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Abstract
Optical tweezers are used to facilitate cold collisions between two Rydberg rubidium atoms
(87Rb) by controlling the impact parameter and collision energy. One atom is held stationary
while the other is propelled to a constant velocity. After the tweezers are deactivated, both atoms
are excited to a Rydberg state using a π-pulse. Following the collision, a second π-pulse is
applied. If the stationary atom undergoes minimal momentum transfer and returns to its ground
state, it can be recaptured when the tweezer is reactivated. The collision probability as a
function of the impact parameter is extracted from the atom loss in the tweezer and used to
determine the collisional cross section between Rydberg atoms. Numerical simulations of
elastic two-body collisions agree well with the experimental data, providing valuable insights
into the parameter regime where quantum effects will become important.
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1. Introduction

Optical tweezers are tightly focused beams of light used to
trap and manipulate microscopic or submicroscopic particles,
enabling numerous applications across various scientific
and technological fields, including biology, quantum optics,
optomechanics, atomic physics, and, more recently, quantum
technologies [1–7]. A recent study has introduced a novel
use of optical tweezers: accelerating neutral, single atoms [8].
Directly accelerating neutral particles has long been an experi-
mental challenge, as conventional particle accelerators operate
on charged particles. Creating a neutral particle beam typically
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requires a neutralization step, which restricts the range of
accessible projectiles, achievable energies, and beam focus-
ing capabilities [9, 10]. Optical tweezers, however, present
a promising approach to neutral particle acceleration, poten-
tially opening new avenues for studying atomic and molecular
collisions in previously inaccessible regimes. In comparison to
optical lattice conveyor belts which can be employed to accel-
erate a thermal cloud of atoms [11], optical tweezers can reach
larger accelerations of a single atom.

Low-energy collision studies often rely on low-temperature
gases [12–15], which can make it difficult to perform con-
trolled experiments, especially formolecular collisions [16]. A
technique that precisely controls cold collisions at the single-
atom level could facilitate investigations involving a spe-
cific number of particles rather than ensembles, and enable
studies in arbitrary collision geometries. Such capabilities
offer deeper insights into the fundamental nature of these
interactions [17–19].

In this paper, we focus on using optical tweezers to facil-
itate low-energy collisions between two Rydberg atoms [10,
20–25]. Optical tweezers are employed to accelerate a single
rubidium (87Rb) atom and allow to observe the pairwise
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collision between two Rydberg-state atoms by controlling the
collision velocity and the impact parameter. Moreover, optical
tweezers provide a new probing scheme for elastic scattering
by measuring the momentum transfer to atoms. This differs
from typical probing schemes used for inelastic Rydberg-atom
collisions, for which the effects of collisions are quantified as a
change in electronic excitation through inelastic scattering by
measuring ionization or field-ionization after collisions [21,
22, 24, 27, 28].

The experimental procedure of the Rydberg-atom colli-
sion experiment is depicted in figure 1. The projectile rubid-
ium atom (labeled as A), initially in the ground state |g⟩=
|5S1/2,F= 2,mF = 2⟩ (shown in blue), is accelerated by a
dynamic optical tweezer and thrown at the target atom with
velocity v. Both atoms, the projectile atom A and the tar-
get atom B, are then optically excited to the Rydberg state,
|n⟩= |nS1/2,F= 2,mF = 2⟩ (shown in red), prior to the col-
lision. After the collision, atom B is de-excited back to |g⟩
and may be recaptured by another optical tweezer. This recap-
ture probability, PB(b;n,v), for atom B to survive the collision
and to be recaptured, is measured as a function of the impact
parameter b, the relative velocity v, and the principal quantum
number n. The collisional cross section is then determined
from this recapture probability.

The paper is organized as follows: section 2 describes the
experimental setup and procedure. In section 3, we discuss
the theory of Rydberg–Rydberg collisions. Experimental res-
ults are presented in section 4, followed by their discussion in
section 5. Conclusions are given in section 6.

2. Experimental procedure

The experimental setup encompasses a system with a
magneto-optical trap for cooling 87Rb atoms, an optical
tweezer configuration consisting of both static and dynamic
tweezers, and an imaging system for analyzing collision
events [29–32]. In the initial phase of the experiment, two
rubidium atoms, cooled to 30µK in the MOT, are selected
from specific locations. Atom A is positioned at coordinates
(xA = b,0,−zA), while atom B is at (0,0,0). This selection
process is performed using static optical tweezers, controlled
by a two-dimensional (2D) spatial light modulator (SLM,
ODPDM-512 from Meadowlark Optics). Next, a dynamic
optical tweezer is gradually activated to capture atom A. The
dynamic tweezer is controlled by a 2D acoustic-optic modu-
lator (AOD, DTSxy-400-820 from AA Opto Electronics) and
an arbitrary waveform generator (AWG, M4i-6622-x8 from
SPECTRUM Instrument, 625MS s−1). The optical poten-
tials and beam widths of the static and dynamic tweezers
are Us = 0.58(5)mK, Ud = 10(1)mK, ds = 0.79(4)µm, and
dd = 0.75(4)µm, respectively, corresponding to trap frequen-
cies of ωs/(2π) = 67(6) kHz and ωd/(2π) = 294(30) kHz.
The optical parameters are governed by system-specific
factors, including lens NA, available laser power, and the
response time of the AOD [33].

The next step involves accelerating atom A along the z-axis
to a constant velocity in free flight [8]. This motion is initi-
ated by applying a constant acceleration z̈= a to the dynamic
optical tweezer. The tweezer is deactivated at t= 0 when the
position z=−zi is reached, thereby releasing atom A with a
velocity v. In this experiment, the tweezer is either acceler-
ated at 2.8(4)× 105ms−2 over a duration of 10.6(8)µs and
a traveling distance of 15.9(3)µm to reach the final velocity
v= vfast = 3.0(2)ms−2 or at 0.8(1) × 105ms−2 over a dur-
ation of 10.6(8)µs and a distance of 4.5(3)µm to reach the
final velocity v= vslow = 0.85(9)ms−2. Simultaneously, the
static optical tweezers are deactivated, releasing the stationary
atom B. Just before release, the temperatures of atoms A and B,
while confined in the optical tweezers, were TA = 150(20)µK
and TB = 30(4)µK, respectively. The higher temperature of
atom A is attributed to the adiabatic increase in trap depth
before acceleration [34]. These temperatures result in position
broadenings of 0.06µm for atom A and 0.13µm for atom B,
with corresponding velocity broadenings of ∆v= 0.12m s−2

for atom A centered about v and ∆v= 0.05m s−2 for atom B
centered about zero.

The third step in our experimental process involves excit-
ation of the atoms to a Rydberg state before the collision
and their subsequent de-excitation after the collision. Both
atoms are excited to the same Rydberg state, chosen to be
|36S1/2⟩, |45S1/2⟩, or |53S1/2⟩, at t1 ≃ 1µs. These particu-
lar Rydberg states are selected based on the constraints of
our frequency-locking system, which uses a dual-frequency
Fabry–Perot resonator (Stable Laser Systems, ATF-6010-4).
To induce the two-photon transition from |g⟩ to the state
|nS1/2⟩ with a quantum defect δ= 3.135, we use 780 nm and
480 nm lasers directed perpendicular to the atomic motion.
The effective Rabi frequency for the Rydberg excitation is
determined experimentally and described by:

Ω(⃗r, t) = Ω0e
− x2+y2+(z−zR)

2

σ2
R Π

(
t− t1,2
π/Ω0

)
, (1)

where zR =−4.5(3)µm and σR = 6.8(1)µm represent the
center and width of the Rydberg excitation laser, and the peak
Rabi frequency isΩ0/(2π)≃ 1MHz, varying slightly depend-
ing on n and v. The function Π(x) is a rectangular function
defined as Π(x) = 1 for |x|< 1/2 and 0 for |x|> 1/2.

After atom A passes by atom B, both are de-excited to their
ground state at t2 ≃ 7µs for v= vfast and t2 ≃ 32µs for v=
vslow. In the final step, at time tf ≃ t2 + 1.5µs, the static optical
tweezer is reactivated at the original location where the atom
B was initially positioned. This reactivation allows to determ-
ine whether the atom B is still present within the recapture
zone, defined by a radius of dB = ds centered at (0,0,0), where
dB serves as the effective boundary of our optical tweezer,
approximated in terms of a truncated harmonic potential. A
sequence of two π-pulses is applied to manipulate the elec-
tronic state of the atom at the center of the laser focus. To
enhance the efficiency of de-exciting the atom B with the
second π-pulse, a spin-echo protocol is employed, flipping
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Figure 1. (a) Schematic of the Rydberg-atom collision experiment. (b) Experimental time sequence: initially, two atoms A and B are
captured in static optical dipole traps from a cloud of 87Rb atoms. Once the atoms are successfully captured, atom A is gradually transported
from the static trap to the dynamic trap for acceleration. Subsequently, atom A is propelled using the dynamic trap, and all dipole traps are
deactivated. A Rydberg excitation beam is then introduced to facilitate Rydberg–Rydberg atom collisions. The experiment concludes by
applying the Rydberg de-excitation beam and probing the recapture of atom B to detect the occurrence of Rydberg collisions.

the laser phase at the midpoint t= (t1 + t2)/2. For detec-
tion, fluorescence imaging is used, based on the cycling trans-
ition |5S1/2⟩ ↔ |5P3/2⟩. This imaging is performed with an
exposure time of over 50ms, utilizing an electron-multiplying
charge-coupled device (Ixon Ultra 897 from Andor) [36].

Due to the velocity spread∆v of the atom B at rest only on
average, it may escape the recapture zone before the tweezer
is reactivated, even without undergoing a collision. To account
for this, we alternate measurements of atom B in the pres-
ence (PB(xA;n,v)) and absence (P

(0)
B (n,v)) of atom A. The true

recapture probability is then extracted from

Precap (xA;n,v) =
PB (xA;n,v)

P(0)
B (n,v)

. (2)

Any additional atom loss can thus be attributed to collisions,
and the corresponding collision probability can be defined as

Pcoll (xA;n,v) = 1−Precap (xA;n,v) . (3)

This collision probability includes only ‘hard’ elastic colli-
sions with momentum transfers large enough such that atom B
will escape the tweezer irrespective of its initial position and

of its initial thermal velocity. The present experimental pro-
cedure is repeated about 1000 times to accumulate the data.

3. Collision between Rydberg atoms

We focus in this communication on elastic scattering between
atoms, i.e. the collision energy is preserved without chan-
ging the electronic state of the atoms. In the present exper-
iment the collision velocity is sufficiently low such that
significant contributions from inelastic (de)excitation pro-
cesses of the Rydberg electrons can be ruled out as the
relative kinetic energy carried into the collision does not
exceed the energy spacing between adjacent Rydberg mani-
folds. We have verified the predominantly quasi-elastic char-
acter of the collision by classical trajectory Monte Carlo
simulations.

In our experiments, the de Broglie wavelengths corres-
ponding to the collision velocities are much shorter than the
size of the Rydberg atoms as well as of the optical tweez-
ers. Therefore, the experiment is expected to yield the cross
section for a collision between two classical particles. (For
more detailed discussion see section 5.)
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For a scattering potential V(r) = C6/r6, the scattering angle
can be approximated by [40]:

θ ≃ 15πC6

4mv2b6
, (4)

where m is the atom mass, b is the impact parameter, and v
is the collision velocity v. b is varied by adjusting the position
(xA) of the optical tweezer. Assuming atom B is initially at rest,
the condition for recapture after the collision time τ = t2 − t1
is given by

vτ sin
θ

2
< dB, (5)

where the width of tweezer, dB ∼ 0.8µm, is much smal-
ler than the propagation distance vτ > 10µm. Therefore, the
atom B is recaptured after ‘soft’ collisions with small diffrac-
tion angles θ < θmin ≃ 2dB/(vτ). The corresponding maximal
impact parameter becomes

bmax =

(
15πC6τ

8mdBv

)1/6

. (6)

Consequently, the effective scattering cross section scales as:

σeff = πb2max ∝
(
C6τ

v

)1/3

. (7)

Given the approximate n dependence of C6 ∝ n11eff, where neff
is the effective quantum number for Rydberg atoms and the
relation τ ∼ 1/v in this setup, the cross section scales as
σeff ∝ n11/3eff v−2/3. More precisely, the numerical evaluation of
C6 [37] is fitted by a scaling of C6 ∼ n11.47eff (see table 1 for
values of C6, bmax, and σeff), which suggests the cross section
scales as

σ ∝ n3.8eff v
−0.67. (8)

A Monte Carlo simulation has been performed to corrob-
orate the above scaling analysis (see table 2 for values for
the simulation). The electronic excitation of each atom by
the laser field is treated as a two-level system and the atomic
motion in terms of classical trajectories. The initial positions
and the velocities of both atoms A and B at t= 0 (right after
the tweezers are deactivated) are randomly generated based
on the canonical thermal distribution of particles in the optical
tweezer. Typically 105 pairs of initial conditions are used in
the current study. After the tweezers are turned off, while
the atoms move along straight-line trajectories, the electronic
excitation is simulated with the Hamiltonian in the rotating
wave approximation

He =
1
2
Ω(⃗r, t)(|g⟩⟨n|+ |n⟩⟨g|) (9)

using the position dependent Rabi frequency (equation (1)) to
calculate the excitation probability, Γ AB. During the excita-
tion phase, the atoms are sufficiently far apart so that van der

Table 1. Rydberg interaction constants [37], maximum impact
parameter bmax, and effective (classical) collisional cross section σeff
(equation (7)) for two-body Rydberg–Rydberg scattering.

C6 bmax (µm) σeff (µm
2)

States (GHzµm−6) vslow vfast vslow vfast

|36S1/2⟩ 0.26 2.6 1.6 21.3 7.8
|45S1/2⟩ 4.23 4.1 2.5 54.1 19.7
|53S1/2⟩ 31.0 5.8 3.5 105.0 38.3

Table 2. Parameters used for numerical simulation.

Ω0/(2π) (MHz)

v (m s−2) zi (µm) tf (µs) n= 36 n= 45 n= 53

0.85 10.0 33.3 1.06 0.84 0.92
3.0 14.1 8.2 1.09 0.88 0.94

Waals interactions can be neglected. For each random realiza-
tion, a Monte Carlo method is used to determine whether the
atoms are excited or not. If both atoms are excited, the colli-
sion dynamics are then simulated using the Hamiltonian

H=
p2A
2m

+
p2B
2m

+
C6

|⃗rA− r⃗B|6
. (10)

If neither atom is excited, they continue on straight-line tra-
jectories without interacting. The equations of motion for
the atoms are numerically integrated using the Runge–Kutta
method with adjustable time steps to properly account for
the singularity of the van der Waals potential [35]. To obtain
an accurate estimate for the electronic excitation dynamics
between the two π-pulses we solve a Lindblad equation, which
accounts for spontaneous decay and dephasing of the Rydberg
state during this period [41]. In the current simulation the
radiative lifetime of Rydberg states are approximated by tn =
5× 10−4n3eff yielding 18µs for n= 36, 37µs for n= 45, and
62µs for n= 53. The dephasing rate γ is set to 1/γ = 150µs.
(Note that the simulations show that the final results are not
sensitive to the value of γ.) Once one of the atoms decays to
the ground state, the atoms follow straight-line trajectories. At
t= t2, the de-excitation probability via the second π-pulse is
calculated only if atom B remains within the recapture zone.
At the reactivation of the tweezer t= tf, the recapture probab-
ility PB is determined by counting how many random realiza-
tions result in the atom B remaining within the recapture zone
and being de-excited to the ground state. To determine whether
atom B remains in the trap upon reactivation, we approximate
the optical tweezer by a sufficiently deep harmonic potential.
Since the static tweezer depth Us = 0.58(5)mK far exceeds
the temperature of the stationary atom of about 30µK, this
assumption simplifies the recapture condition to the require-
ment that the total kinetic energy does not exceed the trap
depth. Hence, equation (5) remains a reliable approximation
for the recapture process in our experiment.

To examine the effects of inelastic scattering, we have
also performed another Monte Carlo simulation extending the
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Figure 2. Measured (symbols) and calculated (solid lines) elastic collisional probabilities for Rydberg–Rydberg collisions with n= 36, 45,
and 53, at two different collision velocities: v= 3.0(2)ms−2 (upper panel), and v= 0.85(9)ms−2 (lower panel). Vertical dashed lines
indicate bmax in table 1 below which scattering is expected (|xA|< bmax). Horizontal dashed lines indicate the photoexcitation probability
Γ AB. In the Monte Carlo simulations each data point represents an average over 105 random realizations.

above model. When both atoms are excited to the Rydberg
state, a four-body system consisting of two Rydberg elec-
trons and two Rb+ ion cores is simulated assuming both elec-
trons and atoms follow the classical equations of motion. This
simulation indicates that most inelastic processes are associ-
ated with large momentum transfers to the atom B for which
the atom B will not be recaptured. Only for large n and v, a
few inelastic processes allow for the recapture of the atom B.
However, the probability of those inelastic processes is com-
parable or smaller than the error bars of the measurements.
Therefore, those inelastic processes can be neglected in the
current study.

4. Experimental results

Experimental results for the impact parameter dependent col-
lision probabilities Pcoll(xA = b;n,v) are presented in figure 2.
They are determined via equations (2) and (3) for three
different Rydberg states, |36S1/2⟩, |45S1/2⟩, and |53S1/2⟩,
and two collision velocities, vfast = 3.0(2)ms−2 and vslow =
0.85(9)ms−2. The higher the Rydberg state (n) of an atom
and the slower the collision velocity (v), the larger the pos-
ition of the tweezer d= xA at which collisions occur, as

expected from equation (7). The results are in a reasonable
agreement with numerically simulated collision probabilities
(solid lines).

The Monte Carlo simulation accounts for the impact para-
meter profiles of the two-body collisions in the current experi-
ment. The position of the tweezer xA serves as the representat-
ive of the impact parameter b of the two-body collision. When
the actual impact parameter distribution is averaged over ran-
dom realizations and compared to the value xA (figure 3), xA
represents the average impact parameter for v= 3m s−2 reas-
onably well except at small xA. However, for v= 0.85m s−2,
the thermal velocity spread (∼0.1m s−2) becomes compar-
able to the average velocity and the deviations become rather
large. Overall, xA tends to underestimate the average impact
parameter. The Monte Carlo simulation also displays the
effect of thermal diffusion which causes the atom B to escape
the recapture zone and decreases the recapture probability,
PB(xA;n,v), even for large xA, e.g. PB(xA;n,vfast)∼ 0.56, and
PB(xA;n,vslow)∼ 0.01. These values correspond to the recap-
ture probabilities without collision P(0)

B (n,v). For small xA the
two-body collision is expected to eject atom B only when both
atoms A and B are excited to the Rydberg state and the van
der Waals interaction becomes non-negligible. Therefore, the

5



J. Phys. B: At. Mol. Opt. Phys. 58 (2025) 115202 H Hwang et al

Figure 3. Average impact parameter as a function of xA determined
by Monte Carlo simulations evaluated over randomly generated
positions and velocities of atoms A and B representing canonical
ensembles in optical tweezers. For v= 3m s−2, xA (dashed line)
represents the average impact parameter well except at small xA
within a standard deviation (blue shaded). For v= 0.85m s−2

(dotted line), for which the thermal velocity spread (∼0.1m s−2)
becomes comparable to the average velocity the deviations (red
shaded) becomes rather large. For the atom A the trap frequency is
294 kHz and the temperature 150µK centered at r⃗= (xA,0,−zi)
and v⃗= (0,0,v). For the atom B the trap frequency is 67 kHz and
the temperature 30µK centered at r⃗= (0,0,0) and v⃗= (0,0,0).
zi = 10µm for v= 0.85m s−2 and 14.1µm for v= 3m s−2.

photoexcitation probability Γ AB (horizontal dashed lines in
figure 2) that both atoms, A and B, are excited by the first π-
pulse serves as the upper bound of the collision probability
at small xA. Since the actual impact parameter b can be larger
than xA (figure 3), the atom B can be recaptured when b> bmax

even for small xA reducing the collision probability relative
to Γ AB. The spontaneous decay of Rydberg states is another
factor to further reduce the collision probability. For n= 53,
the lifetime of 62µs and bmax become large enough such that
the collision probability in the limit of xA → 0 nearly con-
verges to the photoexcitation probability Γ AB. The error intro-
duced by the representation of the impact parameter b by the
tweezer position xA enters also the comparison between exper-
imental and theoretical data for the differential collision prob-
abilities (figure 2). In addition, residual differences may also
indicate effects of residual misalignment between the static
and the dynamic tweezers.

Experimental effective total cross sections, σeff,ex(n,v), are
obtained from the data for the effective collision probabilities
Pcoll(xA;n,v) via

σeff,exp (n,v) =
2π
ΓAB

ˆ
dxAxAPcoll (xA;n,v) (11)

where we have renormalized the collision probabilities by the
photoexcitation probabilities Γ AB. The resulting σeff,exp(n,v)
values in table 3 lie below the predicted ‘clean’ cross sections

Table 3. The cross-section σcoll(n,v) of Rydberg-atom collisions
(in unit of µm2).

States v= 0.85m s−2 v= 3.0m s−2

|36S1/2⟩− |36S1/2⟩ 12.1 6.9
|45S1/2⟩− |45S1/2⟩ 31.4 16.7
|53S1/2⟩− |53S1/2⟩ 52.5 29.5

in table 1 for two-body collisions with well-defined velocity
and impact parameter.We attribute this mainly to the deviation
of xA from the averaging over impact parameter, as shown in
figure 3.

The numerical simulation can be further used to investig-
ate the dependence of the effective collisional cross section
on effective quantum number neff and collision velocity v.
When the propagation distance between the two π-pulses is
fixed to zc = 16µm and, correspondingly, the collision time,
τ = zc/v, is inversely proportional to the collision velocity,
the effective cross section is expected to follow the scaling
σcoll ∝ n3.8eff v

−0.67 (see equation (8)), as indicated in figure 4
by the dashed lines. This prediction can be compared with the
simulation allowing for the thermal spread in velocity and pos-
ition. The effective simulated cross section lies below the pre-
diction for the ‘clean’ cross section as well.

For the dependence on the effective quantum number neff
(figure 4(a)), the simulation yields σ ∼ n3.9eff very close to the
predicted scaling, while the collision velocity dependence
in figure 4(b) is slightly off from the predicted scaling. We
also attribute this primarily to the deviations of xA from the
effective impact parameter in figure 3. The deviations are
most prominent for small collision velocities. As the velocity
increases, the simulated results tend to converge towards the
predicted cross sections.

5. Discussion

Within the context of cold collisions it is of conceptual
interest to inquire into the regime of scattering angles at which
quantum effects will become significant. We first note that
the longitudinal de Broglie wavelength, λdB,ℓ, is much smaller
than the size of the Rydberg atom (⟨r⟩), with values of 1.5 nm
for v= 3m s−2 and 5.4 nm for v= 0.85m s−2. More critical
is therefore the ratio of the transverse de Broglie wavelength,
λdB,t, to the impact parameter b, which governs the collision
process. This ratio, λdB,t/b≪ 1, can be expressed as

ptb≃ µvθqmb≃ Lθqm ≫ 1, (12)

where µ= m/2 is the reduced mass and pt is the trans-
verse momentum. Replacing the classical angular momentum
with the partial-wave quantum number, L= (l+ 1/2)h̄,
equation (12) reduces to ℓθ ≫ 1≃ ℓθqm. In the current case
of rubidium Rydberg–Rydberg atom scattering, the character-
istic impact parameters for elastic scattering at the asymptotic
part of the van der Waals potential are larger than the atomic

6



J. Phys. B: At. Mol. Opt. Phys. 58 (2025) 115202 H Hwang et al

Figure 4. Simulated collisional cross section for a fixed propagation distance (8µm) between two π-pulses (solid lines) including thermal
position and velocity spread. The initial position is set to zi = 8µm + v× 1.5µs and the Rabi frequency of π-pulses is 1MHz. The total
propagation time is tf = 2zi/v+ 3µs. (a) σcoll as a function of neff and (b) as a function of v. The dashed lines are the predictions of
equation (7) for ‘clean’ atom Rydberg–Rydberg scattering.

radius ⟨r⟩, i.e. b≳ ⟨r⟩. Therefore, typical values of ℓ are

ℓ≃ µvb≫ µv⟨r⟩ ∼= 100 (13)

and are on the order of ∼103. For all scattering angles, we
find θmin ≫ θqm ≃ 10−3, indicating that the (semi-)classical
limit of quantum scattering applies. Therefore, the quantum
scattering amplitude for scattering at the central potential
V(r) = C6/r6 (valid for r≫ ⟨r⟩) can be evaluated in the (semi-
)classical limit [38, 39]. The partial-wave scattering phase δℓ
for V(r) can be approximately given by [40],

δℓ =−3πµ5v4C6

16ℓ5
. (14)

In the limit of large ℓ the Legendre polynomials Pℓ become
rapidly oscillating functions and the summation in scattering
amplitude is dominated by the terms around the stationary
phase ℓ= L0 satisfying 2 dδℓ/dℓ|ℓ=L0 ± θ = 0. Thus, the scat-
tering amplitude is approximated by [40]

f(θ)≃ 1
µv

√
L0
sinθ

∣∣∣∣dL0dθ

∣∣∣∣ei(2δL0−(L0+1/2)θ−π/4). (15)

Unlike the classical cross section σeff in equation (8), its
quantum counterpart remains finite because of destructive
quantum interferences between partial waves that are neg-
lected in the classical limit. This cross section is given by

σ(qm) = 2π
ˆ π

0
|f(θ) |2 sinθdθ ≃ 8π

µ2v2

ˆ ∞

0
Lsin2 δLdL. (16)

For the scattering phases associated with the asymptotic part
of van der Waals potential C6/r6, the quantum cross section
follows the scaling law

σ(qm) ≃ 5.1

(
C6

v

)2/5

. (17)

Correspondingly, the effective cross section for the same con-
straint of hard collisions accessed by Pcoll is given in terms of
an upper cut-off for Lmax = µvbmax by

σ(qm)
eff =

8π
µ2v2

ˆ Lmax

0
Lsin2 δLdL. (18)

Within the stationary-phase approximation, the scattering
cross section becomes equivalent to the classical result

dσ
dθ

= 2π sinθ|f(θ) |2 = 2πb

∣∣∣∣dbdθ
∣∣∣∣ . (19)

Here b= µvL0, and the scattering angle θ follows from

θ ≃−
ˆ ∞

r0

2L0

r2
√
2µ(E−V(r))−L20/r

2
dr+π , (20)

where E= µv2/2 and r0 is the inner turning point, satisfying
2µ(E−V(r0))−L20/r

2
0 = 0.

Figure 5 compares the quantum differential cross section
(equation 19) evaluated using the scattering phase in
equation (14). with the classical differential cross section
(right-hand side of equation (19)) with f(θ) calculated by
expanding the integrand of equation (20) to first order in
V(r), i.e. using classical first-order perturbation theory for
the long-range part of the van der Waals potential. The res-
ults show excellent agreement, except for the narrow forward
cone (θ ≲ θqm, see equation (12)), as expected. In the current
experiment, with θmin > θqm, classical two-body scattering is
sufficient for analyzing the experimental data. However, mak-
ing the experimentmore sensitive to small scattering angles-by
using smaller tweezers or lowering collision velocities-would
render the Rydberg–Rydberg collision experiment sensitive to
quantum scattering effects. For n= 36 and v= 0.85m s−2 with
a tweezer width of 100 nm, θmin ≃ θqm could be reached [42].
This would require an optical tweezer with a beamwaist on the
order of 100 nm, which is technically not feasible in the cur-
rent experimental setup due to the diffraction limit on the order

7
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Figure 5. Comparison of classical and quantum differential cross
sections, dσ/dθ, for scattering between rubidium Rydberg–Rydberg
atoms with the potential V(r) = C6/r

6, at n= 36 and v= 3m s−2.
The minimum scattering angle, which influences the effective
scattering probability Pcoll (equation (3)), is shown, along with the
forward cone (θ ⩽ θqm) where quantum effects become significant.

of optical wavelength. In order to implement optical tweezers
with waists on that scale, a shorter wavelength optical tweezer
would be required.

6. Conclusions

In summary, we have conducted an experiment of pairwise
collisions of rubidium atoms in Rydberg energy states using
optical tweezers. The initial positions and velocities of the
atoms were controlled, allowing us to measure cross section
profiles as a function of the effective impact parameter b
and collision velocity v for selected Rydberg states |36S1/2⟩,
|45S1/2⟩, and |53S1/2⟩. By measuring the recapture probabil-
ity, the acceleration of atom B induced by collision has been
probed to extract the elastic scattering cross section without
involving changes in the electronic excitation. The measured
results were well reproduced by a numerical simulation that
treats atomic motion classically and models the electronic
excitation as a reduced two-level system, accounting for the
thermal spread in position and velocity imposed by the optical
tweezers. We have also delineated the parameter regime where
the collision dynamics will be no longer fully classical but
quantum effects become important.
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