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Strong mutual interaction which correlates elementary excitations of quantum matter plays a key role in
a range of emergent phenomena, from binding and condensation to quantum thermalization and many-
body localization. Here, we employ a Rydberg quantum simulator to experimentally demonstrate strongly
correlated spin transport in anisotropic Heisenberg magnets, where the magnon-magnon interaction can be
tuned 2 orders of magnitude larger than the magnon hopping strength. In our approach, the motion of
magnons is controlled by an induced spin-exchange interaction through far off-resonant driving, which
enables coherent transport of a single Rydberg excitation across a chain of ground-state atoms. As the most
prominent signature of a giant anisotropy, we show that nearby Rydberg excitations form distinct types of
magnon-bound states, where a tightly bound pair exhibits frozen dynamics in a fragmented Hilbert space,
while a loosely bound pair propagates and establishes correlations beyond a single lattice site. Our scheme
complements studies using resonant dipole-dipole interactions between Rydberg states and opens the door
to exploring quantum thermodynamics with ultrastrong interactions and kinetic constraints.
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I. INTRODUCTION

Quantum simulation of spin models has established a
powerful tool for unraveling exotic many-body phases and
dynamics [1–7]. As a pivotal process in quantum magnet-
ism, the quasiparticle spin excitations (magnons) can
propagate through the system by coherent spin exchanges
that conserve the total magnetization [8]. The inclusion
of strong magnon-magnon interaction complicates the
underlying spin transport, where the motion of different
magnons cannot be separated [9–11]. Similar correlated
transport dynamics has been observed in various quantum
systems [12–18], including ultracold atoms engineered by
the superexchange mechanism [13], trapped atomic ions
with phonon mediated spin-spin couplings [18], and
Rydberg atom arrays subjected to resonant dipole-dipole
interactions [16]. These works aim to construct a spin-1=2
Heisenberg model, where the correlations can be tuned by
the anisotropy of the XXZ-type Hamiltonian, defined as the

strength of the magnon-magnon interaction relative to the
spin-exchange rate.
One of the biggest challenges in previous experiments

was to acquire a very large anisotropy, for which the
strongly correlated dynamics is constrained to flip-flops
that conserve not only the total magnetization but also the
number of domain walls. This kinetic constraint is key to
exotic nonergodic dynamics, such as Hilbert space frag-
mentation [19] and quantum many-body scars [20]. In this
work, we demonstrate an approach that can access such an
extremely anisotropic regime on a neutral-atom quantum
simulator, where ground-state atoms are off-resonantly
dressed to a Rydberg state to induce an effective excitation
exchange [21]. As evidence of the large anisotropy, we
show that the propagation of a single Rydberg excitation
significantly slows down in the presence of a nearest-
neighbor (NN) Rydberg excitation, due to the formation of
a tightly bound state. While similar magnon-bound states
have been identified in systems with short-range inter-
actions [13] or moderate anisotropies [18], the large long-
range anisotropy in our work can further support a new type
of bound states with a bond length beyond the nearest
neighbor.
The large anisotropy demonstrated in this work is

enabled by the qubit encoding scheme we use. In a
Rydberg quantum simulator, pseudo-spins can be encoded
in different Rydberg manifolds, where the strong and direct
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dipolar interaction leads to fast coherent dynamics [16,22].
Alternatively, the spins can be represented by different
ground states, which have long lifetime and can be dressed
to Rydberg states to acquire weak but tunable spin-spin
interactions [23–26]. For the hybrid encoding scheme using
one Rydberg and one ground state, the large difference
in energy scales for the spin-up and spin-down states can
give rise to kinetic constraints, which behave as Rydberg
blockade in the resonant driving case [1] and constrained
spin exchanges in the large detuning regime studied here.
The bottom-up analysis of the magnon dynamics presented
in this work thus serves as an important step for under-
standing more complex many-body phases from the con-
strained dynamics [27].

II. EFFECTIVE SPIN EXCHANGE
IN A RYDBERG ISING MODEL

Our experiments are carried out in a chain of 87Rb atoms
initially trapped in an optical tweezer array [see Fig. 1(a)].
We use a two-photon excitation scheme to couple the
ground state j↓i ¼ j5S1=2; F ¼ 2; mF ¼ 2i to the Rydberg
state j↑i ¼ j71S1=2; mJ ¼ 1=2i, which maps the system
onto a spin-1=2 chain described by a tilted Ising
Hamiltonian (taking ℏ ¼ 1, where ℏ is the reduced
Planck constant):

ĤRyd ¼
Ω
2

X
i

σ̂xi − Δ
X
i

n̂i þ
1

2

X
i≠j

Vijn̂in̂j: ð1Þ

Here, σ̂αi are Pauli matrices, n̂i ¼ jriihrij ¼ ð1þ σ̂zi Þ=2
denotes the Rydberg-state projector, and Ω and Δ are
the Rabi frequency and the detuning of the two-photon
transition, respectively. The interaction strength Vij

between Rydberg atoms at sites i and j takes the form
Vij ¼ C6=r6ij, where rij is the distance between the atoms
and C6 > 0 is the van der Waals (vdW) coefficient.
To understand the dynamics of this Rydberg Ising model,

we decompose the original Hamiltonian into ĤRyd ¼
Ĥ0 þ Ω̂D, where Ĥ0 is the diagonal part and Ω̂D ¼
ðΩ=2ÞPi σ̂

x
i is the off-diagonal driving term that can

create or annihilate a single Rydberg excitation. If we
label the eigenstates of Ĥ0 according to the total Rydberg

excitation number N̂ R ¼ P
i n̂i, then Ω̂D only couples

states where N̂ R changes by one. As a result, the coupling

usually admixes different N̂ R subspaces. However, if the
energy difference between adjacent blocks of Ĥ0 is much
larger than the coupling strength Ω, these subspaces
become dynamically decoupled, and only states of the

same N̂ R are coupled with each other via a perturbation
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FIG. 1. Observation of spin-exchange dynamics in a Rydberg atom array. (a) In the experiment, two counterpropagating lasers of
780 and 480 nm drive a two-photon transition, which couples the ground state j5S1=2; F ¼ 2; mF ¼ 2i to the Rydberg state
j71S1=2; mJ ¼ 1=2i via an intermediate state j5P3=2; F ¼ 3; mF ¼ 3i. The trap laser of 820 nm is reused as the individual addressing
beam to provide site-dependent detunings through the ac-Stark shift. Panels (b) and (c) illustrate perturbation mechanisms that induce
two-body and three-body spin-exchange interactions, respectively. (d) Experimental sequence for probing the spin-exchange
dynamics. For the state readout, only atoms in the ground state j↓i are detected, while Rydberg excitations j↑i are detected as loss
(indicated by white circles). (e) Measured spin-exchange dynamics between two atoms, where the population of the states j↑↓i and
j↓↑i are fitted by damped sinusoidal functions. The error bars represent the standard deviation. (f) Plot of jJ=δj as a function of the
distance r. We measure the oscillating population in j↓↑i at different interatomic distances for both positive and negative detunings,
and fit the data to extract the interaction strength J. The error bars represent the 2σ deviation, considering the propagation of error
(see Appendix C).
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process. This perturbation effect occurs predominantly at
the second order and can be described by an effective
Hamiltonian Ĥeff (see Appendix A), which has a U(1)
symmetry corresponding to the conserved Rydberg exci-
tation number N̂ R. Figure 1(b) visualizes the perturbation
process for two atoms, where states j↑↓i and j↓↑i are
coupled by a spin-exchange interaction Jðσ̂þ1 σ̂−2 þ σ̂−1 σ̂

þ
2 Þ

between the ground state and the Rydberg state, with
σ̂�n ¼ ðσ̂xn � iσ̂ynÞ=2. Crucially, the nonvanishing interaction
strength J ¼ Ω2V12=4ΔðΔ − V12Þ is enabled by unequal
energy differences between adjacent N̂ R sectors. These
nonuniform level spacings arise from the vdW interaction
and can lead to complicated magnetization-dependent
spin exchanges. For example, in a three-atom chain
with the central site excited to the Rydberg state [see
Fig. 1(c)], the spin exchange between the first and the
third atom is described by a three-body interaction term
Qðσ̂þ1 σ̂−3 n̂2 þ σ̂−1 σ̂

þ
3 n̂2Þ, where Q ¼ Ω2V13=4ðΔ − V12Þ

ðΔ − V12 − V13Þ is the magnetization-dependent coupling
strength.
To observe these virtual spin-exchange processes, it is

preferable to work in the weak dressing regime Ω ≪ jΔj,
which, however, results in weaker interaction strengths.
Concerning this trade-off, which could be relaxed by a
larger Rabi frequency, our experiments are typically per-
formed with jΔ=Ωj∈ ½1.5; 4�. In this intermediate regime,
we demonstrate that the U(1) symmetry is largely preserved
and the deviation from the effective theory can be sup-
pressed by a postselection measurement. Actually, we can
accurately count Rydberg excitations in each experimental
run by single-site resolved fluorescence imaging, which
projects the spins to an exact microstate. Therefore, when
exploring the dynamics of a specific N̂ R subspace, events
subject to processes breaking the U(1) symmetry can be
discarded, while only states remaining in the given sym-
metry sector are retained [13]. This postselection scheme
has a high success probability and shows good tolerance to
imperfect state initialization.

III. QUANTUM WALK OF A SINGLE MAGNON

We first investigate the dynamics within the N̂ R ¼ 1
subspace of a single Rydberg excitation (magnon). The
effective Hamiltonian for this symmetry sector is a simple
XY model describing coherent hopping of a single mag-
non: Ĥeff ¼

P
i<j Jijðσ̂þi σ̂−j þ σ̂−i σ̂

þ
j Þ þ

P
i μin̂i, where

Jij ¼ Ω2Vij=4ΔðΔ − VijÞ is the rate of the effective spin
exchange, and μi ¼ −Δþ 2δþP

j≠i Jij is the on-site
potential of the magnon with δ ¼ Ω2=4Δ.
As a minimal yet nontrivial example, we begin with two

sites and measure the spin-exchange process j↓↑i ↔ j↑↓i.
To this end, two atoms are loaded into the tweezers and
prepared in state j↓↓i via optical pumping. Then, the trap is
turned off, and the first atom is addressed with a 820-nm

laser, making it off resonant with respect to the transition
driven by the global Rydberg beam. The second atom is on
resonant and subsequently driven to the Rydberg state by a
π pulse, creating the desired initial state j↓↑i. After that, the
global Rydberg beam is significantly detuned to induce the
effective spin exchange. The experimental sequence is
shown in Fig. 1(d), and more details can be found in
Ref. [28]. Figure 1(e) depicts the characteristic oscillation
dynamics measured with Ω ¼ 2π × 1.52 MHz, Δ ¼
2π × 5 MHz, and r ¼ 4.95 μm, where r is the interatomic
distance. It is clearly seen that the oscillation is approx-
imately U(1) symmetric, as it mainly occurs in the
single-excitation subspace, while states j↓↓i and j↑↑i
are rarely populated. The oscillation frequency
∼0.80 MHz drawn from the experiment agrees well with
the perturbation analysis that gives jJj ≈ 0.78 MHz.
Here, the damping of the coherent spin exchange is
mainly caused by uncorrelated dephasings from the
intermediate-state scattering, and the scheme is intrinsi-
cally robust against correlated dephasings from the laser
phase noise (see Appendix E).
We next measure the distance dependence of the inter-

action Jij ¼ JðrijÞ by varying the distance r between the
two atoms. As shown in Fig. 1(f), the measured potential
perfectly matches the theoretical prediction J�ðrÞ ¼
δ=½ðr=rcÞ6 ∓ 1�, where � denotes the sign of the detuning,
and rc ¼ ðC6=jΔjÞ1=6 is a characteristic length. For a
negative detuning (Δ < 0), J−ðrÞ is a soft-core potential
that varies slowly with distance for r < rc and plateaus at δ
for r → 0, while it features a vdW tail ∼1=r6 for r ≫ rc,
similar to the Rydberg-dressing induced interaction
between ground-state atoms [29,30]. The potential for a
positive detuning (Δ > 0) has a distinct behavior: while it
has the same plateau value and asymptotic scaling, JþðrÞ
diverges at r ¼ rc. This singularity is caused by the
facilitation dynamics, where the condition Vi;iþ1 ¼ Δ
makes single-magnon states resonantly coupled with
the two-magnon state j↑↑i, leading to a breakdown of
perturbation theory and the U(1) symmetry. In the facili-
tation regime, it has been shown previously that a small
thermal fluctuation of atomic positions can lead to a
strong Anderson localization, hindering the transport of
the excitation [31]. In contrast, for the U(1) symmetric
regime studied in this work, the plateau of the potential
makes the dynamics insensitive to the fluctuation of
interatomic distance, and a magnon is expected to be
highly delocalized.
To demonstrate that the magnon can exhibit a random

walk behavior that is robust against atomic positional
disorders, we create a larger array containing seven atoms
with a spacing of 4.95 nm. In order to prepare the initial
state j↓↓↓↑↓↓↓i, we apply the individual addressing beam
to shift the detuning of the central site, followed by an
adiabatic ramping of the global Rydberg beam, which only
drives the atom at the center to the Rydberg state [Fig. 2(a)].
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After the initialization, the addressing beam is turned off,
and a red-detuned (Δ < 0) Rydberg driving field is applied
to induce the effective dynamics. The propagation of the
initial excitation can be traced by observing the evolution of
the local Rydberg density hn̂ii, as shown in Fig. 2(b), where
an approximate light-cone wave front can be identified. The
staggered pattern of hn̂ii during the evolution is a clear
evidence of the quantum interference [Fig. 2(c)], as
opposed to the Gaussian distribution in a classical random
walk. In the current system, the existence of uncorrelated
dephasings will eventually destroy the coherence of the
system and lead to a uniform steady distribution. To
quantify the role of the dephasing, we extract the mean
square displacement hx2i of the magnon [Fig. 2(d)] and
find good agreement with simulations based on the Haken-
Reineker-Strobl (HRS) model [32,33], which includes both
coherent magnon hoppings and on-site dephasings (with a
rate γ ¼ 2π × 0.2 MHz). For a larger system, the HRS
model predicts that the magnon will continue to spread with
no steady-state distribution, but its motion has a quantum-
classical crossover: while the initial propagation for
t < 1=γ is governed by a ballistic transport (hx2i ∝ t2),
the spreading will gradually become diffusive with
hx2i ∝ t. Such a scaling crossover can be identified in
future experiments with increased system size.

IV. DYNAMICS OF MAGNON-BOUND STATES

Having explored the single-magnon dynamics, we pro-
ceed to the observation of correlated motions of multiple

magnons. In the two-excitation subspace (N̂ R ¼ 2),
neglecting the essentially uniform on-site potential, the
effective Hamiltonian now reads

Ĥeff ¼
X
i<j≠k

Qijkðσ̂þi σ̂−j n̂k þ n̂kσ̂−i σ̂
þ
j Þ þ

X
i<j

Uijn̂in̂j; ð2Þ

where Qijk ¼ ðGijk þ GjikÞ=2 is the magnetization-
dependent hopping strength with Gijk¼Ω2Vij=4ðΔ−VikÞ
ðΔ−Vik−VijÞ, and Uij ¼ Vij − 4Jij þ

P
l≠i;jðGlij − JliÞ

denotes the density interaction between magnons. Note that
the density interaction Uij ∼ Vij is mainly from the zeroth-
order Hamiltonian Ĥ0, while the exchange interaction Qijk

is induced by the second-order perturbation. This leads to
an important characteristic that jUij=Qijkj ∼ ð2Δ=ΩÞ2 ≫ 1,
which makes Eq. (2) a long-ranged, highly anisotropic
Heisenberg model.
One direct consequence of this large anisotropy is the

emergence of a family of magnon bound states. In an
infinite spin chain, the two-magnon eigenstate jψKi ¼P

i≠j ψKði; jÞσ̂þi σ̂þj j↓↓ � � �↓i can be labeled by the
center-of-mass momentum K, where the wave function
can be factorized as ψKði; jÞ ¼ eiKRϕKðrÞ by introducing
the center-of-mass position R ¼ ðiþ jÞ=2 and the relative
distance r ¼ i − j [34–36]. The bound state has a bounded
wave function ϕKð∞Þ → 0, whose energy is isolated from
the scattering continuum. Therefore, systems initially in the
bound state remain localized in the relative coordinate,
in stark contrast to the scattering state, where individual
excitations propagate freely. Figure 3(a) shows the energy
spectrum and the bound-state wave function for a typical
parameter Δ=Ω ¼ −3 and Vi;iþ1=Δ ¼ −8. The extremely
large nearest-neighbor anisotropy ξ1 ¼ Ui;iþ1=Qi−1;i;iþ1 ≈
684 in this case gives rise to a high-energy bound state
(red curve), where magnons are tightly bounded at a
relative distance r ¼ 1 (nearest neighbors) for all momenta.
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FIG. 2. Quantum random walk of a single Rydberg excitation. (a) Fluorescence image of the prepared initial state in the quench
dynamics. To create the local Rydberg excitation (indicated by white circle), the atom at the central site is detuned by the addressing
beam in a way that only this atom is excited by the global Rydberg beam (see Appendix B). (b) Evolution of the Rydberg density hn̂ii.
Here, we apply postselection and consider only data with a single Rydberg excitation. (c) Distribution of the Rydberg density hn̂ii at
different times. The error bars represent the standard deviation. (d) Mean square displacement hx2i as a function of time. The measured
data, the analytical ballistic estimations, and the calculated results are represented by the circles, the dashed lines, and the solid lines,
respectively, where the dark (light) blue solid lines are calculated with (without) local dephasing. The data shown here are state-
preparation-and-measurement corrected with maximum likelihood estimation (see Appendix D).
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The strong density interaction also has a significant
long-range effect absent in a short-range interacting system
[13]: the next-nearest-neighbor (NNN) anisotropy ξ2 ¼
Ui;iþ2=Qi−1;i;iþ2 ≈ 4 is also quite large, and can thus
support a low-energy loosely bound state (blue curve),
whose wave function ϕKðrÞ has a larger bond length r > 1.
We will focus on these two types of bound pairs in the
experiment, and expect that the same system gives rise to
further varieties of bound states at larger anisotropy or in
different lattice configurations.
To probe the correlated dynamics of the tightly bound

Rydberg pair, we prepare an initial state j↓↓↑↑↓↓i in a six-
atom chain via an adiabatic antiblockade excitation scheme,
where the detuning for the center two atoms are swept
across the resonant pointΔ ¼ Vi;iþ1=2. We then quench the
system to a fixed detuning and measure the evolution of the
two-site correlator Γij ¼ hσ̂þi σ̂þj σ̂−i σ̂−j i. For a postive detun-
ing Δ ¼ 2π × 12 MHz, the observed correlation function
propagates almost perfectly along the directions j ¼ i� 1
[see the upper panels of Fig. 3(c)], demonstrating that two
Rydberg excitations move in a correlated manner as
expected [see Fig. 3(b)]. In fact, the large NN anisotropy
ξ1 ≈ −35 in our experiment makes the total NN-Rydberg
bonds N̂ RR ¼ P

i n̂in̂iþ1 another conserved charge. The
tightly bound Rydberg pairs constitute the symmetry sector
ðN̂ R ¼ 2; N̂ RR ¼ 1Þ, whose dynamics are governed by an

NNN hopping term Q
P

iðσ̂þi σ̂−iþ2n̂iþ1 þ H:c:Þ. Here, the
strength Q ¼ Qi;iþ2;iþ1 corresponds to the exchange proc-
ess illustrated in Fig. 1(c) and determines the propagation
speed of the tightly bound pair. To further confirm this
analysis, we turn the detuning to a negative value
Δ ¼ 2π × −3.3 MHz, with which the single-magnon hop-
ping strength J ¼ Ji;iþ1 remains unchanged, but the mag-
netization-dependent hopping is significantly reduced
(Q ¼ 0.13 → 0.01 MHz). Consistent with the theoretical
prediction, the dynamics of the system becomes almost
frozen within the timescale T ∼ 2π=J [see the lower panels
of Fig. 3(c)], at which a single Rydberg excitation should
already spread over the lattice. Note that the slight spread-
ing of the correlator at late time is mainly caused by the
imperfect state initialization rather than by excitation
hopping. The frozen dynamics observed here is a clear
signature of the Hilbert space fragmentation: while all
tightly bound states j� � �↑i↑iþ1 � � �i share the local sym-
metry (N̂ R and N̂ RR), they form dynamically disconnected
Krylov subspaces of dimension one (frozen states). In fact,
taking only NN vdW interactions into consideration (in
accordance with a vanishing NNN hopping strengthQ), the
effective Hamiltonian can be mapped to a folded XXZ
model [37–40], where spin exchanges are constrained by
the conservation of N̂ RR, leading to a strongly fragmented
Hilbert space in the thermodynamic limit.
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nearest-neighbor hoppings (5 → 6, 3 → 4; or 3 → 2, 5 → 4). (e) Evolution of the correlator Γij after preparation of a next-nearest-
neighbor pair of excitation (T ¼ 1.7π=J). The upper panels are measured with a short lattice spacing for which the initial state has a large
overlap ≈0.24 with the bound state. The lower panels are measured with a larger lattice spacing, where the initial state has a small
overlap ≈0.09 with the bound state. The detailed experimental parameters and the exact values of Γmax

ij can be found in Appendix C.
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Unlike the tightly bound state, which has a nearly flat
band in most parameter regimes (corresponding to the
frozen dynamics), the loosely bound pair displays a finite
bandwidth and is therefore more mobile [Fig. 3(a)]. To
observe the propagation of this longer-range bound state,
we prepare a seven-site chain and excite the third and the
fifth atom to the Rydberg level. We first choose a small
lattice spacing of 4.95 μm to achieve large anisotropies
ξ1 ¼ 539 and ξ2 ≈ 1.24, for which the produced initial state
j↓↓↑↓↑↓↓i has a considerable overlap (≈0.24) with the
loosely bound state. The upper panels of Fig. 3(e) depict
the evolution of the experimentally extracted correlation
function Γij. In contrast to the tightly bound pair, whose
transport is determined by an NNN hopping term, the
correlated motion of the loosely bound pair is mediated by
two successive NN hopping processes [Fig. 3(d)], as
evident from the predominant spreading of Γij along the
directions i ¼ j� 2. As a comparison, we then increase
the interatomic distance to 8.5 μm, at which the NNN
anisotropy ξ2 ≈ −0.52 is too small to support the long-
range bound state for most values of the momenta. In this
regime, the observed correlator Γij rapidly spreads over the
entire zone with no preferred propagation direction [see the
lower panels of Fig. 3(e)], which suggests that the two
Rydberg excitations are not bounded to each other but
propagate freely [18].
To further confirm the existence of the bound state,

we extract their participation ratios (BR) from the measured
correlation map, where the ratios for the tightly bound
state and the long-range bound state are defined as BR1 ¼P

i Γi;iþ1=Γtot and BR2 ¼
P

i Γi;iþ2=Γtot, respectively, with
Γtot ¼

P
i<j Γij. For the system size realized in our experi-

ment, the reflection from the boundary can lead to a
finite BR1 and BR2 even in the absence of magnon
interactions. To estimate this finite-size effect and get a
lower reference value for the participation ratio, we assume
a uniform thermal distribution of the magnons with
Γij ¼ 2=LðL − 1Þ, where L denotes the system size. As
confirmed by Fig. 4, the measured ratio is much larger than
this lower bound (dashed curves) during the free-magnon
relaxation time ∼1=J. Here, the damping of the bound pair
at late time is mainly caused by the local dephasing. It is
here worth pointing out that an atomic positional disorder
may slow down the propagation of bounded magnons
more easily than single magnons, because it contributes a
large disordered binding interaction Uij (especially for the
tightly bound pair). To account for the decoherence, the
positional disorder, as well as other imperfections, we carry
out full numerical simulations based on realistic exper-
imental conditions and the original Rydberg Ising model
(see Appendix D). This full simulation agrees very well
with the experimental data and shows deviations from the
perfectly coherent simulations (see Fig. 4), which suggests
ways for improving the coherence of the dynamics in future
studies (see Appendix E).

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have demonstrated a new approach to
constructing the Heisenberg-type spin model in a Rydberg
atom array. Different from previous schemes realized by
dipolar exchange interaction and Floquet engineering [16],
our approach is based on far off-resonant driving in a
Rydberg Ising Hamiltonian, which can offer a large and
widely tunable anisotropy. In the current experiment, we
focused on the single-magnon and the two-magnon sector.
By improving the coherence of the system and creating
more excitations in a large-scale array, the system may
allow exploration of emergent Hilbert space fragmentation
[39,40] and the Krylov-restricted thermalization of multiple
magnons [19]. The scheme also allows dynamical engi-
neering of spin transport, topological pumping protocols,
and programmable entanglement distributions [21].
Generalizations to higher dimension could lead to richer
physics. In particular, in a 2D lattice, the inclusion of a
multicolor dressing field may enable application of a
synthetic gauge flux [41], which can give rise to topologi-
cally protected chiral motion of the magnon-bound state
and holds promise for observation of a chiral spin
liquid [42].

The data reported in this paper are archived on the
figshare data repository [43].
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APPENDIX A: EFFECTIVE HAMILTONIAN
OF THE SYSTEM

The effective U(1) symmetric model can be constructed
from the Schrieffer-Wolff transformation [44]. Up to the
second-order perturbation, the effective Hamiltonian is

given by Ĥeff ¼ Ĥ0 þ Ĥð2Þ
eff with

Ĥð2Þ
eff ¼ P̂

�
1

2
½Ŝ; Ω̂D�

�
P̂; ðA1Þ

where Ŝ is a generator satisfying ½Ŝ; Ĥ0� þ Ω̂D ¼ 0, and P̂
projects out terms that do not conserve N̂ R. Formally, the
generator can be expressed as

Ŝ ¼ i
Ω
2

X
i

σ̂yi
Δ −

P
j≠iVijn̂j

: ðA2Þ

It is difficult to get an explicit effective Hamiltonian using
the above expression. Therefore, we expand Ŝ in orders of
the Rydberg excitation number that can influence the spin
flip of a single atom at the ith site, i.e.,

Ŝ ¼ ð2i=ΩÞδ
X
i

σ̂yi þ ð2i=ΩÞ
X
i≠j

Jijσ̂
y
i n̂j

þ ði=ΩÞ
X
i≠j≠k

ðGijk − JijÞσ̂yi n̂jn̂k þ � � � ; ðA3Þ

where the effective coupling strengths are given by

δ ¼ Ω2

4Δ
; Jij ¼

Ω2Vij

4ΔðΔ − VijÞ
; ðA4Þ

Gijk ¼
Ω2Vij

4ðΔ − VikÞðΔ − Vik − VijÞ
: ðA5Þ

The above expansion then leads to an effective Hamiltonian

Ĥð2Þ
eff ¼ Ĥone−body þ Ĥtwo−body þ Ĥthree−body þ � � �, where

Ĥone-body ¼ δ
X
i

σ̂zi ;

Ĥtwo-body ¼
X
i≠j

Jij
2
ðσ̂þi σ̂−j þ σ̂−i σ̂

þ
j − 2σ̂zi n̂jÞ;

Ĥthree-body ¼
X
i≠j≠k

Gijk − Jij
2

ðσ̂þi σ̂−j þ σ̂−i σ̂
þ
j − σ̂zi n̂jÞn̂k

are the one-body self-energy shift, the two-body XXZ-type
Hamiltonian, and the three-body XXZ term, respectively.
The Hamiltonian can be further simplified by the sub-
stitution σ̂zi ¼ 2n̂i − 1 in a given state sector. For the single-

magnon sector (N̂ R ¼ 1), the quadratic term n̂in̂j can be
neglected, which leads to the XY model given in the main
text. For the two-magnon sector (N̂ R ¼ 2), the cubic term
n̂in̂jn̂k can be discarded, and the resulting Hamiltonian can
be mapped to Eq. (2). For a general multimagnon case, the
dynamics is governed by a folded XXZ model exhibiting
the Hilbert space fragmentation [40].

APPENDIX B: EXPERIMENTAL
SETUP AND PROCEDURE

The experimental setup of our system is a Rydberg
quantum simulator using a neutral atom array of 87Rb atoms,
similar to our previous experiments [28]. The atomic
ensembles are cooled and gathered inside a magneto-
optical trap, while the single atoms are trapped inside an
820-nm optical tweezer array of 1-mK depth and
sub-Doppler cooled to ∼35 μK with polarization gradient
cooling. Atoms are then optically pumped to j↓i ¼ j5S1=2;
F ¼ 2; mF ¼ 2i. After the ground-state preparation, traps
are turned off and the atoms are excited to the Rydberg state
j↑i ¼ j71S1=2; mJ ¼ 1=2i with the two Rydberg beams
of 780 nm (homemade external cavity diode laser) and
480 nm (TA-SHG Pro of Toptica) with two-photon transition
of intermediate detuning of ΔI ¼ 2π × 660 MHz from the
intermediate state jmi ¼ j5P3=2; F ¼ 3; mF ¼ 3i. Quantum
operation is performed by a series of Rydberg and address-
ing laser pulses. After the quantum operation, atoms are
trapped again by turning on the optical tweezer, and atoms in
the Rydberg states are antitrapped from the tweezer. The
remaining atoms are imaged with the electron-multiplied
charged coupled device (EMCCD, iXon Ultra 888 of Andor)
by illuminating the imaging beam. By distinguishing the
fluorescence of background and trapped atom, we could
determine the internal state of each individual atom.
The optical tweezer trap and the addressing beam for the

state initialization use the same 820-nm laser drived from Ti:
sapphire oscillator (TiC of Avesta) pumped by a 532-nm
laser (Verdi G18 of Coherent). The laser beam passes an
acousto-optic modulator (AOM) and is split into zeroth- and
first-order beams. The first-order beam is sent to the spatial
light modulator (SLM, ODPDM512 of Meadowlark optics),
and the optical tweezer array of target and reservoir traps
is formed and rearranged with a real-time calculation
Gerchberg-Saxton weighted algorithm with graphics
processing unit (Titan-X Pascal of NVIDIA). The phase
for atom arrays are calculated with a 4 times larger array zero
padded to the initial phase to achieve resolution less than the
trap size [45]. The zeroth-order beam propagates along a
different path passing an additional AOM and followed by
an acousto-optic deflector (AOD, DTSXY-400-820 of AA
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Opto-Electronic) which is used to address the target atom.
This 820-nm addressing beam is off resonant to the
5S → 5P transition, inducing an ac-Stark shift to the
target-atom Rydberg transition.
The quantum operation is programmed using a delay

generator (DG645 of Stanford Research Systems) and
an arbitrary wave form generator (AWG, XRF Agile RF
Synthesizer of Moglabs), controlling AOMs of both the
addressing beams and the Rydberg beams. The sequence is
depicted in Fig. 1(d) of the main text, and a more detailed
sequence is given in Fig. 5. The sequence is divided into
two parts: an initialization process driving the target atoms
to Rydberg states and the spin-exchange process inducing
the many-body quench dynamics. For the two-atom experi-
ment, the initial state is prepared by addressing one of the
atoms to make it off resonant to the Rydberg beams and
applying a resonant π pulse to the other atom [see Figs. 5(a)
and 5(c)]. For all other experiments, the target atoms are
addressed, and the Rabi frequency Ω and the detuning Δ of
the global Rydberg beams are adiabatically swept accord-
ing to the following sequence: (1) 0 → 0.1 μs, ð0;ΔiÞ →
ðΩexp;ΔiÞ; (2) 0.1 → 0.9 μs, ðΩexp;ΔiÞ → ðΩexp;ΔfÞ;
and (3) 0.9 → 1 μs, ðΩexp;ΔfÞ → ð0;ΔfÞ as depicted in
Fig. 5(b), where Ωexp is the Rabi frequency used in the
spin-exchange step. The values of these parameters are
summarized in Table II. With the above initialization,
the addressed target atom is adiabatically excited to the
Rydberg state [see Fig. 5(d)].

APPENDIX C: EXPERIMENTAL PARAMETERS
AND MEASURED VALUES

The experimental parameters are given in the tables.
Table I shows the parameters and measured values for the
two-atom spin-exchange dynamics, where Δ is the detun-
ing for the spin exchange, r is the distance between the two
atoms, Ω is the Rabi frequency, and J is the spin-exchange
frequency fitted from each experiment, e.g., from the data

in Fig. 1(e) of the main text. The vdW interaction strength
V ¼ C6=r6 is determined by the distance r with C6 ¼
2π × 1023 GHz μm−6 corresponding to the Rydberg state
j71S1=2; mJ ¼ 1=2i used in the experiment [46]. The values
of Ω and J are fitted to the expression P ¼ aþ b cosð2π ×
c × tÞ expð−t=dÞ with unknowns a, b, c, d, and (post-
selected) probability P of the initial state, where Ω=2π and
J=4π correspond to c. The horizontal error bars in Fig. 1(f)
have the same value 0.3 μm for all distances, which is
limited by the resolution of the image plane, where the

Time

Rydberg excitation beam
Rydberg
excitation

beam
Detuning

Initialization Spin exchange Initialization Spin exchange 

Addressing beam Addressing beam

Time

Detuning

(a) (b)

(c) (d)Initialization Spin exchange Initialization Spin exchange 

FIG. 5. Experimental sequence. (a) Sequence for the two-atom experiment illustrated in (c). (b) Sequence for the quantum walk
[illustrated in (d)] and the bound-state experiments.

TABLE I. Experimental parameters, measured values, and
postselected portion for the two-atom experiment.

Δ=2π
(MHz)

r
(μm)

Ω=2π
(MHz)

J=2π
(MHz)

2πJ=Ω2

ðMHz−1Þ hPðΠ1Þi
þ5 4.4 1.52(5) 0.132(9) 0.057(5) 0.69

4.95 1.52(5) 0.128(8) 0.055(5) 0.69
5.5 1.52(5) 0.143(6) 0.062(5) 0.70
6.05 1.52(5) 0.154(6) 0.066(5) 0.67
6.6 1.52(5) 0.21(2) 0.09(1) 0.67
7.15 1.52(5) 0.21(1) 0.09(1) 0.61
7.29 1.52(5) 0.33(3) 0.14(2) 0.69
7.43 1.52(5) 0.35(2) 0.15(1) 0.72
7.7 1.52(5) 0.40(3) 0.17(2) 0.63
7.98 1.52(5) 0.42(5) 0.18(2) 0.68
8.25 1.52(5) 0.18(3) 0.08(2) 0.60
8.8 1.52(5) 0.10(1) 0.041(5) 0.57
9.9 1.52(5) 0.039(6) 0.017(3) 0.64

−5 4.4 1.86(7) 0.16(2) 0.046(6) 0.66
4.95 1.86(7) 0.14(1) 0.041(5) 0.65
5.5 1.52(5) 0.095(8) 0.041(4) 0.67
6.05 1.52(5) 0.086(9) 0.037(4) 0.66
6.6 1.52(5) 0.068(6) 0.029(3) 0.65
7.15 1.52(5) 0.06(1) 0.027(6) 0.64
7.7 1.86(7) 0.08(2) 0.022(5) 0.60
8.25 1.91(9) 0.08(2) 0.022(6) 0.62
8.8 1.91(9) 0.04(1) 0.012(3) 0.63
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beam waist is about ∼1.2 μm and the resolution is
∼1.2=4 μm because of the zero padding. The vertical error
bars in Fig. 1(f) and the errors for Table I indicate a 2σ
confidence interval, while for all other data presented in this
paper, the vertical error bars indicate a 1σ confidence
interval. The estimation of the horizontal error bars in
Fig. 1(f) and the errors associated with the 2πJ=Ω2 values
in Table I is performed by considering the propagation of
errors, expressed as σ2jJ=δj ¼ ð∂jJ=δj=∂JÞ2σ2J þ ð∂jJ=δj=
∂ΩÞ2σ2Ω. Table II shows the experimental parameters for
the rest of the experiments. Here,Ωexp is the Rabi frequency
for both spin-exchange dynamics experiment and the
maximum Rabi frequency for the quantum annealing in
the initial state preparation, ΔA is the detuning applied on
the target atom by the addressing beam (two values,
respectively, for the left and the right atom in the two-
magnon experiments), Δi and Δf are the initial and final
detuning, respectively, for the detuning sweep of the state
initialization, and Δexp is the detuning for the spin-
exchange quench dynamics.
In our experiments, we employ postselection to purify

the measurements, where only states within a given sub-
space Πn are considered (n ¼ 1, 2 denotes the total
Rydberg excitation). In the two-atom and the quantum
walk experiment, we choose states within the single-
excitation subspace (Π1). For the two-magnon experiments,
we select states within the two-excitation subspace (Π2).
The average fractions of the postselected states over the
entire evolution time, denoted as hPðΠnÞi (success prob-
ability), are given in Tables I and II for each specific
experiment. Notably, the success probability remains small
and relatively stable throughout the dynamics, indicative of
a largely preserved U(1) symmetry.

The maximum values Γmax
ij of the measured correlator in

Fig. 3 are f0.39; 0.13; 0.11; 0.09; 0.07g for the upper panels
of Fig. 3(c), f0.39; 0.23; 0.16; 0.16; 0.10g for the lower
panels of Fig. 3(c), f0.35; 0.10; 0.06; 0.06; 0.05g for the
upper panels of Fig. 3(e), and f0.30; 0.03; 0.03; 0.02; 0.02g
for the lower panels of Fig. 3(e).

APPENDIX D: EXPERIMENTAL
IMPERFECTIONS AND NUMERICAL

SIMULATIONS

Full numerical simulations in Fig. 4 of the main text take
the experimental errors into consideration. Table III shows
types of experimental imperfections and their treatment
in the numerical simulations. The dominant error in the
dressing scheme is the uncorrelated individual dephasing
mainly due to the spontaneous decay from the intermediate
state, vdW interaction fluctuation due to the finite temper-
ature of the atom, as well as the state-measurement error.
The collective dephasing mainly induced by the laser phase
noise does not have a significant role on the dynamics
because of the decoherence-free feature of the effective
model [41]. Both individual and collective dephasings
are treated with the Lindblad master equation dρ=dt ¼
−i½H; ρ� þ LindðρÞ þ LcolðρÞ [47], where the superoperator
Lind, Lcol denotes the individual (on-site) and the collective
phase noise, respectively. The individual dephasing rate
γind ≈ 2π × 0.2 MHz was fitted from the three level model
of jgi, jri, and the intermediate state jmi. The collective
phase noise was fitted from the single-atom Rabi oscillation
by fixing γind, and its value is γcol ≈ 2π × 0.4 MHz. The
temperature of the atomic thermal motion Tatom ¼
34.27ð5Þ μK was measured using release and recapture
method. With the temperature, we could calculate the

TABLE II. Experimental parameters and postselected portion for the quantum walk and the bound-state experiments.

Experiment r (μm) Ωexp

2π (MHz) ΔA
2π (MHz) Δi

2π (MHz) Δf

2π (MHz) Δexp

2π (MHz) hPðΠ2Þi
Single-magnon quantum walk 4.95 2.54 −15.8 þ5 þ30 −5 0.40

Tightly bound state correlated transport 7 2.54 −20.3= − 18.6 þ10 þ35 þ12 0.32
Tightly bound state frozen motion 7 2.54 −20.3= − 18.6 þ10 þ35 −3.3 0.35

Loosely bound state correlated transport 4.95 2.06 −7.4= − 5.4 þ3 þ15 −3 0.42
Loosely bound state free propagation 8.5 2.06 −7.4= − 5.4 þ3 þ15 −3 0.33

TABLE III. Experimental errors and its treatment to numerical simulations.

Error source Treatment

Individual dephasing Lind ¼
P

N
j¼1 ðLjρL

†
j − 1

2
fL†

jLj; ρgÞ with Lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γind=2

p
n̂j and γind ≈ 2π × 0.2 MHZ

Collective dephasing Lcol ¼ L0ρL
†
0 −

1
2
fL†

0L0; ρg with L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γcol=2

p P
N
j¼1 n̂j and γcol ≈ 2π × 0.4 MHz

Finite temperature of atoms Monte Carlo simulation with positional fluctuation where σr ≈ 0.1 μm (radial)
and σa ≈ 0.3 μm (axial)

PðgjrÞ measurement error PðgjrÞ ¼ 1 − expð−ttrap=t1Þ with Rydberg decay time t1 ¼ 43ð15Þ μs
PðrjgÞ measurement error PðrjgÞ ¼ PrecapðttrapÞ where Precap is the release and recapture probability curve
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position spread of atoms with a standard deviation σi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðmω2

i Þ
p

for the trap frequency ωi. In the simulation,
the average effect of such an atomic positional disorder was
evaluated with the Monte Carlo method. The radial and
longitudinal position standard variations are σr ≈ 0.1 μm
and σa ≈ 0.3 μm, respectively. The detection error was
considered similar to Ref. [48], where the dominant portion
of the conditional error probability PðgjrÞ is due to the
Rydberg decay and the dominant portion of PðrjgÞ is due to
a finite temperature of the atom. The former is calculated
with PðgjrÞ ¼ 1 − expð−ttrap=t1Þ, where ttrap is the time
when the trap is turned off, and the Rydberg lifetime t1 ¼
43ð15Þ μs is measured with an additional Ramsey experi-
ment [49]. The latter probability PðrjgÞ ¼ PrecapðttrapÞ is
obtained from the release and recapture probability curve.

APPENDIX E: LIMITATIONS AND POSSIBLE
IMPROVEMENTS

In this appendix we discuss the limitations of the
coherence in our current setup. As the Rydberg lifetime
is much longer than the timescale studied, we focus here on
the other four decoherence factors, including (1) collective
dephasing from the laser phase noise, (2) individual
dephasing from the intermediate-state scattering, (3) finite-
temperature effects, and (4) the vdW force between
Rydberg atoms. We also discuss how to improve the
coherence of the system to satisfy the requirement for
simulating complex many-body dynamics.
We first note that our scheme is intrinsically robust

against collective dephasing from the laser phase noise,
which can be described by including a random noise
sequence ϕðtÞ to the global Rabi frequency as ΩeiϕðtÞ.
For a complex Rabi frequency, the induced spin-exchange
interaction between the ith and jth atom is Jij ∝ ΩiΩ�

j .
Therefore, the global phase noise ϕðtÞ cancels out perfectly.
The robustness can also be understood from the master

equation description: If ϕ̇ðtÞ is a white noise, its influence
can be described by a collective Lindblad operator
L0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
γcol=2

p P
i n̂i (see Table III), which is proportional

to the total Rydberg excitation N̂ R. The fact that the
effective Hamiltonian Ĥeff conserves the total Rydberg
excitation (½N̂ R; Ĥeff � ¼ 0) indicates that the dynamics
occurs in a decoherence-free subspace L0ρ̂ ¼ 0. Such a
robustness is numerically verified in Fig. 6(a), where the
two-atom spin-exchange dynamics remains coherent for
the timescale ≫ 1=γcol.
In contrast to the collective dephasing, the individual

dephasing leads to a more significant decoherence effect
(see Fig. 6), which is the main limitation in our current
setup. Such an individual dephasing is mainly induced
by the intermediate-state scattering in our two-photon
excitation scheme. For the parameters used in the experi-
ment: Ω780 ≈ 2π × 80 MHz, Ω480 ≈ 2π × 20 MHZ, and an
intermediate detuning ΔI ¼ 2π × 660 MHz, the dephasing
rate is estimated to be γind ¼ 2π × 0.2 MHZ (see
Appendix D). The typical experimental condition
r ¼ 4.95 μm, Ω ¼ 2π × 2.54 MHz, Δ ¼ 2π × −5 MHz
then yields Jtcoh ¼ 5, where J is single-magnon hopping
strength, and tcoh is the coherence time of the dynamics
extracted from the numerical simulation. Two possible
improvements can be made to suppress the individual
dephasing: (i) using larger Rabi frequencies Ω780, Ω480

and intermediate-state detunings ΔI , and (ii) using single-
photon transition to couple the Rydberg and the ground
state. For the improvement (i), the state-of-the-art setup for
the two-photon transition scheme [5,50] can achieve a large
Rabi frequency Ω ¼ 4.6 MHz with an intermediate-state
detuning ΔI ¼ 2π × 7.8 GHz, which requires a large laser
power ∼100 W with the flat beam of typical beam size
of ∼10 μm. The dephasing rate for this parameter is
estimated to be γind ¼ 2π × 0.02 MHz, which is 10 times
smaller than our current setup and can achieve a large
coherence time tcoh ∼ 20=J. For the improvement (ii), the
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single-photon transition scheme has been demonstrated for
alkaline earth atoms such as Sr or Yb [51–53], where the
transition is between a Rydberg state and a metastable
intermediate state of a lifetime over one second. These
improvements will make our system capable of simulating
more complex many-body phenomena, such as the Krylov-
restricted thermalization, which usually occurs at a time-
scale ∼10=J [40].
Next we consider the effect of the finite temperature.

The atomic temperature in our experiment is about 30 μK
and can be further reduced by an additional cooling. Two
Rydberg beams are counterpropagating, resulting in a small
detuning error keffδv ∼ 2π × 60 kHz from the Doppler
effect, which will only cause about 0.5% of error for
Ω ¼ 1 MHz. As our experiments have larger Rabi frequen-
cies, this effect is therefore negligible. Finite temperature
can also cause position fluctuation of atoms. The initial
atom position fluctuation δr follows Gaussian distribution
with a standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mω2

i

p
for each degree

of freedom, where ωi (i ¼ x, y, z) are trap frequencies.
For T ¼ 30 μK and the trap frequency of ωx;y ¼ 2π ×
100 kHz, ωz ¼ 2π × 30 kHz, the interatomic distance
has an uncertainty δr ∼

ffiffiffi
2

p
× 0.3 μm, which then

contributes a fluctuation of the spin-exchange rate
δJ ¼ ½6Δ=ðV − ΔÞ�Jδr. This effect is usually negligible
for the negative detuning case, where the potential JðrÞ
varies slowly with the distance. While positional disorders
have small influences on the magnon hopping, it can
suppress the motion of the bound pair and the hole, and
can lead to many-body localization.
The repulsion induced by the vdW force can also lead to

imperfections by affecting the interatomic distance. While
the single-magnon dynamics does not suffer much from
this effect, dynamics for multiple Rydberg excitations can
be influenced. In our current experiment, this effect does
not play a significant role, because the distance between
two real Rydberg excitations is quite large. For the shortest
distance, 7 μm, used in the tightly bound state experiment,
a classical simulation of the center-of-mass motion indi-
cates that atoms move less than 0.04 μm during 5 μs
evolution time, contributing less than 3% variations in
the Rydberg interaction strength. However, this mechanical
effect could be relevant if Rydberg excitations are close
enough. For example, if two Rydberg atoms are separated
by r ¼ 4.95 μm, they will be pushed away from each other
by 1 μm in 10 μs, resulting in 3 times smaller Rydberg
interaction than at the initial position. To prevent this
effect, one needs to trap both Rydberg and ground-state
atoms, which can be achieved by using ponderomotive
bottle beam trapping [54] or using alkaline earth atoms
which overcomes the ponderomotive force by the core
potential [52]. To further suppress the decoherence caused
by motional excitation (phonon), one may implement a
sympathetic cooling scheme as proposed in a recent
theoretical work [55].
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