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Quantum control in two-dimensional Fourier-transform spectroscopy
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We present a method that harnesses coherent control capability to two-dimensional Fourier-transform optical
spectroscopy. For this, three ultrashort laser pulses are individually shaped to prepare and control the quantum
interference involved in two-photon interexcited-state transitions of a V-type quantum system. In experiments
performed with atomic rubidium, quantum control for the enhancement and reduction of the 5P1/2 → 5P3/2

transition was successfully tested in which the engineered transitions were distinguishably extracted in the
presence of dominant one-photon transitions.
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I. INTRODUCTION

One of the fundamental goals in chemical physics and
biophysics is to understand how molecular structural dynam-
ics, which are often manifested in interexcited-electronic-state
transitions, proceed during chemical reactions or interactions
with light and what the implications are for known chemical
and biological processes [1]. The best known tool is two-
dimensional nuclear magnetic resonance (2D NMR) spec-
troscopy [2], which is especially useful for the detailed analysis
of molecular structures. However, 2D NMR is primarily
limited to probing relatively small molecular systems, and
structural evolution occurring in the subpicosecond time
scale is too fast for 2D NMR to resolve. Alternatively,
2D Fourier-transform optical spectroscopy (2D FTOS) [3,4],
an optical extension of 2D NMR, has recently been de-
veloped to probe femtosecond electronic and vibrational
dynamics. It can be applied to molecules as large as small
proteins and provides ultrafast time resolution, which is
crucial to understand reaction dynamics and energy transfer
processes [5].

In this paper, we present a method that harnesses the
ability to control the evolution of quantum systems with
2D FTOS. Quantum mechanical control of matter, known
as quantum control or coherent control, utilizes programmed
light forms and has become a general scientific subject
of extreme interest because of its unprecedented control
capability over the dynamics of atoms and molecules [6–8].
In particular, with the recent development of the ultrafast
optical technique of shaping laser pulses, termed ultrafast pulse
shaping, coherent control has been demonstrated in a variety
of material substances extending from atoms and molecules
to solid-state and biological systems [9–13]. However, not
many analytical solutions are known despite great efforts to
describe the shaped-pulse control of transition probabilities
even in simple atomic systems [14–18]. This previous research
is restricted to the transitions from a ground state to excited
states, mainly due to the limitation of the detection techniques.
In ladder-type systems, for example, the transition probability
can be easily measured by detecting the target excited-state
fluorescence. On the other hand, in a V-type system, especially
if we consider the transition from one of the excited states to
the other, the interexcited-state transition cannot be measured
straightforwardly and thus is difficult to control [19,20].
The target excited-state population in this case is coherently

mixed with and is difficult to separate from the dominant
one-photon transitions from the ground state. This difficulty of
distinguishing the interexcited-state transition from the others
is overcome by using quantum coherence of the system with
2D FTOS.

Here, we describe an experimental demonstration of coher-
ent control of transitions between two excited states in a V-type
system. To do this, we adopt the recently devised three-pulse
coherent control scheme in a 2D FTOS setting [21]. The
target transition probability can be retrieved from distinct 2D
Fourier-transform (FT) spectral peaks that are inherent to their
transition pathways, and thereby, the controlled transition-
probability amplitude is obtained. By shaping one of the three
laser pulses used in 2D FTOS, we selectively turn on and off the
5P1/2-5P3/2 transition of atomic rubidium (Rb). Furthermore,
by engineering the quantum interference among the involved
transition paths, a net transition increase of 300% relative to
the Fourier-transform-limited (FTL)-pulse case is achieved.

II. THEORETICAL MODEL

We consider a three-pulse interaction with a V-type quan-
tum system in which the second pulse is the control pulse and
the first and third pulses are used to retrieve the controlled
second-pulse interaction in a 2D FTOS setting [22]. The
quantum system under consideration comprises one ground
state |g〉 and two adjacent excited states |a〉 and |b〉 (5S1/2,
5P1/2, and 5P3/2 respectively in Rb). For the quantum system
initially in the ground state, the wave function after the
first-pulse interaction is

|ψ(0+)〉 = |g〉 + α(1)
ag |a〉 + α

(1)
bg |b〉, (1)

where α
(1)
ij denotes the first-order transition-probability ampli-

tude from state |j 〉 to state |i〉, in the weak-field interaction
regime. After a time delay τ1, the second pulse interacts and
the wave function becomes

|ψ(τ1)〉

=

⎛
⎜⎝

1 β(1)∗
ag e−i�ωagτ1 β

(1)∗
bg e−i�ωbgτ1

β(1)
ag ei�ωagτ1 1 β

(2)
ab ei(�ωag−�ωbg)τ1

β
(1)
bg ei�ωbgτ1 β

(2)
ba e−i(�ωag−�ωbg)τ1 1

⎞
⎟⎠

× |ψ(0+)〉, (2)
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where �ωij = ωij − ω0 and β(1,2) denote the first- and second-order transition-probability amplitudes, respectively, for
the second pulse. The matrix (evolution operator) is written in terms of three states {|g〉,|a〉,|b〉}, and the rotating wave
approximation is used. Likewise, after the third pulse with the time delay τ2 with respect to the second pulse, the final wave
function is given by

|ψ(τ1 + τ2)〉 =

⎛
⎜⎝

1 γ (1)∗
ag e−i�ωag (τ1+τ2) γ

(1)∗
bg e−i�ωbg (τ1+τ2)

γ (1)
ag ei�ωag (τ1+τ2) 1 γ

(2)
ab ei(�ωag−�ωbg )(τ1+τ2)

γ
(1)
bg ei�ωbg (τ1+τ2) γ

(2)
ba e−i(�ωag−�ωbg )(τ1+τ2) 1

⎞
⎟⎠ |ψ(τ1)〉, (3)

where γ (1,2) denote the transition-probability amplitudes for
the third pulse.

After all three pulsed interactions, the probability of the
state |b〉, Pb = |〈b|ψ〉|2, is given as a function of the two
interpulse delays as

Pb(τ1,τ2) = ∣∣α(1)
bg

∣∣2 + ∣∣β(1)
bg

∣∣2 + ∣∣γ (1)
bg

∣∣2 + · · ·
+α(1)∗

ag β
(2)∗
ba γ

(1)
bg ei(�ωagτ1+�ωbgτ2) + · · · , (4)

where the term α(1)∗
ag β

(2)∗
ba γ

(1)
bg exp(i�ωagτ1 + i�ωbgτ2) results

from the quantum interference between the two transitions
α(1)∗

ag β
(2)∗
ba and γ

(1)
bg , respectively representing |g〉 → |a〉 → |b〉

and |g〉 → |b〉. The coefficient α(1)∗
ag β

(2)∗
ba γ

(1)
bg is retrieved from

the spectral peak located at (ω1,ω2) = (�ωag ,�ωbg) of the 2D
FT spectrum of Pb, i.e.,

α(1)∗
ag β

(2)∗
ba γ

(1)
bg = S(ωag − ω0,ωbg − ω0), (5)

where S(ω1,ω2) is defined by

S(ω1,ω2) =
∫ ∫

Pb(τ1,τ2)e−i(ω1τ1+ω2τ2)dτ1dτ2. (6)

Therefore, aside from the constant α(1)∗
ag γ

(1)
bg , the controlled

second-pulse interaction β
(2)∗
ba (or the two-photon coherent

control from |a〉 to |b〉) is retrieved from the 2D FTOS
measurement [21].

III. EXPERIMENTAL DESCRIPTION

To demonstrate coherent control in the 2D FTOS setting,
experiments were performed in atomic 87Rb vapor at room
temperature. We used a homemade Ti:sapphire laser amplifier

FIG. 1. (Color online) (a) Schematic diagram of the pulse-
shaping scenario. The first pulse has a spectral hole around the D2

(|g〉 → |b〉) transition, and the second pulse is shaped to control the
|a〉 → |b〉 transition. The third pulse is unshaped. (b) Energy level
diagram of atomic rubidium.

system producing 35 fs pulses (FTL case) at a repetition
rate of 1 kHz, delivered in a beam of 3 mm diameter. An
actively controlled acousto-optic programmable dispersive
filter (AOPDF) was installed between the gain media of
the laser amplifier and the pulse compressor to generate an
independently shaped three-pulse sequence from one pulse
of 1 kHz pulse train (Fig. 1). The shaped pulses had 4 μJ
of energy each, which interacted with Rb in the weak-field
regime with a maximum intensity of 2.3 × 108 W/cm2. The
interpulse delays τ1 and τ2, or the time intervals between the
first and second pulses and between the second and third
pulses, respectively, were varied from 0 to 1638 fs in 26 fs
steps. The wavelength of each pulse was centered at 800 nm
with a bandwidth of 26 nm full width at half maximum
(FWHM), which covered the 5S1/2-5P1/2 D1 (794.7 nm) and
5S1/2-5P3/2 D2 (780 nm) transitions of Rb, and the weak
transitions to the 5D state were ignored. After the three
pulses were applied, the spectrally filtered (3 nm bandwidth at

FIG. 2. (Color online) Chirped pulse control of |a〉 → |b〉
transition: (a) positive chirp case; (b) negative chirp case. Depending
on the chirp sign, the sequence of D1 and D2 transitions is time
reversed. The circled numbers indicate the transition sequence. (c),(d)
Numerical calculation of the time evolution of 5S1/2 (blue line), 5P1/2

(dashed line), and 5S3/2 (red line) populations as well as the field
envelope (solid black line), corresponding to (a) and (b), respectively.
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780 nm for D2) fluorescence signal S(τ1,τ2) was recorded
using a photomultiplier tube (PMT).

IV. RESULTS AND DISCUSSION

A. Linear chirp control

For the first experiment, we demonstrated selective turn-
on and turn-off of the target transition from |a〉 to |b〉 by
applying a linear chirp to the control pulse (the second pulse).
The intuitive ordering of frequencies in the pulse, for an
effective transfer, is that the atoms are first driven from |a〉
to |g〉 (resonant at 794.7 nm) with the red-detuned frequency
components and then from |g〉 to |b〉 (resonant at 780 nm)
with the blue-detuned components. So, as Fig. 2(a) shows, a
positively chirped control pulse brings the atoms in |a〉, which
are initially excited by the first pulse, down to |g〉 and then back
up to the |b〉 state, because the low-energy part of the spectrum
arrives ahead of time compared to the high-energy part in this
case. On the other hand, the spectrotemporal correlation is
reversed in a negatively chirped pulse, and the other case,
shown in Fig. 2(b), leaves the |a〉 and |b〉 states uncoupled. So
the chirp of the control pulse determines the strength of the
|a〉 → |b〉 transition.

This control scenario was first checked by numerical
simulation. The results, shown in Figs. 2(c) and 2(d), confirm
that the state populations of the 5S1/2 (blue line), 5P1/2

(dashed line), and 5S3/2 (red line) states, for the linear chirp
values of (c) −1000 fs2 and (d) −1000 fs2, respectively,
evolve in time as predicted. The initial population was fixed
as (5S1/2,5P1/2,5P3/2) = (0,1,0), and a pulse energy about
fivefold that of the experimental pulse was used in order
to illustrate the transition behaviors more clearly. Note that
the behavior with smaller pulse energies is less dramatic but
remains in general accordance.

Figure 3 shows the experimental results. The 2D time-
domain measurements of Pb(τ1,τ2), which are obtained for
the various linear chirps of the second pulse, and their
2D FT spectra S(ω1,ω2) are shown in Figs. 3(a)–3(e). The
suppression of the |a〉 → |b〉 transition is clearly observed for
the negatively chirped pulses and the enhancement for the
positively chirped pulses. So the chirp control of the 5P1/2 →
5P3/2 transition of Rb was successfully demonstrated. For a
chirped laser pulse given by,

E(ω) = E0 exp

[
− (ω − ω0)2

�ω2
+ i

a2

2
(ω − ω0)2

]
, (7)

FIG. 3. (Color online) (a)–(e) Experimental results of the 2D measurement of Pb as a function of τ1 and τ2 (column I) and their 2D FT
spectra S(ω1, ω2) (column II) for shaped pulses with five different chirp coefficients: (a) −1000 fs2, (b) −500 fs2, (c) 0 fs2, (d) 500 fs2, and
(e) 1000 fs2. The peaks at (ωag − ω0, ωbg − ω0) are marked by white arrows which represent the target two-photon process 5P1/2 → 5P3/2. (f)
Extracted peak amplitudes at (ωag − ω0, ωbg − ω0) plotted as a function of chirp of the second pulses (circles) are compared with the numerical
calculation of β

(2)
ba (line).
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where ω0 and �ω are the laser frequency and the spectral
bandwidth, respectively, and a2 is the linear chirp rate,
second-order perturbation theory predicts that the two-photon
transition-probability amplitude c

(2)
ba can be obtained as

β
(2)
ba ∝ 1 + Erf

[
�ω(ωbg − ωag)√

8
a2 + i

ωbg + ωag − 2ω0√
2�ω

]
,

(8)

where ωnm is the resonance frequency of the transition from
|m〉 to |n〉 and Erf(x) is the Gaussian error function [23]. Note
that the error function in Eq. (8) approximates a sign function
for a sufficiently large a2 [i.e., |a2| � 1/�ω(ωbg − ωag)].
Figure 3(f) shows the agreement of the measured transition-
probability amplitudes obtained for linear chirps [−3,3] ×
103 fs2 with 500 fs2 and the numerical simulation based on
Eq. (8).

B. Spectral phase shaping

The second experiment aims for further enhancement of
the |a〉 → |b〉 transition by applying a general phase function
to the control pulse. We start by considering the two-photon
transition-probability amplitude written in the spectral domain
given as [21]

β
(2)
ba = μgaμgb

h̄2

[
−πE∗(ωag)E(ωbg)

− iP
∫ ∞

−∞
dω

E∗(ω)E(ωba + ω)

ωag − ω

]
, (9)

where μnm is a dipole moment matrix element, E(ω) the
inverse Fourier transform of the electric field, and P the
Cauchy principal value. For a laser pulse having the spectral
components all in phase, the resonant contribution is real [the
first term in Eq. (9)], and the two nonresonant contributions
(the second term) below and above the resonance frequency
ωag are both imaginary but out of phase with respect to each
other. Hence, the three components, the resonant part and the
upper and lower nonresonant parts, add up to the total transition
β

(2)
ba , and β

(2)
ba can be enhanced by engineering the interference

among them. By encoding a constant block phase φb over a
block spectral region [ωag,ωag + ωba], the interference of the
three transition components of the dominant spectral region
can be altered. The transition probability amplitude cba in
Eq. (9) can be disassembled as

β
(2)
ba = i

μgaμgb

h̄2

[
iπE∗(ωag)E(ωbg)

− eiφb

∫ ωag

ωag−ωba

E∗(ω)E(ωba + ω)

|ωag − ω| dω

+ e−iφb

∫ ωag+ωba

ωag

E∗(ω)E(ωba + ω)

|ωag − ω| dω

]
, (10)

where the first, second, and third terms correspond to A, B,
and C in the phase diagram in the upper left inset of Fig. 4(a).

In our experiment, transition-amplitude absolutes are given
by |A|:|B|:|C| = 1:2.8:1.6. Figure 4(a) shows the measured
net transition-probability amplitudes as a function of φb. The

dots are experimental results, and the black dashed line is
the theoretical calculation based on Eq. (9). The spectral
phase function was smeared by 0.2 nm in the experiment,
and inclusion of this consideration (shown with the solid line)
gives a more accurate fit to the experimental results. Two
local maxima are expected from Eq. (10), one at φb = π/2
and the other at φb = 3π/2. As shown in Figs. 4(b)–4(d),
the three transition components A, B, and C, interfere either
constructively or destructively with each other. For example,
in Fig. 4(d), the three components are all in phase, maximizing
the quantum interference. In such conditions, the transition-
probability amplitude is tripled compared to the FTL case.

C. Spectral amplitude shaping

Alternatively, spectral amplitude shaping of the control
pulse can be considered to enhance the given two-photon
transition. For example, among the components in Eq. (10),
the smaller nonresonant transition component C can be re-
moved. For this, the nonresonant component of the transition-
probability amplitude [the second term of Eq. (9)] can be
rephrased as

β
(2)nr
ba = μgaμgb

ih̄2

[ ∫ ωbg

∞

E∗(ω − ωba)E(ω)

|ωbg − ω| dω

−
∫ ωcut

ωbg

E∗(ω − ωba)E(ω)

|ωbg − ω| dω

]
, (11)

where the spectrum below ωcut is eliminated [the second term
in Eq. (9)] as depicted in the inset of Fig. 5. In the final
experiment, we utilized the spectral amplitude block above the
cutoff frequency (ωcut) in the second pulse (the spectral phase
was unchanged.) The tested transition-probability amplitudes

λ

FIG. 4. (Color online) (a) Experimental and theoretical results
for the quantum interference engineering. Dots, measured transition-
amplitude absolutes; dashed line, numerical calculation based on
Eq. (9); solid line, numerical calculation considering the spectrally
smeared phase (see the text). Inset, upper left: The phase diagram
for the three transition components in Eq. (10). Inset, lower right:
The laser spectrum in the block spectral phase in which the block
spectral phase φb represents the relative phase of the spectral region
in [ωag,ωbg] with respect to the other. (b)–(d) The phase diagrams for
the maximal (b),(d) and minimal (c) quantum interference conditions.
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FIG. 5. Coherent enhancement experiment of the 5P1/2 → 5P3/2

transition of Rb by spectral amplitude shaping. The measured
transition-probability amplitudes, normalized to the full spectrum
limit (dots), are plotted along with the calculated data (dark line) as
a function of the cutoff wavelength. The laser spectrum is shown
by the gray line. The inset illustrates the spectral shape used in the
experiment. The dashed lines are the D1 and D2 resonant wavelengths.

c
(2)
ba are retrieved from the 2D FT spectra S(ω1,ω2) as a function

of ωcut. The experimental result is shown in dots in Fig. 5,
and the theoretical results (black solid line) are calculated
using Eq. (9). The normalized laser spectrum is shown as a
gray solid line, and the resonance wavelengths are denoted
by black dashed lines in Fig. 5. As the cutoff wavelength λcut

(=2π/ωcut) approaches the resonance wavelength λbg from
the short-wavelength end, the second term of β

(2)nr
ba , or C in

Eq. (10), becomes smaller and, therefore, the target |a〉 →
|b〉 transition is enhanced. The two-photon transition β

(2)
ba is

maximally enhanced, for λcut = λbg , by 60% compared to the
full spectrum limit.

V. CONCLUSIONS

In conclusion, we have demonstrated a combination of two
powerful techniques, the coherent control of pulse shaping
and 2D FTOS. For this, we utilized three individually shaped
optical short pulses in a 2D FTOS scheme, and the two-photon
interexcited-state transition of a V-type quantum system was
retrieved in the presence of dominant one-photon transitions.
In the coherently controlled 2D FTOS experiments performed
on Rb atoms, linear spectral chirp was used to turn on and
off the 5P1/2 → 5P3/2 transition. Furthermore, experiments
for quantum interference engineering revealed that the target
transition strength is tripled in spectral phase shaping and
enhanced by 60% in spectral amplitude shaping. We hope that
the devised coherent control for excited-state transitions will
become useful in untangling the unknown nature of chemical
and biological reaction processes.
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