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Quantum programming of the satisfiability problem with Rydberg atom graphs
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Finding a quantum computing method to solve nondeterministic polynomial time (NP)-complete problems
is currently of paramount importance in quantum information science. Here we propose and experimentally
demonstrate a Rydberg atom approach to program the 3-SAT problem, the prototypical NP-complete problem
which allows general programming of all NP problems. We use Rydberg atom graphs, each of which consists of
Rydberg atom dimers and trimers coupled with quantum wires in the Rydberg blockade interaction regime, to
formulate general Boolean expressions, and obtain their many-body ground states to determine the satisfiabilities
of the given 3-SAT problem instances quantum mechanically.
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I. INTRODUCTION

Currently there are considerable efforts being devoted to
making a quantum computer [1–3]. One prominent goal is
to engineer a quantum system that can formulate quantum
algorithms of classically difficult computational problems
[4,5]. An efficient algorithm which can solve a problem in
the computational complexity class of nondeterministic poly-
nomial (NP)-complete can be used as a subroutine for the effi-
cient algorithm for all other problems in NP, according to the
Cook-Levin theorem [6]. So, if a quantum computer can solve
an NP-complete problem efficiently, all other NP problems are
also efficiently solvable by the polynomial time reduction to
the NP-complete problem [7,8].

The Boolean satisfiability problem (SAT or B-SAT) and
the 3-SAT problem that has clauses of at most three literals
are a prototypical NP-complete problem, i.e., no classical
algorithms can efficiently (i.e., in a polynomial time) solve the
3-SAT problem, unless P = NP [9,10]. There are limited phys-
ical implementations of the 3-SAT problem, which include
an algorithmic conversion to a network-based biocomputa-
tion format [11], a quantum circuit approach using Grover’s
quantum search algorithm in conjunction with the David-
Putnam-Logemann-Loveland algorithm [12], and an IBM-Q
operation of Grover’s quantum algorithm for the 3-SAT prob-
lem [13]. These approaches are nonimmune to errors, so it
may be worthy to consider the robustness of quantum adia-
batic computing.

In this paper, we introduce a quantum algorithm to for-
mulate the 3-SAT problem with Rydberg atoms. Utilizing
Rydberg atom dimers and trimers coupled with quantum
wires, we formulate a quantum programming algorithm to
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encode a given 3-SAT problem instance and to evaluate
the satisfiability (i.e., the existence of a solution) of the 3-
SAT instance experimentally. We utilize the facts that the
3-SAT problem is reducible to the maximum independent set
(MIS) problem [14,15], which has been previously imple-
mented with Rydberg atoms [16,17], and that the Rydberg
atom MIS approach is reported to be of quantum speedup
on computationally hardest graphs over classical simulated
annealing [18].

II. THE 3-SATISFIABILITY PROBLEM

The 3-SAT problem is to determine whether a given propo-
sitional logic formula (Boolean expression), �(x1, x2, · · · ), of
Boolean variables, x1, x2, . . ., is satisfiable (i.e., there exists a
set of Boolean values for the variables satisfying the formula)
or unsatisfiable. The 3-SAT formula �(x1, x2, · · · ) is given
in the conjunctive normal form [19], i.e., a conjunction of
NC clauses, �(x1, x2, · · · , xn) = ∧NC

j=1 Cj , where each clause,
Cj = � j,1 ∨ � j,2 or � j,1 ∨ � j,2 ∨ � j,3, is a disjunction of at most
three literals, � j,1, � j,2, � j,3 ∈ {xk, x̄k|k = 1, · · · , n} [20,21].

The given 3-SAT problem can be reduced to the MIS prob-
lem for an MIS graph G(V, E ), given by

V = {
( j, k)|� j,k ∈ Cj

}
, (1a)

E = E1 ∪ E2, (1b)

E1 = {[( j, k1), ( j, k2)]|k1 �= k2}, (1c)

E2 = {[( j1, k1), ( j2, k2)]|k1 �= k2, � j1,k1 = �̄ j2,k2}, (1d)

where V is the set of vertices of which an element ( j, k) corre-
sponds to the literal � j,k in the jth clause Cj ; E is the set of all
edges, the union of two edge sets E1 and E2; E1 is the set of all
intraclause edges connecting two vertices in the same clause
Cj ; and E2 is the set of all interclause edges which connect
two vertices in different clauses, whose corresponding literals
are negation to each other [14,15].
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FIG. 1. (a) The MIS graph G1 reduced from the 3-SAT instance �1 in Eqs. (2), (b) G2 from �2, and (c) G3 from �3, where vertices
represent literals (x1, · · · , x6 and negations), solid edges intraclause logics, and dashed edges the interclause logics (between literals and their
negations).

Figure 1 shows examples of MIS graphs obtained with the
above reduction algorithm in Eq. (1). The first graph, G1 in
Fig. 1(a), is for a 3-SAT instance, given by

�1(x1, x2, x3, x4, x5, x6) = C0 ∧ C1 ∧ C2, (2a)

C0 = x1 ∨ x2 ∨ x3, (2b)

C1 = x̄1 ∨ x4, (2c)

C2 = x1 ∨ x5 ∨ x6, (2d)

where the clauses having two or three literals are respectively
mapped to the dimers or trimers (of solid edges) and the
literal-negation pairs are mapped to the interclause edges (of
dashed lines). Similarly, we define two more MIS graphs G2

and G3 for �2 = C0 ∧ C′
1 ∧ C2 and �3 = C0 ∧ C′

1 ∧ C′
2, with

C′
1 = x̄1 ∨ x̄2 and C′

2 = x1 ∨ x̄3 ∨ x6, as respectively shown in
Figs. 1(b) and 1(c).

III. RYDBERG ATOM GRAPHS

Rydberg atoms have been used to solve the MIS problems
[16–18,22,23]. The Hamiltonian of Rydberg atoms arranged
for an MIS graph G is given (in h̄ = 1 units) by

Ĥ (G) =
∑

( j,k)∈E (G)

Un̂ jn̂k −
∑

j∈V (G)

(
�n̂ j − �

2
σ̂ ( j)

x

)
, (3)

where U is the interaction between edged atoms, � and � are
the Rabi frequency and detuning of Rydberg excitation, and
n̂ j = (1 − σ̂

( j)
z )/2, σ̂ ( j)

x , σ̂ ( j)
z are the excitation and Pauli oper-

ators defined for the ground (|0〉) and Rydberg (|1〉) states of
the jth atom. In the limit of � → 0, many-body ground states
of Ĥ (G) correspond to the MIS solutions of G, because U > 0
means the MIS problem’s constraint that only one vertex can
be in MIS for any two vertices on the same edge, satisfying the
condition of the independent set, and 0 < � < U maximizes
the number of vertices in the independent set.

The MIS graphs in Fig. 1 are physically implementable
with experimental graphs, GExp

1 , GExp
2 , and GExp

3 , in Figs. 2(a)–
2(c), where the “normal” edges (solid line edges) are between
Rydberg blockaded pairs of atoms and long-distance edges
(dashed, interclause edges) are implemented with Rydberg
quantum wires [17,23,24]. In Fig. 2(a) for �1, x1 in C0 and C2

are edged to x̄1 in C1, by placing the atom trios, C0 (upper)–C1

(lower right) and C1 (lower right)–C2 (lower left) closely, so
that the atoms x1 in C0 (respectively, also in C2) and x̄1 are
at the distance d . In Fig. 2(b), the long edge between x2 and
x̄2 of GExp

2 is implemented with a Rydberg quantum wire of
two auxiliary atoms labeled by {a1, a2}. Also, in Fig. 2(c),

the two long edges x2-x̄2 and x3-x̄3 of GExp
3 are implemented

respectively with two Rydberg quantum wires respectively
with auxiliary atoms, {a1, a2} and {a3, a4}, respectively. These
wire atoms mediate the Rydberg blockade between two literal
atoms with far distance [17,24,25]. The many-body ground
states of Ĥ (G) for G = GExp

1 , GExp
2 , and GExp

3 are summarized
in Table I.

The positions of all atoms (literals and auxiliary atoms) of
GExp

3 are obtained under the conditions that the distances of
all edged atoms (including auxiliary atoms) are kept nearly
at the same interatom distance, d = 7.0 µm, smaller than
the Rydberg blockade distance dB = 10.0 µm, and that all
un-edged atoms are separated more than

√
2d . For this, we

minimized the overlap integral defined by

F = π
∑

(i, j)∈E

∫ d
2

|�ri j |
2

(
d2

4
− r2

)
dr

+ π√
8

∑
(i, j)/∈E

∫ d√
2

|�ri j |
2

(
d2

2
− r2

)
dr�(

√
2d − |�ri j |), (4)

where �ri j is the displacement vector from the ith atom to the
jth atom, and �(x) is the Heaviside step function (1 for x > 0,
0 for x < 0). The first term in Eq. (4) is the overlap of the unit
spheres of all edged atoms, which is minimized for the spheres
to be as close as possible. The second term is the overlap of the√

2d-size spheres of all un-edged atoms, where the Heaviside
function ensures the distance between un-edged atoms to be
more than

√
2d . GExp

1 and GExp
2 are then obtained as graph

minors of GExp
3 . The positions of the atoms of these graphs are

listed in Table II, along with GAlt
1 , to be discussed in Sec. VI.

IV. RYDBERG ATOM EXPERIMENT

To solve the 3-SAT problem quantum mechanically, we
perform many-body ground-state searching experiments with
Rydberg atoms arranged for the corresponding MIS graphs.
The experimental setup is a Rydberg atom quantum anneal-
ing machine, which consists of a cold atom apparatus, an
optical tweezer array system, a Rydberg excitation laser sys-
tem, and a detection apparatus [17,22,23,26]. The cold atom
apparatus is a magneto-optical trap (MOT), in which atoms
(rubidium, 87Rb) are cooled in a vacuum chamber (2.6 ×
10−10 Torr) down to a temperature around 25 µK by Doppler
and polarization gradient cooling and optically pumped to
the ground hyperfine state |0〉 = |5S1/2, F = 2, mF = 2〉. The
optical tweezer array system uses a spatial light modulator
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FIG. 2. (a) Experimental MIS graph GExp
1 , (b) GExp

2 , and (c) GExp
3 of literal atoms (x1, · · · , x6) and quantum wire atoms (a1, · · · , a4).

(d) Maximum likelihood probabilities of GExp
1 experiments, where the x axis denotes literal atoms in |1〉 in each binary configuration.

(e) GExp
2 experiments. (f) GExp

3 experiments. For example, the peak (i) corresponds to |x1x2x3; x4; x5x6〉 = |001; 1; 001〉, (ii) |001; 0; 001〉,
(iii) |x1x2x3; x5x6〉 = |001; 01〉, and (iv) |x1x2x3; x6〉 = |001; 1〉. Insets in (d)–(f) show numerical simulations with γ = 30 (2π ) kHz of laser
phase and dephasing noise taken into account.

(Meadowlarks ODPDM512) and an off-resonant 820-nm laser
(a Ti:sapphire CW laser from Avesta) to produce a three-
dimensional array of optical tweezers which capture single
atoms and arrange them at target positions. The distance
of all edged atoms is d = 7.0 µm, which is smaller than
Rydberg blockade distance rB = 10 µm. The van der Waals
interaction of the edged atoms at is U/(2π ) = 8.70 MHz. The
Rydberg excitation laser system excites the ground-state
atoms to the Rydberg state |1〉 = |71S1/2, mJ = 1/2〉 by
the two-photon process through the near-resonant inter-
mediate state |i〉 = |5P3/2, F ′ = 3, m′

F = 3〉, utilizing 780-
nm (a homemade external-cavity diode laser) and 480-
nm (Toptica TA-SHG Pro) lasers, of which the laser
frequencies are stabilized down to a narrow linewidth
of <30 (2π ) kHz with a proportional-integral-derivative
(PID) controller (Toptica FALC 110) and an ultralow

expansion (ULE) cavity (Stable Laser Systems, finesse
15 000). The two-photon Rabi frequency at the inten-
sity peak of the lasers is �0 = �0i�i1/2�m = 1 (2π ) MHz,
where �0i = 93 (2π ) MHz and �i1 = 14 (2π ) MHz are
the one-photon Rabi frequencies for the |0〉-|i〉 and |i〉-|1〉
transitions, respectively, and �m = 660 (2π ) MHz is the
intermediate detuning. The detection apparatus combines
an electron-multiplying charge-coupled device (Andor iXon
Ultra 897) and an electrically tunable lens (ETL, EL-16-40-
TC of Optotune) to image the fluorescence of ground-state
single atoms via the |5S1/2, F = 2〉-|5P3/2, F = 3〉 transition.

The experimental procedure of the quantum computing of
the 3-SAT problem starts with an experimental MIS graph,
chosen among GExp

1,2,3, of atoms arranged with optical tweezers
and initially prepared in |0〉⊗|G|. After we turn off all the opti-
cal tweezers, we turn on Rydberg excitation and adiabatically
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TABLE I. Many-body ground states of GExp
1 , GExp

2 , and GExp
3 graphs represented in symmetric base states defined by

|S1〉 = (|001; 01; 100〉 + |010; 01; 100〉)/
√

2, |S2〉 = (|001; 01; 001〉 + |001; 01; 010〉)/
√

2, |S3〉 = (|001; 10; 001〉 + |001; 10; 010〉)/
√

2,
|S4〉 = (|010; 01; 001〉 + |010; 01; 010〉)/

√
2, |S5〉 = (|010; 10; 001〉 + |010; 10; 010〉)/

√
2, and |S6〉 = (|100; 01; 001〉 + |100; 01; 010〉)/

√
2.

Graph State representation Many-body ground states of Ĥ (GExp
1,2,3) in their MIS phase

GExp
1 |x1x2x3; x̄1x4; x1x5x6〉

√
49

200 (|S2〉 + |S4〉) +
√

9
50 (|S1〉 + |S6〉)

+
√

3
50 |100; 01; 100〉 +

√
9

200 (|S3〉 + |S5〉)

GExp
2 |x1x2x3; x̄1x̄2; x1x5x6〉 ⊗ |a1a2〉

√
1

50 |S3〉 ⊗ (
√

18
10 |01〉 +

√
63
10 |10〉) +

√
3

500 |S5〉 ⊗ |01〉
+(

√
197
500 |S2〉 +

√
107
500 |S6〉) ⊗ |10〉

+(
√

131
1000 |001; 01; 100〉 +

√
93

1000 |100; 01; 100〉) ⊗ |10〉
GExp

3 |x1x2x3; x̄1x̄2; x1x̄3x6〉 ⊗ |a1a2〉 ⊗ |a3a4〉
√

1
1000 |001; 10; 001〉 ⊗ (

√
46|01〉 + √

53|10〉) ⊗ |01〉
+

√
46

1000 |010; 10; 001〉 ⊗ |01〉 ⊗ (|01〉 + |10〉)

+
√

17
1000 |010; 10; 010〉 ⊗ |01〉 ⊗ |10〉

+(
√

121
1000 |001; 01; 001〉 +

√
65

1000 |001; 01; 100〉) ⊗ |10〉 ⊗ |01〉
+

√
46

1000 |100; 01; 010〉 ⊗ |10〉 ⊗ |10〉
+(

√
4
25 |100; 01; 001〉 +

√
3
25 |100; 01; 100〉) ⊗ |10〉 ⊗ (|01〉 + |10〉)

change the Hamiltonian from Ĥ (� = −0.7�0,� = 0, t = 0)
for the paramagnetic phase to Ĥ (� = �0,� = 0, t = t f ) for
the MIS phase, along the control path denoted in the phase
diagram [27,28] in Fig. 3. The control parameters � and
� are changed with a radio-frequency synthesizer (Moglabs
XRF) and acousto-optic modulators (AOMs) in a method
similar to that introduced in Refs. [22,23], with �0/(2π ) =
1.0 MHz, �0/(2π ) = 5 MHz, and t f = 2.88 µs. After the
quantum annealing, all optical tweezers are turned back to
recapture resulting ground-state atoms, which are then imaged
to record a resulting experimental MIS solution. The above

TABLE II. Atom positions of GExp
1 , GExp

2 , GExp
3 , and GAlt

1 .

Graphs Atom positions (x, y, z) (µm)

GExp
1 x1: (−1.51, −0.97, 0) x2: (4.01, −5.28, 0)

x3: (−2.49, −7.90, 0) x̄1: (−1.70, 6.03, 0)
x4: (4.09, 9.97, 0) x1: (−8.47, 7.80, 0)
x5: (−12.35, 1.97, 0) x6: (−15.46, 8.24, 0)

GExp
2 x1: (−1.51, −0.97, 0) x2: (4.01, −5.28, 0)

x3: (−2.49, −7.90, 0) x̄1: (−1.50, 6.03, 0)
x̄2: (4.09, 9.97, 0) x1: (−8.47, 7.80, 0)
x5: (−12.35, 1.97, 0) x6: (−15.46, 8.24, 0)
a1: (9.69, −1.20, 0) a2: (9.71, 5.80, 0)

GExp
3 x1: (−1.51, −0.97, 0) x2: (4.01, −5.28, 0)

x3: (−2.49, −7.90, 0) x̄1: (−1.50, 6.03, 0)
x̄2: (4.09, 9.97, 0) x1: (−8.47, 7.80, 0)
x̄3: (−12.35, 1.97, 0) x6: (−15.46, 8.24, 0)
a1: (9.69, −1.20, 0) a2: (9.71, 5.80, 0)
a3: (−9.05, −10.36, 0) a4: (−13.50, −4.93, 0)

GAlt
1 x1: (−7.20, 0.03, 0) x2: (−13.44, 3.60, 0)

x3: (−13.44, −3.60, 0) x̄1: (0, 0, 0)
x4: (3.60, 0, 6.24) x1: (3.60, 0, −6.24)
x5: (3.60, 0, −13.44) x6: (9.84, 0, −9.84)

procedure is repeated M = 5235, 5000, and 8000 times for
GExp

1 , GExp
2 , and GExp

3 graphs, respectively, to obtain the prob-
ability distribution of all 2|G| binary-spin configurations of
all atoms.

V. RESULTS AND ANALYSIS

Experimental results are shown in Figs. 2(d)–2(f) for GExp
1 ,

GExp
2 , and GExp

3 , respectively, where the experimentally most
likely probabilities are plotted for all binary configurations
of literal atoms with the x axis denoting atoms in |1〉 only,
and all antiblockade atom configurations (of little probabili-

FIG. 3. Phase diagram of Ĥ (GExp
1 ) with the control path is shown

with an arrow from the paramagnetic phase via the order-by-disorder
(OBD) phase to the MIS phase. The phase diagrams of Ĥ (GExp

2 ) and
Ĥ (GExp

3 ) are similar.
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ties) are omitted for the sake of presentation. The maximum
likelihood probability calculation [29] assumed state prepara-
tion and measurement (SPAM) errors [30], P(1 | 0) = 3.9%
and P(0 | 1) = 7.9%, which are experimentally calibrated.
Also the Rydberg quantum-wire compilation method [23] is
used to impose the antiferromagnetic atom chain condition,
|a1a2〉 and |a3a4〉 = |01〉 or |10〉 among collected experi-
mental data. In Figs. 2(d)–2(f), orange bars are the 3-SAT
solution states with one atom excited in each clause, while
gray bars are nonsolution states. For example, in Fig. 2(d)
for GExp

1 , the maximal peak (i) of |x1, x2, x3; x̄1x4; x1, x5, x6〉 =
|001; 01; 001〉 is a 3-SAT solution and the peak (ii) of
|001; 00; 001〉, in which two atoms in C1 and C0 are excited but
none in C1, is not a solution. Similarly, most of the dominant
peaks in Figs. 2(d)–2(f) are verified to be 3-SAT solutions,
which are orange colored, e.g., {x1, x4, x1}, {x1, x4, x5}, · · · ,
{x3, x4, x6} for �1, {x1, x̄2, x1}, {x1, x̄2, x5}, · · · , {x3, x̄2, x6} for
�2, and {x1, x̄2, x1}, {x1, x̄2, x̄3}, · · · , {x3, x̄2, x6} for �3.

For comparison, the insets of Figs. 2(d)–2(f) show a nu-
merical simulation of the same physical process traced with
a Lindbladian equation taking into account experimental er-
ror sources such as the spontaneous decay rate (γ /2π =
30 kHz) and laser phase noise. The numerical simulations are
conducted to compare our experimental results of the experi-
mental graphs GExp

1 , GExp
2 , and GExp

3 . We take into account the
spontaneous decay from the intermediate state |i〉, in calculat-
ing the Lindblad equation given by

dρ

dt
= − i

h̄
[H, ρ] +

N∑
j=1

(
LjρL†

j − 1

2
{L†

j L j, ρ}
)

, (5)

where ρ is the density matrix, H is the system Hamiltonian,
and Lj = √

γi/2σ
( j)
z is the Lindblad operator. For our detun-

ing from |i〉 and the Rabi frequencies, the scattering rate to
|i〉 is estimated to be γ = (2π ) 30 kHz. Then the numeri-
cal calculation is conducted with the Monte Carlo method
to consider the laser phase noise, according to a measured
spectral density of the noise which is about 104 rad2/Hz in
the range of the MHz. We also consider the nonuniform Rabi
frequencies of the individual atoms, which are 85%–99.8%
from the Rabi frequency at the laser beam center, due to the
finite diameter of 50 µm and the fluctuation of atom positions
δx = 0.1 µm, δy = 0.1 µm, δz = 0.6 µm [17]. The difference
between the simulation and experiment is attributed to mainly
the distance error between atoms and the laser beam center,
which results in nonuniform Rabi frequencies of atoms in
Eq. (3).

Finally we determine whether the satisfiability of a 3-SAT
instance is experimentally checkable, i.e., whether the total
probability of the MIS solution states is measured higher
than the corresponding random guess probability. In random
guessing, we can substitute all possible {x1, x2, x3, x4, x5, x6}
cases to �1, �2, and �3. However, as x4 is a do-not-care term
in the �2 and �3 cases and similarly x5 is a do-not-care term
in the �3 case only, all {x1, x2, x3, x4, x5, x6}’s are applicable
to �2, and �3 as well as �1. Numerical simulation finds that
the random guessing probabilities are 53.13%, 53.13%, and
50% for �1, �2, and �3, respectively. In our experiments,
the probabilities of the orange bars in Fig. 2(d) for GExp

1

FIG. 4. Estimation of the required number of atoms for MIS
graphs mapped from 3-SAT problems. The lower bound is estimated
from 3-SAT instances with no negation literal pairs and restricted to
3NC (black dashed line). The upper bound is calculated from 3-SAT
instances with maximal negation literal pairs (red dots) and scaled
to 4.88NC

1.8 (solid line). It is also compared with the scaling result
when the “crossing lattice” scheme is used (blue dotted line).

are summed to be 81%, significantly higher than the random
guess probability 53.13% of this instance. Likewise, the sat-
isfiabilities of �2 and �3 are sufficiently evaluable with the
measured probabilities 78% (GExp

2 ) and 74% (GExp
3 ), higher

than 53.13% and 50% of these instances, respectively.

VI. DISCUSSION

While all MIS graphs are in principle implementable in
the three-dimensional space with quantum wires [17], it is
worthwhile to discuss the scaling issue of the Rydberg atom
approach to the 3-SAT problem. First, we estimate the num-
ber of atoms, NA, necessary for general 3-SAT instances.
For a Boolean expression that has NC clauses, the lower
bound is NA � 3NC . The upper bound is the case of max-
imal literal-negation pairs, as the corresponding MIS graph
has maximal interclause interactions. Physical implementa-
tion requires auxiliary atoms using either the “crossing lattice”
scheme [31] or the “quantum wire” scheme [17], both of
which have recently been suggested and are experimentally
demonstrable. In the “crossing lattice” scheme, each vertex is
transformed to an atom chain on a 2D surface, and the inter-
actions between the vertices are implemented with “crossing
gadgets” of at most 8 atoms. So, the upper bound of NA is
estimated to be 36NC

2 for a 3NC-vertex nonunit disk graph
with arbitrary connectivity. In the “quantum wire” scheme, we
numerically estimate the upper bound of the required number
of atoms for implementing the MIS graphs as in Fig. 4, where
we assume all interclause interactions are implemented with
quantum wires consisting of an average of 4 atoms. The upper
bound of the total number of atoms scales as ∼4.88NC

1.8,
obtained from the curve fit of calculated values (solid line),
being compared with the scaling of the “crossing lattice”
scheme (blue dotted line). So, in the “quantum wire” scheme,
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FIG. 5. Ground-state fidelity |〈G1|ψ f 〉|2 according to the struc-
tural deformation from GExp

1 to GAlt
1 with respect to a normalized

rotation angle α.

the required number of total atoms is numerically estimated
to be upper-bounded by a scaling of NC

1.8 for the case of
maximal literal-negation pairs and linear to NC for the case
of maximum degree 6 in 3D [32].

We can estimate the experimental time budget to access
a large-scale 3-SAT problem. The probability to successfully
obtain the solutions of the 3-SAT problem, after M experi-
mental repetitions, is given by

Ps(p, M ) =
M∑

j=1

(1 − p) j−1 p = 1 − (1 − p)M, (6)

where p is the ground-state probability of the correspond-
ing MIS graph of NA atoms. With the experimental scaling
p ∼ 1.04−NA of a state-of-the-art experimental platform [18],
the ground-state probability of an NA = 400 MIS graph is
estimated to be p(NA = 400) ∼ 10−7. The required number
of repetitions to achieve Ps > 20%, for example, is given by
M > log10 0.8/ log10(1 − p), which estimates about M ∼ 106

experimental repetitions. So, an NA = 400 MIS graph exper-
iment, which can serve 3-SAT instances with approximately
12 ∼ 140 clauses, would take one week in the typical repeti-
tion rate of 2 ∼ 3 Hz of the current experimental platforms.

Technical improvements can be considered for future ex-
periments, which include three-dimensional Rydberg atom
graphs and adiabatic control path optimization. First, the fi-
delity of the many-body ground state depends on the residual
interactions between the atoms placed outside the blockade
distance dB, which are small but not zero. So arranging atoms
in the full three-dimensional space would be useful to de-
scribe the Hamiltonian Ĥ (G) as exactly as possible so that
the long-range interactions are minimized. In Fig. 5, we cal-
culate the fidelity |〈H (GExp

1 )|� f 〉|2, where |H (GExp
1 )〉 is the

analytic many-body ground state of H (GExp
1 ) and |� f 〉 is the

numerically estimated final many-body state after the quasia-
diabatic evolution under our experimental condition (without
decoherence taken into account). For the experimental graph
GExp

1 in 2D, the fidelity is estimated to be 81%, due to the

contribution of long-range residual Rydberg interactions
among atoms spaced beyond the Rydberg blockade radius.
In our atomic arrangements for GExp

1 , the average strength of
the residual interactions is 〈Ures〉/2π = 0.64 MHz, and their
distribution is asymmetric. However, we can transform the
structure of GExp

1 to an alternative graph GAlt
1 , which is more

symmetric in geometry (see Table II for atomic positions). A
structural transformation is conducted as in Fig. 5, by rotating
the clauses C0, C1, and C2 with respect to the edges from the
literal atom x̄1 (central atom), respectively. These geometric
changes are parametrized to a normalized rotation angle α (0
at GExp

1 , and 1 at GAlt
1 ). For the graph GAlt

1 , the average resid-
ual interaction strength is reduced to 〈Ures〉/2π = 0.40 MHz.
Then it is found that the ground-state fidelity |〈H (GExp

1 )|� f 〉|2
after the same quasiadiabatic evolution is improved to 90%.
So three-dimensional atom allocations have more degrees
of freedom for better experimental performances. Figure 5
shows the improvement of the ground-state fidelity |〈G1|ψ f 〉|2
during the structural transformation. We expect to compare
the experimental fidelity of the suggested 3D atomic graph
GAlt

1 in the near future, though we cannot currently make the
experimental consistency between 2D and 3D graphs. The
existing experimental errors such as the hardness of preparing
the uniform 3D traps and imaging them are to be overcome.

Adiabatic control path optimization can be also consid-
ered. For example, along the Hamiltonian path in Fig. 3,
the optimal time schedule of the annealing path �(t ) dur-
ing the constant �(t ) might be other than the linear ramps
due to the structure of the eigenenergy landscape in the con-
trol path. One way to find a time schedule for obtaining
better ground-state probability is to apply an adiabaticity pa-
rameter γ = |δE2(t )/�̇(t ))|, where δE (t ) is the energy gap
between the ground and the first excited eigenstates at t .
Then the proper time schedule of �(t ) can be found within
a regime of γ � 1 for all t [33]. For larger and more complex
problem instances in which the energy gaps are hard to be
known, closed-loop optimization methods might be applied.
An ansatz of the control path is initially guessed, then updated
according to the overlap of the ground state of the system. The
recently suggested approaches of closed-loop optimizations
are using genetic [34] and variational [35] methods. In the
genetic approach, the time schedule �(t ) is often modeled to
a polynomial ansatz, then the coefficients of the polynomial
are found to optimize the ground-state probability after the
adiabatic evolution. In the variational approach, the entire
time window for adiabatic evolution is divided into several
chunks. For L chunks, the detunings �i in each chunk where
i ∈ {1, · · · , L} are to be found. The annealing path becomes
the piecewise linear sweeps between adjacent detunings �i.

VII. CONCLUSION

In summary, Rydberg atom interactions have been used to
encode and solve the 3-SAT problem, a task involving deter-
mining the satisfiability of a Boolean function. The proposed
Rydberg 3-SAT algorithm achieves this by constructing a gen-
eral Boolean function using the three types of building blocks:
Rydberg atom dimers, trimers, and quantum wires. The
satisfiability of the function is then ascertained by searching
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for its ground state within the structured Rydberg atom ar-
rangement. Consequently, this implementation of the 3-SAT
problem through a Rydberg atom graph has the potential
to encode various decision-based computational challenges
associated with NP problems. It is noted that the presented
proof-of-principle experiments do not imply computational
advantage over classical heuristic solvers. Instead, their value
lies in surpassing classical brute force methods. To ad-
vance the Rydberg atom approach toward quantum computing

further, not only technical improvements of Rydberg atom
experiments but also quantum-classical combined algorithmic
developments are warranted.
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