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We formulate the expectation value of the Bell-Żukowski operator acting on qubit states of a
two-particle Bell experiment. By using the equivalence between a set of N copies of a two-qubit
experiment and a standard two-setting Bell experiment in an entangled 2N -particle state, we obtain
an inequality, which we may call the Bell-Żukowski inequality. It determines whether the measured
correlation functions of two-particle states can be modeled locally and realistically. In this Bell
experiment of two particles, the conflict between local realism and quantum mechanics is discussed
in conjunction with the violation of the Bell-Żukowski inequality. The main point of the result is
that the Bell-Żukowski operator can be represented by the Bell-Mermin operator.
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I. INTRODUCTION

Bell inequalities that correlation functions satisfying
local realistic theories must obey can be violated by cer-
tain quantum predictions, as Bell reported in 1964 [1].
Bell used the singlet state, or EPR pairs [2], to show that
the correlation functions measured in such singlet states
cannot be modeled by local realistic models. Likewise,
a certain set of correlation functions produced by quan-
tum measurements of a quantum state contradicts cer-
tain predictions of local realistic theories. Those states
also cannot be modeled by local realistic models. Up
to now, local realistic theories have been studied exten-
sively [3–5]. Many experiments have shown that Bell
inequalities and local realistic theories are violated [6–
10]. Later, in a work by Fine [11], a set of correlation
functions can be described with the property that they
are reproducible by local realistic theories for a system
in two-partite states if and only if the set of correlation
functions satisfies the complete set of (two-setting) Bell
inequalities. This result is generalized [12,13] to a sys-
tem described by multipartite states in the case where
two dichotomic observables are measured per site. In this
paper, we present a method using two Bell operators [14]
to refute local realistic models of a quantum state. In or-
der to do so, we need only a two-setting and two-particle
Bell experiment reproducible by local realistic theories.
Such a Bell experiment also reveals the conflict between
local realism and quantum mechanics in the sense that
the Bell-Żukowski inequality [15] is violated.
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Let us consider two-qubit states that, under specific
settings, give correlation functions reproducible by local
realistic theories. Imagine that N copies of the states can
be distributed among 2N parties in such a way that each
pair of parties shares one copy of the state. The parties
perform a Bell-Greenberger-Horne-Zeilinger (GHZ) 2N -
particle experiment [12,13,16,17] on their qubits. Each of
the pairs of parties uses the measurement settings noted
above. The Bell-Mermin operator [14, 18], B, for their
experiment does not show any violation of local realism.
Nevertheless, one can find another Bell operator, which
differs from B by a numerical factor, that does show such
a violation. That is, the original two-qubit states cannot
be modeled by local realistic models.

More specifically, the situation is as follows: A given
two-setting and two-particle Bell experiment is repro-
ducible by local realistic theories. However, the experi-
mental correlation functions can compute a violation of
the Bell-Żukowski inequality. Therefore, actually mea-
sured data reveal that the measured state cannot be
modeled by local realistic models. Thus, a conflict be-
tween local realism and quantum mechanics is revealed.
We can see this phenomenon by the simple algebra pre-
sented below.

This phenomenon can occur when the system is in a
mixed two-qubit state. We analyze the threshold visi-
bility for two-particle interference to reveal the conflict
mentioned above. It is found that the threshold visi-
bility agrees with the value to obtain a violation of the
Bell-Żukowski inequality.
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Fig. 1. Schematic diagram of a standard two-setting Bell
experiment in an entangled state in twelve particles with
the Bell-Mermin operator BN2N = 2(2N−1)/2(|Ψ+

0 〉〈Ψ+
0 | −

|Ψ−0 〉〈Ψ−0 |) acting on Greenberger-Horne-Zeilinger states
|Ψ±0 〉 = (|0⊗2N 〉 ± |1⊗2N 〉)/√2.

II. BELL-MERMIN OPERATOR AND
BELL-ŻUKOWSKI OPERATOR

Let us consider the following specific Bell-Mermin op-
erator (see Eq. (16)):

BN2N = CB(|Ψ+
0 〉〈Ψ+

0 | − |Ψ−0 〉〈Ψ−0 |), (1)

where CB is a constant and the states |Ψ±0 〉 are
Greenberger-Horne-Zeilinger (GHZ) states [19], i.e.,

|Ψ±0 〉 =
1√
2
(|0⊗2N 〉 ± |1⊗2N 〉). (2)

An average of the Bell-Mermin operator, 〈BN2N
〉, is,

then, evaluated by using a standard two-setting Bell ex-
periment. Figure 1 depicts the standard two-setting Bell
experiment in an entangled state in twelve particles with
the Bell-Mermin operator BN2N(N=6) acting on the GHZ
states |Ψ±0 〉.

Also, a 2N -partite Bell operator Z2N [20], which we
may call the Bell-Żukowski operator, can be introduced
as

Z2N = CZ(|Ψ+
0 〉〈Ψ+

0 | − |Ψ−0 〉〈Ψ−0 |), (3)

where the numerical coefficient is CZ = (π/2)2N/2. An
average of the Bell-Żukowski operator is evaluated by
using an all-setting Bell experiment, as depicted in Fig. 2,
where a Bell-Żukowski experiment is performed on an
entangled state of 2N particles.

The Bell-Żukowski operator, Z2N , is different from
the Bell-Mermin operator, BN2N

, given in Eq. (1), only
by a numerical factor, CB/CZ . Therefore, the specific
two-setting Bell 2N -particle experiment in question com-
putes an average value of the Bell-Żukowski operator,
〈Z2N 〉, when an average value of the Bell-Mermin oper-
ator, 〈BN2N

〉, is evaluated as

〈Z2N 〉 =
CZ

CB
〈BN2N 〉. (4)

Fig. 2. Schematic diagram of a Bell-Żukowski experi-
ment in an entangled state of twelve particles with the Bell-

Żukowski operator Z2N = 1
2

(
π
2

)2N 1

2(2N−1)/2 BN2N .

This argument becomes valid, of course, under the
assumption of quantum mechanics, as shown in Fig. 3.
In particular, the Bell-Żukowski inequality, |〈Z2N 〉| ≤ 1
[15], is derived under the assumption of predetermined
‘hidden’ results of the measurement for all directions in
the rotation plane for the system in a particular state,
or the rotational invariance of the ‘hidden’ results. The
Bell-Mermin inequality is, however, derived under the
assumption of predetermined ‘hidden’ results of the mea-
surement for two directions for the system in the partic-
ular state. Therefore the validity of quantum mechanics,
in particular, the assumption of rotational invariance is
tested in conjunction with the equivalence between the
standard two-setting Bell experiment, in an entangled
2N -particle state and the Bell-Żukowski experiment, or
a set of N copies of a two-qubit Bell experiment.

The Bell-Żukowski inequality, |〈Z2N 〉| ≤ 1, imposes
an inequality on the average value of the Bell-Mermin
operation, 〈BN2N 〉, i.e.,

|〈BN2N
〉| ≤ CB

CZ
. (5)

We see that a violation of the condition in Eq. (5) implies
a violation of the Bell-Żukowski inequality. In this Let-
ter, we compute an expectation value of the Bell-Mermin
operator given in Eq. (1) by using a two-particle Bell ex-
periment reproducible by local realistic theories. The
Bell-Żukowski inequality is stronger than the standard
Bell inequalities for N ≥ 2. This is why a standard
Bell experiment reproducible by local realistic theories
reveals the conflict between local realism and quantum
mechanics.

III. EXPERIMENTAL SITUATION

We consider that there are 2N parties sharing N copies
of two-qubit states in such a way that each pair of the N
pairs of the parties shares one copy of a two-qubit state.
The density matrix of the entangled 2N -particle state
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=

Fig. 3. Schematic diagram of the equivalence between a
Bell-Żukowski experiment and a standard two-setting Bell
experiment under the validity of quantum mechanics.

N

=(        )

Fig. 4. Schematic diagram of N copies of two-qubit exper-
iments which are equivalent to a standard two-setting Bell
experiment in an entangled 2N -particle state.

becomes

ρ1,2,···,2N = ρ1,2 ⊗ ρ3,4 ⊗ · · · ⊗ ρ2N−1,2N , (6)

where ρa,b denotes a pair of particles in a two-qubit state,
or

ρa,b = V |ψ〉〈ψ|+ (1− V )ρnoise (0 ≤ V ≤ 1). (7)

The value of V is the interferometric visibility of the two-
particle correlation experiment for the two-qubit state in
a mixed state of a Bell state

|ψ〉 =
1√
2
(|+a; +b〉 − i|−a;−b〉) (8)

and the random admixture ρnoise = 11/4.
Then, spatially separated 2N observers perform mea-

surements on each of 2N particles. If space-like in-
tervals separate the events, those N measurements be-
come equivalent to a standard two-setting Bell exper-
iment in the entangled 2N -particle state, ρ1,2,···,2N , in
Eq. (6). The schematic diagram of the equivalence be-
tween N copies of two-qubit experiments and a standard
two-setting Bell experiment in the entangled 2N -particle
state is shown in Fig. 4.

In the Bell state in Eq. (8), the states |±k〉 denote
eigenstates of the z-component of the Pauli observable,
σk

z , for the kth observer. Then, for the two-qubit state,
ρa,b, we get

tr[ρa,bσ
a
xσb

x] = tr[ρa,bσ
a
yσb

y] = 0,

tr[ρa,bσ
a
xσb

y] = tr[ρa,bσ
a
yσb

x] = V, (9)
where a and b are the labels of two parties and σk

x and σk
y

are the x-component and the y-component of Pauli-spin
operators, respectively. It is known (see, for example, in
Ref. 11) that the local realistic condition imposes a set
of inequalities for the following combinations of the joint
probabilities:

|tr[ρa,bσ
a
xσb

x]− tr[ρa,bσ
a
yσb

y]± tr[ρa,bσ
a
xσb

y]± tr[ρa,bσ
a
yσb

x]| = 2V ≤ 2,

|tr[ρa,bσ
a
xσb

x]∓ tr[ρa,bσ
a
yσb

y]± tr[ρa,bσ
a
xσb

y]− tr[ρa,bσ
a
yσb

x]| = 0 ≤ 2.

(10)

We now perform a two-orthogonal-setting Bell-GHZ
2N -particle correlation experiment with two measure-
ment observables σk

x and σk
y . These two settings of mea-

surements performed on each pair of parties to evaluate
the inequalities in Eq. (10). The inequalities for the cor-
relation measurements on a pair of particles in a two-
qubit state is simply applicable to obtain the inequali-
ties for the set of 2N particles in N two-qubit states.
Therefore, it should be that given 22N correlation func-
tions are described with the property that they are re-
producible by local realistic theories. In other words, the
Bell-Mermin operators do not show any violation of local

realism as shown below.
The Bell-Mermin operators BN2N

and B′
N2N

defined
with the measurement observables σk

x and σk
y are

f(BN2N
, B′

N2N
) =

2N∏

k=1

f(σk
x, σk

y ), (11)

where f(x, y) = 1√
2
e−iπ/4(x + iy), x, y ∈ R is invertible

as x = <(f)−=(f) and y = <(f) +=(f) [16,18]. Then
the Bell-Mermin inequality can be expressed as [18]

|〈BN2N 〉| ≤ 1, |〈B′
N2N

〉| ≤ 1. (12)
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From the definition of the function f , the measure-
ment settings of σk

x and σk
y are mapped to |+k〉〈−k| and

|−k〉〈+k| as

f(σk
x, σk

y ) = e−i π
4
√

2|+k〉〈−k|, (13)

as σk
x = |+k〉〈−k| + |−k〉〈+k|, σk

y = −i|+k〉〈−k| +
i|−k〉〈+k| and f(σk

x, σk
y ) = e−iπ/4/

√
2(σk

x + iσk
y ) [21].

Furthermore, the product of the function of the mea-
surement settings in Eq. (13) for all the pairs of 2N par-
ticles is obtained as

2N∏

k=1

f(σk
x, σk

y ) = e−i 2Nπ
4 2N

2N∏

k=1

|+k〉〈−k|

= e−i 2Nπ
4 2N |+⊗2N 〉〈−⊗2N |. (14)

Therefore, we get the Bell-Mermin operator BN2N

BN2N
= 2N

{
1
2 (e−i 2Nπ

4 |+⊗2N 〉〈−⊗2N |+ H.c.)

+ i
2 (e−i 2Nπ

4 |+⊗2N 〉〈−⊗2N | −H.c.)
}

= 2N√
2
(e−i

(2N−1)π
4 |+⊗2N 〉〈−⊗2N |+ H.c.), (15)

or

BN2N
=

2N

√
2
(|Ψ+

0 〉〈Ψ+
0 | − |Ψ−0 〉〈Ψ−0 |). (16)

where e−i(2N−1)π/4|+⊗2N 〉 = |1⊗2N 〉. The constant CB

in the Bell-Mermin operator in Eq. (1)is obtained as
CB = 2N/

√
2. This implies that the 22N correlation

function measured by the Bell-Mermin operator, BN2N ,
performed on the prepared entangled state of 2N parti-
cles is represented as a function of N measurements on
each pair of 2N particles.

Furthermore, for any subset α ⊂ N2N , Bα and B′
α

become

f(Bα, B′
α) =

∏

k∈α

f(σk
x, σk

y ). (17)

When α, β(⊂ N2N ) are disjoint,

f(Bα∪β , B′
α∪β) = f(Bα, B′

α)⊗ f(Bβ , B′
β), (18)

and, as a result, we get the following relations,

Bα∪β = (1/2)Bα ⊗ (Bβ + B′
β)

+(1/2)B′
α ⊗ (Bβ −B′

β),

B′
α∪β = (1/2)B′

α ⊗ (B′
β + Bβ)

+(1/2)Bα ⊗ (B′
β −Bβ). (19)

Therefore, we obtain the average value of the Bell-
Mermin operator as a simple function of the visibility
of the two-particle correlation function

〈BN2N
〉 =

N∏

i=2

〈B{i−1,i}〉 = V N . (20)

This says that the average of the Bell-Mermin operator,
BN2N

, performed on the 2N particles in the entangled
N -qubit states is the product of N measurements on each
pair of 2N particles.

IV. CONCLUSION

As a result of the Bell-Żukowski inequality and the re-
lation between the Bell-Żukowski operator and the Bell-
Mermin operator, CB/CZ ≤ 1 and V N < 1. Therefore
we have a violation of the condition in Eq. (5) for the
value of the visibility in the range of

√
2

(
8
π2

)N

< V ≤ 1, (21)

for N > 2 as CB = 2N/
√

2 and CZ = (π/2)2N/2. So,
for the given value of V , the violation of the measured
two-qubit state cannot be modeled by a local realistic
theory.

We have shown that the Bell-Żukowski operator can
be represented by the Bell-Mermin operator. This fact
provides a means to check whether a quantum state can
be modeled by local realistic models, i.e., if the conflict be-
tween local realism and quantum mechanics occurs. We
have used only a two-setting and two-particle Bell ex-
periment that is reproducible by local realistic theories.
Given a two-setting and two-particle Bell experiment re-
producible by local realistic theories, one can compute
a violation of the Bell-Żukowski inequality. Measured
data, thus, indicate that the measured state cannot be
modeled by local realistic models and, as a result, the
conflict between local realism and quantum mechanics is
revealed.
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