengths
are λ = 780 nm for 5S-5P and 776 nm for 5P3/2-5D, where the 5D fine-structures are treated
as one through Morris–Shore transformation [30]. The short pulses were produced with the
center wavelength of λcenter = 780 nm and with the bandwidth of ∆wFWHM = 4.5 × 1013 rad/s
(corresponding to τ = 75 fs), where the bandwidth was limited by the other one-photon transition
to 5P1/2. The time delay between pulses was about 714 fs, corresponding to 2∆td = 3.1π, and the
relative phase shift was kept less than π/10. The pulse area was fine-controlled with a half-wave
plate placed between a pair of cross polarizers. The leakage state (5D) population was probed
through ionizing the 5D state atoms, where the ion signal was collected with a micro-channel
plate (MCP) detector. Three-photon ionization signals (directly from 5S1/2) were subtracted
from the data using ion signals without the probe pulse, which detected three-photon ionization
only. The entire experiment was repeated at a rate of 2 Hz.
Experimental results of the two-pulse leakage suppression are shown in Fig. 2(a), where the

two-photon leakage (to the 5D state) is plotted as a function of the total pulse-area (Θ) and relative
amplitude (γ) between the two pulses. For comparison, corresponding TDSE calculation is
plotted in Fig. 2(b). The dashed lines in both figures represent the leakage suppression condition
in Eq. (9), showing good qualitative agreement. Using the data extracted along the vertical lines
in Figs. 2(a) and 2(b), we plotted the leakages (Pl = |cl |2) respectively after a half (Θ = π,
blue) and full (Θ = 2π, red) Rabi cycles, in Fig. 2(c), as a function of γ. Overall measurement
error is estimated to about 10% after 30 repeated measurements, mainly caused by laser power
fluctuation (shot-to-shot noise, about 10%), MOT density fluctuation (less than 10%, standard
error), and relative amplitude shift due to pulse-shaper imperfection.

5. Leakage suppression with three pulses: arbitrary initial state

The previous sections, Secs. 3 and 4, dealt with qubit rotations from the ground initial state
(ai = 1, bi = 0). We now consider general initial states. In this case, the leakage defined in
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Fig. 2. (a) Experimental result for the leakage state (5D) population measured as a function
of total pulse area Θ and relative amplitude γ. The white dashed line represents the leakage
suppression condition under the short-pulse approximation from Eq. (9). (b) Corresponding
numerical calculation. (c) Comparison between the experiment (diamonds) and theory (solid
lines) for Θ = π and 2π, extracted along the white dotted lines in Fig. 2(a) and 2(b).

Eq. (5) must be zero irrespective of both ai and bi . In order to make the complex coefficients
of ai and bi simultaneously zero, we need at least three pulses. With three pulses defined by
αE0 exp(−t2/τ2), βE0 exp(−(t − td1)

2/τ2), and (1 − α − β)E0 exp(−(t − td2)
2/τ2), respectively,

the leakage suppression condition (cl = 0) is obtained under the short pulse approximation as

(1 − eiφd1 ) cos
αΘ

2
+ (eiφd1 − eiφd2 ) cos

(α + β)Θ

2
+ eiφd2 cos

Θ

2
= 1, (11a)

(1 − eiφd1 ) sin
αΘ

2
+ (eiφd1 − eiφd2 ) sin

(α + β)Θ

2
+ eiφd2 sin

Θ

2
= 0, (11b)

where αΘ and βΘ are the pulse-areas, and φd1,d2 are the phase delay due to the pulse intervals.
When φd1 = π and φd2 = 0, for example, a simple solution is obtained as

2 cos
αΘ

2
− 2 cos

(α + β)Θ

2
+ cos

Θ

2
= 1, (12a)

2 sin
αΘ

2
− 2 sin

(α + β)Θ

2
+ sin

Θ

2
= 0. (12b)

Figure 3 shows the leakage population Pl = |cl |2 after an X(π) rotation, plotted as a function
of α and β. The results are shown for three distinct initial states: Fig. 3(a) the ground state
|ψi〉 = |0〉, Fig. 3(b) a superposition state |ψi〉 = (|0〉 + |1〉)/

√
2, and Fig. 3(c) the excited state

|ψi〉 = |1〉. The optimal solutions (shown with star marks in the figures) are the same, suggesting
that Eq. (12) results in the same (α, β) values for all initial states (ai , bi), as expected. Note that
experimental verification of this three-pulse leakage-suppression scheme is not provided, due to
experimental limitation in our current setup.

6. Discussion: leakage population vs. fidelity error

As a dicsussion, we consider the contribution of the leakage population (|cl |2) to the fidelity error
(δF ) of qubit operation. When a final state is given by |ψ(η)〉, after an imperfect control, near
the target |ψ(η = 0)〉 (the perfectly controlled final state), the fidelity can be defined as

F = |〈ψ(0)|ψ(η)〉|, (13)

where η parameterizes small imperfection [26, 31, 32]. Using the Taylor expansion, |ψ(η)〉 is
given by

|ψ(η)〉 = |ψ(0)〉 + ∂η |ψ〉
��
η=0η +

1
2
∂2
η |ψ〉

��
η=0η

2 + · · · . (14)

                                                                Vol. 27, No. 4 | 18 Feb 2019 | OPTICS EXPRESS 3948 



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

α

,(a)

α

β

,(b)

α

β

,(c)

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

0.2

0.3

0.4

0.5

0.6
α
β

(π radian)

(d)

0

0.01

0.02

0.03

0.04

0.05

Fig. 3. (a–c) The leakage population map Pl(α, β) for X(π)-rotations initiated from three
characteristic states: (a) the ground state (ai = 1, bi = 0), (b) the superposition state
(ai = 1/

√
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√
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solution points (α = 0.27, β = 0.46 in each figure) for X(π)-rotation. (d) The solutions of
Eq. (12) for (α, β). TDSE calculations are performed with λ = 0.34 (scaled dipole moment
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Using the relations 〈∂ηψ |ψ〉 + 〈ψ |∂ηψ〉 = 0 and Re(〈∂2
ηψ |ψ〉) = −Re(〈∂ηψ |∂ηψ〉) (both from

∂η 〈ψ |ψ〉 = 0), we get

F =
√
〈ψ(η)|ψ(0)〉〈ψ(0)|ψ(η)〉 '

√
[1 + 〈∂ηψ |ψ〉〈ψ |∂ηψ〉η2 − Re(〈∂ηψ |∂ηψ〉η2)]

' 1 +
1
2
[〈∂ηψ |ψ〉〈ψ |∂ηψ〉 − Re(〈∂ηψ |∂ηψ〉)]η2. (15)

In our case, η = λ (the small coupling to the leakage state) and the state evolves according to
Eq. (3b), which leads to |ψ(λ)〉 ' |ψ(0)〉 − i

∫
H ′Idt |ψ(0)〉, where |ψ(0)〉 = |ψi〉 is the initial state

(in the qubit space). Therefore, we get

∂λ |ψ〉
��
λ=0λ ' −i

∫ ∞

−∞

H ′Idt |ψi〉. (16)

However, because H ′I is the coupling from the qubit space to the leakage state, we get
〈ψq |

∫ ∞
−∞

H ′Idt |ψi〉 = 0 for any state |ψq〉 in the qubit space {|0〉, |1〉}, which leads to 〈∂λψ |ψ〉 = 0
and 〈∂λψ |∂λψ〉 = 〈∂λψ |2〉〈2|∂λψ〉 in Eq. (15). As a result, the fidelity can be obtained as

F ' 1 −
1
2
(〈ψi |i

∫ ∞

−∞

H ′Idt |2〉〈2| − i
∫ ∞

−∞

H ′Idt |ψi〉) ' 1 −
1
2
|cl |2, (17)

so the perturbation estimation indicates that the fidelity error is linearly contributed to by the
leakage population. Note that the perturbation estimation for the fidelity error contributed to by
the leakage process is less than 1% up to Θ ' 1.0π in our current experimental condition.
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7. Conclusion

We have proposed a pulsed leakage suppression scheme and performed a proof-of-principle
experimental verification. In a ladder-type three-level system, the leakage to the third level from
the two-level qubit system is successfully suppressed for qubit X rotations from the ground initial
qubit state. We used coherent destructive interference to suppress the overall leakage, where the
leakage caused by the first pulse was controlled with a subsequent pulse. Likewise, the qubit
X rotation from an arbitrary initial state requires two additional pulses for leakage suppression.
Experimental verification was performed with femtosecond laser and atomic rubidium, for the
qubit rotations of ground-state atoms using two pulses with controlled relative amplitude and
time-delay, and the result shows good qualitative agreement with the prediction. Since pulse
sequences is in general simpler to produce than other pulse shapes, our leakage suppression
method may be useful in experiments with limited pulse shaping capability.
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