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Selective excitation in a three-state system using a hybrid adiabatic-nonadiabatic interaction
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The chirped-pulse interaction in the adiabatic coupling regime induces cyclic permutations of the energy states
of a three-level system in the V -type configuration, which process is known as the three-level chirped rapid
adiabatic passage (RAP). Here we show that a spectral hole in a chirped pulse can turn on or off the level
mixing at adiabatic crossing points of this process, reducing the system to an effective two-level system. The
given hybrid adiabatic-nonadiabatic transition enables selective excitation of the three-level system, controlled
by the laser intensity and spectral position of the hole, as well as the sign of the chirp parameter. Experiments
performed with shaped femtosecond laser pulses and the three lowest energy levels (5S1/2, 5P1/2, and 5P3/2) of
atomic rubidium (85Rb) show good agreement with the theoretically analyzed dynamics. The result indicates that
our method, when being combined with the ordinary chirped RAP, implements an adiabatic transition between
the Raman-coupled excited states. Furthermore, our laser intensity-dependent control may have applications
including selective excitations of atoms or ions arranged in space when being used in conjunction with laser
beam profile programming.

DOI: 10.1103/PhysRevA.94.023412

I. INTRODUCTION

Adiabatic control of a quantum system through its adiabatic
evolution path allows robust manipulation and high-fidelity
state preparation [1]. Gradually being recognized as an
important requirement in quantum information processing [2],
it has been under active investigation in recent years [3–9].
The best known examples of the adiabatic control methods are
the rapid adiabatic passage (RAP) [10–12] and the stimulated
Raman adiabatic passage [13]. Both of these methods have
been widely applied to various quantum systems including
atom optics [14], NMR [15], cavity quantum electrodynamics
[16], superconducting qubits [17], and quantum dots [18].

Broadband light sources greatly benefit optical approaches
to qubit manipulations because of their powerful pulse-shape
programming capability [19,20]. In ultrafast optics, composing
the amplitude and phase of a broadband laser pulse provides
various complex pulse shapes, and their usage often plays a
crucial role in investigating and engineering new quantum
dynamics of atoms and molecules [21–26]. Of particular
relevance in the context of the present paper is the selective
population method of dressed states [26] which provides a
pulse shaping scheme especially in the frequency domain for
strong-field controls of multilevel systems.

In this paper we consider a laser pulse shaping method to
embed a local nonadiabatic coupling in the middle of a three-
level chirped RAP process [11,12]. The chirped RAP makes
a set of cyclic permutation transitions for a three-level system
in the V -type configuration: |0〉 → |1〉, |1〉 → |0〉 → |2〉, and
|2〉 → |0〉 (for a positive chirp, and a negative chirp reverses the
directions), when |1〉 and |2〉 are the excited states and |0〉 is the
ground state. At the first and second adiabatic crossing points
the state |0〉 is interchanged with |1〉 and |2〉, respectively. So
if the transition at the first adiabatic crossing is turned off
(with the new nonadiabatic coupling), the states |0〉 and |1〉
bypass the crossing, and the states |0〉 and |2〉 are interchanged
at the second crossing and the state |1〉 is unchanged (i.e.,
|0〉 → |2〉, |1〉 → |1〉, and |2〉 → |0〉). We will show that
this type of hybrid adiabatic-nonadiabatic interaction can be

implemented with a chirped optical pulse with a spectral hole
resonant to one of the two excited states. In our method the laser
intensity is used to turn on or off the nonadiabatic coupling,
while in a conventional RAP approach the spectral chirp sign
is used for the selectivity [11,12]. Using the laser intensity as
a control parameter brings along the benefit of spatial beam
shaping, which enables simultaneous control of multiple qubits
arranged in space (to be discussed as an application).

The remaining sections are organized as follows: We
first theoretically study the model Hamiltonian for the given
shaped-pulse interaction with a three-level system in Sec. II,
where we show that the chirped pulse with a spectral hole can
embed the nonadiabatic coupling amid a conventional RAP
process. After the experimental procedure is briefly illustrated
in Sec. III, the experimental results are provided in Sec. IV,
where the intensity-dependent selectivity of the as-designed
hybrid adiabatic-nonadiabatic interaction is presented. The
conclusion follows in Sec. V.

II. THEORETICAL CONSIDERATION

The model system is a three-level atom in the V -type
configuration, consisting of two excited energy states, |1〉 and
|2〉, and the ground state, |0〉 (of respective energies �ω1, �ω2,
and 0). We consider this system is interacted with a spectrally
shaped laser pulse, a chirped Gaussian pulse with a spectral
hole, defined in the spectral domain as

E(ω) = E0(e−(ω−ωm)2/�ω2
m − αe−(ω−ωh)2/�ω2

h )e−ic2(ω−ωm)2/2,

(1)

where ωm and ωh are the center frequencies of the main
pulse and the hole, respectively, �ωm and �ωh are the
bandwidths, and c2 is the chirp parameter [19]. The condition
α = exp[−(ωh − ωm)2/�ω2

m] in Eq. (1) makes a complete
spectral hole around ω = ωh. The electric field in the time
domain is the inverse Fourier transform of E(ω) + E(−ω),
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which is given by

E(t) = Em(t)

2
ei{(ωm+βmt)t+ϕm}

− Eh(t)

2
ei{ωh+βh(t−γ )}(t−γ )+ϕh} + c.c.

≡ Em(t) + Eh(t) + c.c., (2)

where βm = c2/(2c2
2 + 8/�ω4

m) and βh = c2/(2c2
2 + 8/�ω4

h)
are the chirp parameters for the main and hole pulses,
respectively, and γ = −c2(ωm − ωh) is the time shift of the
hole with respect to the main pulse. The amplitudes and (time-
independent) phases of the pulses are respectively given by

Em(t) = E0

√
�ωm

τm

e−t2/τ 2
m, (3)

ϕm = −1

2
tan−1 c2�ω2

m

2
, (4)

Eh(t) = αE0

√
�ωh

τh

e−(t−γ )2/τ 2
h , (5)

ϕh = −1

2
tan−1 c2�ω2

h

2
− c2

2

(
ω2

m − ω2
h

)
, (6)

where τi =
√

4/�ω2
i + c2

2�ω2
i is the Gaussian pulse width of

each chirped pulse i = m,h.
Suppose that the main pulse is frequency centered between

the excited states [i.e., ωm = (ω1 + ω2)/2], with a bandwidth
enough to cover both states (i.e., �ωm > δ ≡ ω2 − ω1) and
that the hole pulse is resonant to only one of them, say, |1〉
(i.e., ωh = ω1 and �ωh < δ). The Hamiltonian is then given
in the eigenstate basis by

H (t) =
⎡
⎣e0(t) 0 0

0 e1(t) 0
0 0 e2(t)

⎤
⎦ − i�RṘ−1, (7)

where {ej (t)} are the eigenstate energies and Rjk(t) = 〈ej |k〉
is the transformation from the bare basis {|k〉} to the eigenstate
basis {|ej 〉} for j,k ∈ {0,1,2}. The time evolution of the
eigenenergies ej (t) is plotted in Fig. 1(a), where we use
�ωm = 10�ωh = 2.5δ, and a positive c2 = 2/�ω2

h is chosen
to satisfy the minimum hole pulse-width condition for a
constant chirp parameter. The main pulse induces slowly
varying adiabatic passages (the dotted lines) and the hole
the rapid change of them (the solid lines) near the first
adiabatic crossing point. These behaviors are consistent with
the temporal profiles of the main pulse and the hole, as shown
in Fig. 1(b). Note that the instantaneous frequency of the main
pulse becomes equal to ω1 at t = γ .

(i) Fully adiabatic coupling regime. When the nonadiabatic
coupling term, −i�RṘ−1 in Eq. (7), is small, the adiabatic
condition [10] is satisfied in all time. Each eigenstate |ei〉 is
an adiabatic state, evolving from one bare state |i〉 to the next
one |i + 1〉 (cyclically), i.e.,

lim
t→−∞ |e0(t)〉 = |0〉, lim

t→∞ |e0(t)〉 = |1〉,
lim

t→−∞ |e1(t)〉 = |1〉, lim
t→∞ |e1(t)〉 = |2〉,

lim
t→−∞ |e2(t)〉 = |2〉, lim

t→∞ |e2(t)〉 = |0〉, (8)
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FIG. 1. (a) The time evolution of the eigenstate energies, e0(t),
e1(t), and e2(t), of the V -type system Hamiltonian, including (solid
lines) and excluding (dashed lines) the hole pulse interaction.
(b) The temporal envelopes of the total pulse (solid line, |
m − 
h|),
the main pulse (dotted pulse, 
m), and the hole pulse (dashed line,
|
h|), represented in 
m(γ ) unit.

up to a global phase. (A negative chirp reverses the direction
of the three-state cyclic permutation.) So, the result in the
fully adiabatic three-state coupling regime is a cyclic transition
(|0〉 → |1〉, |1〉 → |2〉, |2〉 → |0〉), similar to the three-level
chirped RAP [11,12].

(ii) Hybrid adiabatic-nonadiabatic coupling regime. When
the adiabatic condition is violated due to the presence of the
hole (we consider the main pulse alone is still adiabatic), the
given Hamiltonian results in a hybrid adiabatic-nonadiabatic
transition between |e0〉 and |e1〉. Since the nonadiabatic
coupling is localized in time near t = γ , we may consider
two separate time regions: t > 0 and t < 0. In the positive
time region, the dynamics is a fully adiabatic process,
so the state at t = 0 simply remains until t = ∞. In the
negative time region, the eigenstate |e2〉 can be decoupled
because it is far-off resonant from |e0〉. When we rewrite
the Hamiltonian in the adiabatic basis of the main pulse
(only), the Hamiltonian is given under the rotating-wave
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approximation by

H ′(t < 0) =
⎡
⎣e−(t) 0 0

0 e+(t) 0
0 0 2δ + �(t)

⎤
⎦

− �

2
R′

⎡
⎣ 0 
h(t) 0


∗
h(t) 0 0
0 0 0

⎤
⎦R′−1, (9)

where e±(t) = �[�(t) ±
√


m(t)2 + �(t)2]/2 are the adia-
batic energies, �(t) = −δ − 2αt is the detuning (for the main
pulse), and R′(t) is the transform matrix given by

R′(t) =
⎡
⎣cos ϑ(t) − sin ϑ(t) 0

sin ϑ(t) cos ϑ(t) 0
0 0 1

⎤
⎦, (10)

with the mixing angle

ϑ(t) = 1

2
tan−1 
m(t)

�(t)
for 0 � ϑ(t) � π

2
. (11)

The Rabi frequency for the transition from |0〉 to |1〉 is defined
by 
i(t) = 2μ01Ei(t) exp[−i(αt2 + ωmt + φm)]/� for each
pulse i = m,h, where the phase factor of the main pulse is
added to keep 
m real.

The Hamiltonian in Eq. (9) can be simplified to be

HF (t) = �

⎡
⎣−�F (t)/2 
F (t)/2 0


∗
F (t)/2 �F (t)/2 0

0 0 2δ + �(t)/2

⎤
⎦ (12)

with the effective coupling 
F and detuning �F of the coupled
two-level system (|e+〉 and |e−〉), defined by


F (t) = −Re(
h) cos 2ϑ − i Im(
h), (13)

�F (t) =
√


2
m + �2 − Re(
h) sin 2ϑ. (14)

Note that similar coupling and detuning terms are discussed in
the context of the zero-area pulse interaction with a two-level
system [25].

The phase of 
F (t) in Eq. (13) is time dependent, so the
dynamics can be better explained in the interaction picture.
Figure 2(a) shows the numerical calculation of the coupling
|
F (t)| and the detuning �′

F (t) = �F (t) + d arg[
F (t)]/dt

in the interaction picture. Their plateau region around t = γ ,
the first (nonadiabatic) crossing point, manifests a near-
resonant two-state coupling, which results in the complete
population inversion (|e0〉 → |e1〉, |e1〉 → |e0〉) in the adia-
batic basis, as shown in Fig. 2(b). When the system evolves
further to the second crossing point (at which the adiabaticity
is satisfied), the state |e1〉 continues to remain in |e1〉. So the
given three-level system results in a closed two-level system,
|0〉 and |2〉, in the bare-atom basis, plus an isolated state |1〉.

Figure 2(c) shows the fully numerical calculation of the final
state populations in the bare-atomic basis using the Hamilto-
nian in Eq. (7) which includes the nonadiabatic coupling term,
where �0 is the pulse area of the calibrated transform-limited
pulse having the same energy of the total pulse, defined by
�0 = (2μ/�)(2π/�ω2

m)1/4
√∫ |E(t)|2dt . As the pulse energy

increases, the state |0(t = −∞)〉 either remains in |0(t = ∞)〉
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FIG. 2. (a) The effective coupling and detuning, defined in
Eqs. (13) and (14), of the coupled two-level system. (b) The
probability of the adiabatic energy state |e+〉. (c) Probabilities of
the bare energy states vs calibrated pulse area �0 (see the text for the
definition).

(in the fully nonadiabatic regime for small �0), or evolves to
|2(t = ∞)〉 (in the hybrid adiabatic-nonadiabatic regime for
in-between �0), or to |1(t = ∞)〉 (in the fully adiabatic regime
for large �0). The result indicates the selective transitions to
any energy state of the three-level system (i.e., |0〉 → |0〉,

023412-3



SONG, LEE, JO, AND AHN PHYSICAL REVIEW A 94, 023412 (2016)

Ti:sapphire 
laser (80 MHz) Pump laser

Pockel cell
(1 kHz)Stretcher 8-pass

amplifier

Acousto-optic
pulse shaper

f1 

llec b
R

f2 f2 

Interference
filter

CCD

Compressor

Rb atom

78
0 

nm

5P1/2

5S1/2

79
5 

nm
5P3/2

FIG. 3. Schematic experimental setup.

|1〉, or |2〉), controlled with only laser intensity (in the hybrid
adiabatic-nonadiabatic coupling regime).

III. EXPERIMENTAL PROCEDURE

The experimental setup is schematically shown in Fig. 3.
We used ultrashort optical pulses from a Ti:sapphire laser
amplifier (homemade) operating with a repetition rate of 1
kHz and a pulse energy up to 25 μJ. The spectral bandwidth,
the full width at half maximum, was 30 nm. The center
wavelength was tuned to λ = 787.6 nm (ωm = 2πc/λ), the
center between the transitions to 5P1/2 and 5P3/2 energy
levels from the ground state 5S1/2 of atomic rubidium (85Rb).
Each laser pulse was programed with an acousto-optic pulse
shaper (AOPDF, Dazzler from Fastlite) [27]. The spectral
hole was centered at the transition to 5P1/2, and the linear
chirp was varied from c2 = −20 000 to 50 000 fs2 with the
AOPDF. The spectral widths of the main and hole pulses were
�ωm = (2π )9 THz and �ωh = (2π )0.9 THz, respectively.
The depth of the spectral hole, α, was varied from zero to
maximum, exp[−(ωh − ωm)2/�ω2

m], which is the spectral
amplitude of the main pulse at the hole position. The shaped
laser pulse was then focused with an f1 = 1000 mm lens
to atoms in a vapor cell of about 1012/cm3 density, and the
fluorescence of the atoms induced by the pulse was measured
with a CCD (Retiga 3000) through a two-lens relay imaging
system with f2 = 50 mm. We used two interference bandpass
filters centered at 780 and 794.7 nm, respectively, to measure
the fluorescence from the two excited levels, 5P1/2 and 5P3/2.
The filters had a spectral bandwidth of 3 nm and 50% center
transmittance.

IV. RESULTS AND DISCUSSION

Figure 4 compares the numerical calculation [(a1)–(a3),
(b1)–(b3)] with the experimental results [(c1)–(c3), (d1)–
(d3)]. The population difference between the excited states,

�P = P (|1〉) − P (|2〉), is plotted for three chirp parameters:
c2 = 50 000 fs2 (the minimal hole-pulse condition, the first
column), 20 000 fs2 (a long hole-pulse condition, the second
column), and −20 000 fs2 (a negative chirp, the third column).
The numerical calculation in Figs. 4(a1), 4(a2), and 4(a3)
shows the chirp-dependent behavior of the given hybrid
adiabatic-nonadiabatic interaction. Under the minimal hole-
pulse condition in Fig. 4(a1), a near-zero detuning (ωh ≈
ω1) exhibits the as-expected intensity dependence of the
selective excitation: As the pulse area (�0) increases, the
state evolves to |2〉 or |1〉 in the region marked by 1© or 2©,
respectively. Near 1©, the system evolves to |2〉 through the
hybrid adiabatic-nonadiabatic interaction. However, when the
adiabatic condition is fully satisfied around 2©, the system
evolves to |1〉. Note that the region near 3© is the case for a large
hole detuning; this region exhibits an ordinary chirped-RAP
behavior, because in this case the far-off-resonant hole plays
little role in the overall dynamics. The long hole-pulse case,
in Fig. 4(a2), shows an extended nonadiabatic coupling near
both the first and second adiabatic crossing points; thus, the
overall dynamics appears sensitively dependent on both the
hole detuning and the pulse area, as expected. In the negative
chirp case, in Fig. 4(a3), the hole pulse is colocated with the
second adiabatic crossing point, resulting in, again, an ordinary
chirped RAP (to |2〉 in this case because of the negative sign
of the chirp), irrespective of the hole detuning.

The second row of Fig. 4 is the spatially averaged
calculation of the first row. Because the laser beam has a
Gaussian spatial profile in the transverse direction, each atom
in the ensemble interacts with a different laser intensity [28].
The Gaussian beam radius of 250 μm and the Rayleigh range
of about 20 cm greatly exceed the size (about 50 μm) of
the imaged area. When this spatial average effect due to
the transverse laser beam profile is taken into account, the
numerical calculation results in Figs. 4(b1), 4(b2), and 4(b3),
showing good agreement with the experimental result in the
third row, Figs. 4(c1), 4(c2), and 4(c3), respectively.

The spatially averaging process from the first row to the
second can be represented in terms of the pulse area as
Pavg(�0) = ∫ �0

0 P (�′
0)A(�0,�

′
0)d�′

0, so an inverse matrix
calculation from Pavg(�0) to P (�0) is allowed (because A

is a triangular matrix with nonzero diagonal components,
thus, having nonzero determinant). When the inverse matrix
calculation from the third row is performed (after a coarse
graining), the result is as shown in the fourth row, which is the
unaveraged population difference retrieved from experimental
data. In particular, the result in Fig. 4(d1) apparently shows the
anticipated intensity-dependent selective excitation, in good
agreement with Fig. 4(a1).

Figure 5 shows the contribution of the hole depth to the
given selective excitation scheme. A chirped pulse without
a hole, which is the case of zero hole depth, or α = 0
[defined in Eq. (1)], simply makes usual chirped RAP, so
the excited population only goes to |1〉. If α increases
from zero (no hole) to maximum (the maximal hole), the
the population excited to |2〉 increases from zero (no |2〉
excitation) to one (fully excited |2〉). If we define the degree of
inversion T (α) = |�Pmin(α)/�Pmin(α = 1.0)|, where �Pmin

is the minimal population difference �P for a given hole depth
α during the entire evolution, T (α) quantifies the selective
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FIG. 4. Population difference, �P = P (|1〉) − P (|2〉), plotted as a function of the hole detuning, δh = ωh − ω1, and the calibrated pulse
area �0: (a) calculation without the spatial-average consideration, (b) calculation with the spatial-average consideration, (c) experimental
results, and (d) experimental results retrieved through the inverse calculation of spatial averaging. The left column [(a1), (b1), (c1), (d1)
corresponds to c2 = 50 000 fs2 (the minimal hole-pulse width condition), the middle column [(a2), (b2), (c2), (d2)] c2 = 20 000 fs2 (a long hole
pulse), and the right column [(a3), (b3), (c3), (d3)] c2 = −20 000 fs2 (a negatively chirped pulse). The color scheme of the figures indicates
the final (t = ∞) state of the system to be in either |2〉 (blue) or |1〉 (red).

excitation (T = 0 for |0〉 → |1〉 and T = 1 for |0〉 → |2〉).
Experiment was performed with laser power varied up to
25 μJ (which corresponds to 6π in pulse area) and a fixed
chirp parameter c2 = 50 000 fs2. The result in Fig. 5 shows
that, when the depth was large, α ≈ exp[−(ωh − ωm)2/�ω2

m],
enough to completely remove the spectrum at ωh, the ground
state evolved to the second excited state (i.e., |0〉 → |2〉), and
that no hole (α = 0) induced the ordinary chirped RAP, a
cyclic permutation of the energy states, in good agreement
with the theoretical analysis. The degree of inversion T (α)

was calculated from the experimental data using two methods:
the first method simply assumed a Gaussian fluorescence spot
to deal with the background noise and the second eliminated
the background noise under the assumption of monotonic
polynomial dependence with respect to the pulse area. As
expected, the result obtained with the second method agrees
well with the theoretical calculation.

We now turn our attention to the implications of the
results obtained in this study to possible applications. The first
example is the closed adiabatic two-excited-state transitions
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FIG. 5. The degree of inversion T (α) = |�Pmin(α)/�Pmin(α =
1.0)| vs the hole depth α. Theoretical lines are calculated with three
different hole widths; nominal (blue solid line), 90% (orange dotted
line), and 110% (purple dashed line). Experimentally retrieved values
for T (α) are shown with circles (Gaussian spot noises) and squares
(polynomial fitted noise). (See the text for more details.)

|1〉 ↔ |2〉, which can be made by combining the given hybrid
interaction and an ordinary chirped RAP (with a negative
chirp): Since an ordinary negatively chirped RAP induces
the cyclic state permutations, a subsequent hybrid interaction
|0〉 ↔ |2〉 completes an adiabatic exchange of the excited
states, |1〉 ↔ |2〉, and |0〉 is unchanged. Therefore, with this
procedure, an ultrafast time-scale adiabatic control among the
excited states of a V -type three-level system may be achieved.
In particular, our control method of a Raman-coupled two-level
system may be applied similarly to the ground-state two-levels

in a λ-type system that is often used as a long-storage
qubit. The second example is an optical control of N qubits
arranged in a lattice [29,30]. In particular, when a short lattice
constant makes a conventional optics with focused beams
difficult to address individual qubits, our method may provide
a solution: Our calculation (not shown) predicts that spatial
beam-shape profiling in conjunction with the given intensity-
dependent selective excitation achieves subwavelength-scale
qubit controls. For example, the atomic qubit gates constructed
based on the Rydberg-atom dipole blockade effect often use
about 10-μm-scale optical microtraps [31–33], so reducing
the lattice constant down below one wavelength allows one to
use significantly lower Rydberg energy states, which may be
useful for faster quantum gate operations.

V. CONCLUSION

In summary, we have shown that a chirped laser pulse with
a spectral hole can turn on or off an adiabatic crossing point
of the conventional chirped RAP of a three-level system in the
V -type configuration. This result suggests that our method,
being combined with the ordinary chirped RAP, implements
an adiabatic transitions between the two excited states.
Experiments performed with shaped femtosecond laser pulses
and the three lowest energy levels (5S1/2, 5P1/2, and 5P3/2)
of atomic rubidium have shown good agreement with the
theoretically analyzed dynamics of the three-level system. The
programed hybrid adiabatic-nonadiabatic interaction allows
three-level system control by laser intensity only, which may
have applications including selective excitations of atoms or
ions arranged in space in conjunction with laser beam profile
programming.
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