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Abstract
In recent years, Rydberg atom graphs, which are the arrangement of atoms of which the interaction through Rydberg state 
excitation can be represented by a mathematical graph, have emerged as a promising qubit platform for quantum computing 
and quantum simulation, through implementing quantum gates and circuits, probing quantum phase transitions in designed 
atom arrays, and solving the classically difficult class of computational problems. Here we briefly review the remarkable 
progress of the related techniques and research activities involved with the Rydberg atom graphs. The ease of scalability 
and controllability of Rydberg atom graphs might enable the quantum advantage in the NISQ (noisy intermediate scale 
quantum) era.

Keywords Rydberg atom · Quantum computing · Quantum simulation

1 Introduction

During the last decade, there have been two breakthrough 
technologies which have played essential and respective 
roles in Rydberg quantum computing research, impacting 
on the current remarkable progress of the field. The first 
is the Rydberg blockade effect [1–3], which has made the 
entanglement of neutral atoms an everyday tool in the world-
wide atomic quantum research, and the second is the atom 
rearrangement method [4–6], which utilizes a set of mov-
able optical tweezers to construct defect-free arbitrary atom 
graphs, as in Fig. 1. Here we use the term Rydberg atom 
graphs, because possible geometries of as-constructed atom 
arrays are not limited to crystalline structures in the physi-
cal, three-dimensional space, but are better represented by 
mathematical graphs, which are the set of vertices and edges 
in hyper-geometric space. In that regard, Rydberg atom sys-
tems of the general form can be referred to as Rydberg atom 
graphs (or Rydberg graphs, in short).

Rydberg atoms are a micrometer-size neutral atom of 
a large principal quantum number (about n = 100 ). The 
interaction between two Rydberg atoms, e.g., in 10 � m dis-
tance, is huge, about 1013 times stronger than the interac-
tion between two ground-state ( n = 1 ) atoms at the same 
distance, due to the large polarizability of Rydberg atoms. 
As a result, the presence of a Rydberg atom easily prohibits 
neighboring ground-state atoms from becoming Rydberg 
atoms. Simultaneous creation of Rydberg atoms within a 
certain distance (Rydberg blockade distance, about 10 � m 
for n = 100 ) results in a quantum mechanically entangled 
many-body state. The strong interaction of Rydberg atoms 
also makes fast quantum gates (of up to MHz clock speed).

Rydberg quantum computers use a Rydberg atom graph 
and controls its many-body entanglement nature, to com-
pute classically difficult quantum or classical problems by 
either performing quantum simulation, adiabatic quantum 
computing, or circuit-based quantum computing. The atoms 
are individually controlled sequentially or simultaneously by 
lasers or RF fields, so that the multi-partite quantum entan-
glement state of the atoms can be altered according to a pre-
pared quantum algorithm. In particular, the placement and 
movement of individual atoms are relatively easy in Rydberg 
atom experiments, i.e., Rydberg atoms are non-stationary 
qubits allowing adjustable qubit couplings presumably even 
during quantum computing process. It is possible to imple-
ment arbitrary Rydberg graphs, or equivalently arbitrary 
qubit connections required for combinatorial optimization 
problems in adiabatic quantum computing. The versatility of 
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Rydberg atom graphs has enabled significant research pro-
gress of Rydberg atom quantum computing in recent years.

This review focuses on the recent progress of the Rydberg 
quantum computations and simulations, in addition to the 
previous reviews [7–12]. To begin, we briefly introduce 
the Rydberg atom quantum computer. We then review the 
technical details to realize universal Rydberg quantum gate 
operations, quantum simulation, and finally quantum adi-
abatic computing with Rydberg atom graphs. We discuss 
the prospects of Rydberg quantum computing in the end.

2  Rydberg atom quantum computer

A Rydberg atom quantum computer consists of a single-
atom apparatus, atom rearrangement system, a Rydberg 
excitation laser system, and a state measurement apparatus.

2.1  Single atom apparatus

A magneto-optical trap (MOT) is used to prepare cold atoms. 
Fast-moving atoms at the room temperature are made to be 
stationary in a vacuum space. The atom speed is reduced 
from 1000 m/s to 0.1 m/s or less, and the temperature (or the 
speed distribution) is lowered down to 0.01 mK. Up on being 
irradiated by near-resonant (red-detuned) laser light, the 
atoms moving toward the irradiation lose their momentum 
through a repetitive process of directional absorption and 
isotropic spontaneous emission. Such an optical molasses 
process eventually stops the atoms in a spatial trap potential 
determined by an anti-Helmholtz magnetic field.

Optical dipole traps (or optical tweezers, hereafter) are 
used to prepare single atoms  [6, 13–18]. Light-induced 
energy shift (the AC Stark shift) of the atoms can be either 

positive or negative from the the atomic resonance accord-
ing to the detuning of the light frequency. Red-detuned light 
(below the resonance) creates an attractive optical potential 
for the atoms by down-shifting the ground state energy level 
and up-shifting the excited state energy level. So, typical 
optical tweezers use red-detuned laser light to trap the atoms 
using a tightly focused laser beam, of which laser frequency 
is tuned far off from the atomic resonance so that the trapped 
atoms nearly do not absorb the light and preserve their inter-
nal energy state. At a proper condition laser intensity and 
beam diameter, single or no atom occupancy in a trap is 
provided by the collisional blockade condition [24].

While Rydberg single-atom experiments mostly use red-
detuned optical tweezers due to the simplicity and efficiency, 
blue-detuned optical field can be also used to confine the 
atoms [18]. In this case, the at the light intensity minimum, 
by surrounding the atoms by repulsive potentials induced by 
higher intensities of the blue-detuned trap laser [17, 20–23]. 
The intensity distribution of blue-detuned optical dipole 
traps can be a Laguerre–Gaussian type or bottle-beam traps. 
The use of the blue-detuned trap resolves the disadvantage of 
the red-detuned optical tweezers, the ponderomotive poten-
tial [20], which prohibits Rydberg atoms from being trapped 
by the red-detuned optical tweezers. While red-detuned opti-
cal tweezers must be turned off during the Rydberg excita-
tion to avoid the anti-trapping, the blue-detuned traps can be 
kept on. So, the blue-detuned “dark” traps are likely provide 
longer time (than red-detuned ones) in quantum simulation 
and high-fidelity gate operations [21]. Three-dimensional 
trapping of an individual Rydberg atom is demonstrated 
by bottle beam traps formed by a holographic spatial light 
modulator [22] and a larger dark trap array of more than 
1,000 atoms has been demonstrated with a passive mask and 
spatial filtering [23], showing the possibility of large-scale 
Rydberg trapping in future.

2.2  Atom rearrangement system

An atom-rearrangement system provides a defect-free atom 
array or graph, of which the process consists of three steps: 
atom occupancy check, atom-moving path design, and 
atom transport. Without the atom rearrangement, each lat-
tice point of an array of 2N optical tweezers is probabilis-
tically half-filled, i.e., only about N optical tweezers hold 
single atoms and remaining optical tweezers have no atoms, 
as illustrated in Fig 1. It is because the atoms captured by 
an optical tweezer escape from the trap by pair-wise colli-
sions, due to the collisional blockade effect [24] and at a 
certain trap beam-width and potential condition, the number 
of atoms is either 1 or 0, so the probability of capturing a 
single atom is about 0.5.

Fig. 1  Illustration of atom rearrangement: A small-size defect-free 
atom array is constructed from a large-size probabilistically occupied 
atom array by simultaneous or sequential atom rearrangement [4–6]
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The atom rearrangement for a perfectly occupied 
(defect-free) N-atom array begins with a stochastically 
loaded 2N-atom array, which is changed to a defect-free 
one by moving the loaded single atoms individually. The 
optical tweezers that capture atoms are to be moved to 
form a desired atom arrangement close to a deterministic 
probability, ⟨N⟩ = 1 . For this purpose, a liquid-crystal type 
spatial-light-modulator (LC-SLM) or an acousto-optic 
deflector (AOD) is used to create and move multiple laser 
beams at a high speed. As such, defect-free atom arrays 
are generated by dynamically rearranging optical tweezers. 
The laser beam can be separated to place 20–250 atoms on 
to a two- or three-dimensional spatial arrangement. The 
quality of the array is directly related to the uniformity 
of the individual potential depths of the optical tweezers. 
And the uniformity can be maintained to be of high qual-
ity by aberration compensation and also by modifying 
hologram calculating algorithm [25–28]. The methods of 
generating trap arrays include holographic [15], acousto-
optic methods [6], and microlens array [16].

Holographic method: The holographic method uses 
computer-controlled liquid-crystal spatial-light modula-
tors (LC-SLM). It modulates the spatial phase of an inci-
dent reference laser beam. An appropriate phase mask 
programmed on the LC-SLM renders the desired inten-
sity distribution of the array. The Gerchberg–Saxton (GS) 
algorithm is widely used to find the phase mask with the 
best efficiency and uniformity. It is iterative Fourier- and 
inverse-Fourier-transform between a reference electric 
field A(x, y)eiΦ(x,y) in the Fourier-plane (x, y) and a desired 
target intensity distribution I(x�, y�, z�) in the image space 
(x�, y�, z�) until the former converges to the latter so that 
a desired intensity distribution is shaped from the initial 
random phase pattern [15].

However, when the GS algorithm generates each movie 
frame of the phase mask for atom rearrangement, the tran-
sition phase between two consecutive phases shows a sig-
nificant flicker of trap intensities due to phase discontinuity, 
resulting in the loss of atoms. KAIST group demonstrated 
the first simultaneous rearrangement of single atoms by 
implementing a dynamic holographic phase mask with a 
flicker-free beam steering algorithm [4]. An LC-SLM shapes 
the wave front of a laser beam to form a designed array 
simultaneously. The hologram calculation algorithm was 
optimized to prepare dozens of two-dimensional defect-free 
atomic arrays. Without the method of atom rearrangement, 
the simultaneous capturing of N atoms has a low proba-
bility of 1/2N . For example, capturing ten atoms with ten 
optical dipole traps usually results in a random capture of 
4–6 atoms, and capturing all ten atoms results in a small 
probability of about 0.001. The atom rearrangement method 
resolves this problem and enables capturing defect-free ⟨N⟩ 
atoms at a high probability near one.

The GS algorithm has been further advanced by apply-
ing the Hungarian matching algorithm [29] and modifying 
Gerchberg-Saxton algorithm [30]. For example, zero-pad-
ding is added to the Gerchberg–Saxton algorithm to increase 
the position resolution of the optical trap in the Fourier 
transform (Fig. 2a). In addition, weights and induction are 
added for faster convergence of each frame and phase con-
tinuity between successive frames, respectively, resulting 
in reduced flicker and improved agility. To minimize the 
atomic movement path and prevent collisions between the 
paths, a movement path is given between the first captured 
atom and the uncaught optical traps using the Hungarian 
algorithm (Fig. 2b). The hologram can be calculated at a 
60 Hz repetition rate using a GPU, and typically 15 to 20 
frames are required to rearrange the atoms. This feedback is 
repeated nine times to create a defect-free array of more than 
30 atoms within 2 s. Figure 2b is an example of preparing a 
butterfly-shaped flawless array of 37 atoms with a probabil-
ity of about 35%. Later, 49 neutral atoms were successfully 
relocated to a three-dimensional space using an improved 
technique that minimizes interference [31]. A dynamically 
programmed LC-SLM hologram device reflected a laser 
beam to create 2N position-controllable optical tweezers, 
and N rubidium atoms were relocated in a three-dimensional 
space.

Acousto-optic method: Groups in Harvard and Institut 
d’Optique respectively developed sequential one-by-one 
atom transportation by deploying about 100 neutral atoms 

Fig. 2  Defect-free atomic array generation using holographic method. 
a Entire block diagram of the modified Gerchberg–Saxton algorithm 
for atom rearrangement. b An example of preparing a butterfly-
shaped array of 37 atoms with a probability of about 35 % . Reprinted 
with permission from [30] ©The Optical Society
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using acousto-optic deflectors (AOD) [5, 6]. Currently, up 
to 250 atoms are spatially placed and used for quantum 
simulation or quantum computing research. The acousto-
optic method also generates optical tweezer arrays. When 
the radio-frequency (RF) wave is sent to the acousto-optic 
modulator or deflector (AOM or AOD), a portion of the inci-
dent light is deflected by the angle corresponding to the RF 
frequency. The number of deflected beams corresponds to 
the frequency components of RF, and the deflection angles 
correspond to the values of frequencies [6].

Unlike KAIST’s approach, the AOD method differently 
shuttles each atom. The first step is to create 2N two-dimen-
sional lattice-shaped optical traps using spatial-light-modu-
lator (SLM), then determine the positions of about N neutral 
atoms captured with a 50% stochastic probability. An addi-
tional moving tweezer diffracted from a 2d-acousto-optic-
deflector (2d-AOD) is superimposed on a trap beam modu-
lated by SLM. By moving the identified atoms one by one 
in the XY direction using two AODs driven at high speed, 
they generated N atomic arrays of the desired shape. The 
position and intensity of the moving tweezer are controlled 
by the frequency and amplitude of the input RF wave applied 
to the 2d-AOD [5], as in Fig. 3(a). The depth of the mov-
ing tweezer becomes deeper than the overlapped SLM trap, 
and the trapped atom initially in the SLM trap is transferred 
to the moving tweezer. Then the tweezer moves to another 
SLM trap site with a typical speed of  10 nm/� s, as shown 
in Fig. 3(b). So, it takes about 1 ms for 10 � m movement 
per single atom. Figure 3(c) demonstrates 25 atoms defect-
free array generation, where the average filling fraction is 
increased from 50% to 96%. With a 96% chance of success, 
they made square arrays of 25 neutral atoms. At this time, 
the travel time for each atom takes 1 ms per 10 micrometers 
of the atom interval, limiting the maximum number of atoms 
that can be placed to hundreds. It is also applicable to gener-
ate multiple moving tweezers with multi-frequency RF [6]. 
The sequential one-by-one technique has been advanced in 

assignment algorithms [32, 33], and hybridizing a partially 
parallel technique for their 256-qubit processor [34]. The 
rearrangement for the three-dimensional array has also been 
demonstrated  [31, 35].

Other methods: There are many other different meth-
ods available for atom rearrangements, one of which is the 
microlens array, which explicitly divides the incident light 
into the array of focus spots [16], and the other is the bottle-
beam trap array, which uses a diffractive beam splitter and 
calcite displacers [17].

2.3  Rydberg excitation

Once a defect-free Rydberg-atom graph is prepared, Rydberg 
excitation is usually the next stage [36]. Rydberg atoms are 
created using a laser or lasers through a one- or two-photon 
absorption process. Required lasers are to have a narrow 
line width (less than 10 kHz), which is often achieved by 
frequency stabilizing with a Fabry-Perot resonator (typically 
100 kHz line width). In addition, it is known that laser phase 
noises from servo bumps of frequency locking are one of the 
major sources of imperfections in Rydberg excitation [37], 
so cavity-filtered diode lasers [38] or Ti:Sapphire lasers are 
used for a better quality of the excitation.

2.4  State measurement

The final stage is to measure whether an atom is in the 
ground state or in the Rydberg state. The measurement uti-
lizes the fluorescence imaging to check the presence of ab 
atom in each trap with a high-sensitivity camera (mainly 
using an electron amplification camera, an EMCCD, or a 
scientific CMOS camera). Since Rydberg atoms are not 
trapped by tweezer traps, the Rydberg (ground) state can 
be mapped into absence (presence) in the trap with fidelity 
over 90% [37]. Rydberg ionization by microwave can be 
used for better fidelity, especially in blue-detuned traps [39]. 

Fig. 3  Defect-free atomic array generation using acousto-optic 
method. a Experimental setup. b Atomic shuttling scheme by a mov-
ing tweezer diffracted from the 2d-AOD. c Demonstration of generat-

ing a defect-free array of 5x5 square lattice. Reprinted figure from [5] 
with permission from AAAS
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Transferring a Rydberg state into a ground hyperfine 
state [40] is also used for state measurement with selective 
hyperfine state detection [41–43], especially when multiple 
Rydberg states are used [44].

3  Quantum computing

3.1  Manipulating entangled states

While the entangled state of Rydberg atoms utilizing 
Rydberg blockade [1, 45] remained as a theoretical idea for 
a while, experimental demonstrations were finally achieved 
with two atoms [40, 46] or atomic ensemble [47]. Rydberg 
dressing-based entanglement generation was demon-
strated [48], but it was also based on a blockade mechanism 
for two atoms. After the rearrangement technique became 
available, Rydberg-mediated many-body entanglement states 
of a large deterministic atom array have become available, 
utilizing the high degree of freedom and flexible shapes of 
Rydberg atom graphs.

The first manipulation of Rydberg atom entangling 
gates was realized in a weak interaction regime, where 
the Rydberg atoms are spaced far beyond the Rydberg 
blockade distance [49]. The Rydberg phase gate is based 
on a phase induced by Rydberg–Rydberg interaction 
resulting in a controlled Z gate, and then probed by the 
Ramsey interferometry technique, as in Fig. 4(a). Note 
that this gate can be applied even when nearby atoms are 
closer than the target atom, keeping nearby atoms non-
entangled (Fig. 4b–e). The basic principle of this scheme 

was originally proposed as model A in Ref [45], which 
could not draw much attention due to the sensitivity to 
the distance between atoms. Neutral atom optical tweezer 
platforms can minimize a distance error per unit distance 
by arbitrarily changing the distance while fixing the unit 
distance error. As a result, the interaction noise can be 
suppressed between qubits because the interaction (pro-
portional to d−6 ) between qubits is a function of distance 
d. In Rydberg quantum computing, the distance error is 
usually tens of nanometers at a distance of 10 microm-
eters, making interaction noise as small as 1/1000. This 
advantage enables a long-distance Rydberg quantum gate 
operation in addition to the conventional Rydberg quantum 
computing based on the Rydberg blockade phenomenon 
among the nearest neighbors.

The generation of a multi-qubit entangled state called 
the Greenberger–Horne–Zeilinger (GHZ) state has also 
been demonstrated. In Rydberg atom arrays, the many-
body W-type entangled states can be directly generated 
using the Rydberg blockade effect. Generating another 
type of entangled state, GHZ-states, or Schrödinger cat 
states, has been of particular interest. Such states are con-
sidered as standard states to benchmark the performance of 
a quantum processor due to their fragility. Utilizing natural 
Ising-like interaction in one dimensional Rydberg atom 
array and local energy control by Stark shift laser beams, 
GHZ states up to 20 qubits of ground-Rydberg states were 
prepared and manipulated by quasi adiabatic evolution as 
in Fig. 4(f–h) [50]. This was the largest GHZ state genera-
tion at that time, showing the competitiveness of neutral-
atom platforms compared with other platforms [51–53].

Fig. 4  Manipulating entangled state by Rydberg atoms. a A Ram-
sey-type phase gate induced by Rydberg atom interaction. b Lin-
ear arrangement of three atoms A, B, C with inter-atomic distances 
d
AB

= d� and d
BC

= d2� giving � - and 2� - phases, respectively. 
c Measured Ramsey-fringes P1(�) of (c) atom A, d atom B, and e 
atom C, showing that atoms A and B are entangled. f An experimen-

tal probability histogram of computational basis micro-states for 20 
atoms, showing the GHZ state. g Pulse parameters for preparing the 
GHZ state. h Parity oscillations between GHZ state components. a–e 
from  [49], reprinted with permission. f–h from  [50], reprinted with 
permission from AAAS
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3.2  Quantum gates and circuits

Atomic hyperfine-state pair is one of the promising candi-
dates for qubit encoding thanks to its high coherence, which 
can be used for frequency standards. Many quantum proces-
sors are based on quantum gates, designed unitary evolution 
of a single qubit or multi-qubits, so high atomic state con-
trollability is required. Especially, circuit-model quantum 
computation relies on universal quantum gate sets, which 
can be constructed by arbitrary single-qubit and two-qubit 
gates. Single-qubit gates implemented by global microwaves 
and local laser beams have been well established in 2D [54] 
and 3D [55] without deterministic atom arrays, showing high 
fidelity over 99%. With the tweezer array platform, single-
qubit gates were proposed and demonstrated based on geo-
metric phases induced by ultrafast laser pulses in picosecond 
time scale [56] and Raman lasers generated by a dispersive 
optical system [57].

For two-qubit gates, since the first demonstration of 
Rydberg-mediated entanglement of atomic qubits [40, 46], 
there have been many efforts to achieve high-fidelity entan-
glement for about a decade. Standard gate scheme [45] and 
Rydberg dressing [48] were tested, failing to achieve a high 
fidelity over 90 % . But, after analyzing [37] and resolv-
ing [38] the imperfect Rydberg excitations issue, high fidel-
ity CZ gate of about 97 % has been achieved by a new gate 
scheme, which utilizes Rydberg blockade and geometric 
phase induced by two Rydberg pulses, the so-called “Lev-
ine-Pichler” gate [58] (See Fig. 5). This symmetric global 
gate is faster and experimentally simpler than the standard 
gate scheme that requires single-site addressing [39], so it 
is frequently used for Rydberg-mediated entanglement as 
a new standard. The implementation of three-qubit Toffoli 
gates is also demonstrated in the same paper, which may 
improve circuit depth requirements. The current fidelity is 
still insufficient for both NISQ and fault-tolerant quantum 
applications. The limitation is not intrinsic but technical, 
so further fidelity improvement is expected shortly. Some 
single-pulse symmetric schemes by pulse shaping are pro-
posed [59–61] and demonstrated [62], and these could boost 
the improvement of Rydberg entangling gates.

Most recently, neutral-atom quantum processors have 
become capable of implementing quantum circuits in pro-
grammable and complementary manners  [63, 64]  (See 
Fig. 6). Authors of Ref. [63] use a globally addressed laser 
beam for Rydberg excitations and coherent atom transports 
in the middle of circuits to implement CZ gate programma-
bility. It utilizes the locality of Rydberg interaction which 
decays rapidly. This method can generate geometrical con-
nectivity in two-dimensional planes and torus surfaces to 
implement the toric code. It can be also used for various 
applications such as mid-circuit measurements and quantum 
simulation. However, it has a disadvantage of the transport 

speed to take up to hundreds of microseconds of circuit pro-
gramming time.

The other processor of six qubits [64] uses a complemen-
tary scheme for quantum circuit programming with tightly 
focused Rydberg lasers to locally address atomic qubits, 
maintaining high CZ fidelity. Its high gate clock speed 
(< 10 us) allows quantum circuit implementation, such as 
GHZ state preparation, quantum phase estimation (QPE), 
and quantum approximate optimization algorithm (QAOA), 
up to 18 CZ gates despite a few ms coherence time without 
dynamical decoupling. Combining two schemes will make 
the neutral-atom quantum platform more attractive for quan-
tum information processing with a unique capability differ-
entiated from other platforms.

3.3  Quantum simulations

Due to the advantage of scalability, programmable Rydberg 
atom arrays are considered as a good platform for quan-
tum simulation [65, 66], which explores quantum phenom-
ena of strongly correlated many-body systems based on 

Fig. 5  Quantum gates on Rydberg atom systems. a Controlled phase 
gate protocol. Two pulses with detuning Δ and Rabi frequency Ω are 
globally addressed with different phases � . b The results of the pro-
tocol for different basis states. The dynamic phases are accumulated 
except for �00⟩ . c Bloch sphere illustrations of the state’s evolution 
by the controlled phase gate. The pulse duration � and phase jump 
� are chosen so that the initial states �01⟩ and �10⟩ undergo a single 
complete oscillation, �11⟩ undergoes two complete oscillations. d 
The detuning Δ is chosen to satisfy a relation between the dynamical 
phases �11 = 2�01 − � to implement the controlled phase gate proto-
col. Reprinted figures with permission from [58]
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microscopic observations. In quantum simulation, individu-
ally trapped atoms act as pseudo-spins in which the atomic 
Rydberg and ground states are mapped to spin up and down, 
�↑⟩ and �↓⟩ , respectively, so that the system where the neigh-
boring atoms interact with each other via Rydberg blockade 
can be expressed as the quantum Ising Hamiltonian [67]:

where Uij is van der Waals interaction proportional to 1∕R6

ij
 

for an inter-atomic distance between atoms i and j [68], 
ni = �↑⟩⟨↑�i , �i are the Pauli matrices, Ω is laser Rabi fre-
quency coupling �↓⟩ and �↑⟩ , and � is laser detuning.

A simple experimental implementation is to observe 
quench dynamics; which suddenly turns on a constant 
transverse field ℏΩ�x∕2 to a system. A result of quench 
dynamics for a super-atom of N-atoms, where all atoms are 
in a single Rydberg blockade range, is a collective Rabi-
flopping between a ground state �↓↓↓ ⋯⟩ and the W-state 
(�↑↓↓ ⋯⟩ +⋯ + �↓↓↓ ⋯ ↑⟩)∕

√
N  with the frequency √

NΩ [67]. The many-body dynamics with more interacting 
connections result from the sum of the couplings between 
various eigenstates of the Hamiltonian Eq. (1) restricted 
by the Rydberg blockade effect. The change of such many-
body eigenstates is observed by transforming the connected 

(1)H(t) = Σi<jUijninj +
�Ω(t)

2
Σi𝜎

x
i
− �𝛿(t)Σini,

graph structures of atoms arranged in three-dimensional 
space [69]. The many-body quench dynamics of atomic 
arrays with more than 10 qubits show diffusive properties 
along the Hamiltonian eigenstates corresponding to Fibo-
nacci graphs explained by the Fokker–Planck classical dif-
fusion model [70].

Another experimental implementation is quantum anneal-
ing, a technique that slowly adjusts the Hamiltonian of a 
many-body quantum system to transform an initial state that 
is easy to make into a desired final state. This is a protocol 
to simulate quantum phase transitions between two differ-
ent magnetic phases [71]. In particular, if the Hamiltonian 
passes near the quantum phase transition during the quan-
tum annealing process, it performs a quantum computing 
task requiring an energy comparison between many-body 
entanglement states. A typical experimental sequence is 
illustrated in Fig. 7(a). Initially all atoms are prepared to 
paramagnetic (PM) states �↓↓ ⋯⟩ , which is the ground state 
of H(t = 0) at 𝛿(t = 0) < 0 . Then the Hamiltonian H(t) 
evolves by turning on and off the laser Rabi frequency Ω(t) 
and increasing the detuning �(t) to 0 < 𝛿(tf ) < U at final time 
tf  , where U is nearest-neighbor interaction strength. Finally 
the system evolves to antiferromagnetic (AF) ground state 
�↑↓↑↓ ⋯⟩ of H(tf ) . Such experiments have been conducted 
in atomic arrays in 1D [72], 2D [34, 73, 74], and 3D fractal 
structures [75].

Fig. 6  Quantum circuit programming on Rydberg atom systems by 
(a) coherent transport of entangled atom arrays and b universal gate 
set implemented by tightly focused lasers and global microwaves. c 
Implementing the toric code by sequential movements of ancilla 

qubits. d Quantum circuit of the quantum phase estimation for 
hydrogen molecular energy, decomposed by the native gate set. a, c 
Reprinted figures from [63], b, d from [64]
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Recently, several quantum phase transitions between 
two different magnetic phases have been simulated on 
two-dimensional arrays of more than 100 atoms [34, 74] 
with several technical improvements [28, 32]. Two types of 
geometries, a 14 × 14 square array and a 147-atom triangular 
array, are tested for the transition to two sublattices and 1/3 
filling phases, respectively. From the probability distribu-
tions of their microscopic spin configurations, quantitative 
analysis is conducted by calculating some observables such 
as the staggered magnetization and the connected spin–spin 
correlation functions [74]. The antiferromagnetic correla-
tions grow differently by the Hamiltonian sweep rate accord-
ing to the quantum Kibble–Zurek mechanism [76]. And it 
is shown that the correlations follow the universal behavior 
of the Ising quantum phase transition that is theoretically 
predicted before [34].

Preparation and detection of a quantum spin liquid (QSL) 
in a Rydberg quantum simulator is also recently 
reported [77]. QSL, explained by topological order with 
many degenerate ground states [78], draws much attention 
due to its application for protected quantum information pro-
cessing [79]. A Rydberg atom array of up to 219 atoms on 
the edges of the kagome lattice implements dimer bond 
models for each vertex. The Rydberg-blockade Hamiltonian 
is tuned to about 1/4 filling to achieve the exponential num-
ber of degenerate dimer coverings of a ground state, as in 
Fig. 7(d–e). Such enormous dimer configurations reconstruct 

a QSL quantum state |||�QSL

⟩
 , which is ideally a coherent 

superposition of dimer coverings in Fig. 7(f). Then, by add-
ing a hole in the lattice, the topological properties of two 
distinct topological sectors are used as a logical qubit, a can-
didate application for quantum information processing in a 
more elaborate experimental device in future.

Dynamics of quantum many-body systems and non-
equilibrium phenomena are very difficult to simulate in 
digital electronic computers and remain a challenge to be 
resolved [80]. Due to thermalization from chaotic dynamical 
behavior, controlling the dynamics is also very hard. And 
few examples of avoiding thermalizations are known, such 
as many-body localization [81] and quantum many-body 
scar [82]. The quantum many-body scar in a two-dimen-
sional Rydberg array of up to 200 atoms is experimentally 
shown by observing dynamics of highly nonergodic coher-
ent oscillation between ordered and disordered states after 
quenching Hamiltonian that follows the preparation of the 
ordered ground state [83]. In addition, a new stabilization 
phenomenon of the coherent oscillation by periodic driving, 
which reminds discrete time crystal [84], is also demon-
strated and expected to be used for quantum information 
science.

Resonant dipole–dipole interactions between Rydberg 
atoms can be applied to program different types of Hamil-
tonian other than the Ising model. Two atoms prepared as 

Fig. 7  Quantum simulation of magnetism on Rydberg atom arrays. a 
Typical experimental sequence. b Phase diagram of square and tri-
angular lattices with 36 atoms. c Antiferromagnetic correlations of 
square and triangular lattices. d Quantum phase transition of a kag-
ome lattice with 219 atoms from paramagnet to quantum spin liq-

uid (QSL) phase. e Tuning Rydberg blockade radius R
b
 to for 1/4 

excitation filling phase. f QSL state is ideally a coherent superposi-
tion of exponential dimerized configurations. a–c Reprinted figures 
from  [73]. d–f Reprinted figures from  [77] with permission from 
AAAS
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different Rydberg states �r⟩ and �r′⟩ are coupled by a micro-
wave transition. Their dipolar interaction induces population 
exchange between Rydberg pair states �r, r′⟩ and �r′, r⟩ . Here 
each Rydberg states are mapped to a spin-1/2 states �↑⟩ ≡ �r⟩ , 
�↓⟩ ≡ �r′⟩ . For an inter-atomic distance R, the interaction 
strength scales at ∼ 1∕R3 . The Hamiltonian of this system is 
expressed by XY-model:

where C3 is a coefficient of the interaction, and �± = �x + i�y . 
A three-atom linear chain system is initially prepared 
to a state �↑↓↓⟩ for the case of first atom excitation only. 
The excitation is transferred to the adjacent atoms. Then 
the spin excitation hopping occurs between each atoms, 
as �↑↓↓⟩ → �↓↑↓⟩ → �↓↓↑⟩ → �↓↑↓⟩ → �↑↓↓⟩  [85, 86]. 
Recently, the Hamiltonian in Eq. (2) has been applied to 
study the topological states of matter. An atomic array of 
zig-zag chains encodes the repeating angular-dependent 
strong (J) and weak ( J′ ) interactions between odd and even 
lattice sites. Such an array implements the Su–Schrief-
fer–Heeger (SSH) model describing a one-dimensional 
dimerized chain, in which the finite lattice can behave as a 
topological insulator [87].

Combining an engineered microwave illumination and 
Rydberg atoms with exchange interactions can implement 
the Heisenberg spin model. In Ref. [88], a sequence of four 
�∕2 microwave pulses couples two different Rydberg states 
�r⟩ and �r′⟩ to implement the Hamiltonian expressed by:

where the interaction strengths Jx,y,z
ij

 are changed by the delay 
times of the microwave pulses.

3.4  Combinatorial optimization problems

The NP (non-deterministic polynomial) problems are the 
problems with a high computational complexity that current 
digital computers of von Neumann architectures are difficult 
to deal with. The decision problems are classified into P 
(deterministic polynomial) and NP according to the compu-
tational complexity, among which the NP-problems cannot 
be efficiently solved using digital computer algorithms. The 
challenge of the currently developing quantum computers is 
to efficiently (i.e., in a polynomial time) solve NP-problems 
such as quantum Fourier transforms (QFT) in factorization 
problems. Especially, NP-complete problems draw atten-
tion due to their reducibility from all P and NP problems. 
Maximum-independent-set problem, 3-satisfiability (SAT) 

(2)HXY =
∑
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problem, and most combinatorial optimization problems 
belong to the class of NP-complete problems.

Rydberg atom arrays can intrinsically access some NP-
complete combinatorial optimization problems such as 
maximum-cut [64] and maximum-independent-set (MIS) 
problems [89–91] of given graphs G(V, E). The individual 
atoms are mapped to vertices V. Edges E maps the nearest-
neighbor interactions governed by Rydberg blockade [92]. 
The MIS problem finds a set of the maximum number of 
vertices connected by edges. As an example of a 3-pan graph 
in Fig. 8(a), its MIS are {{1, 3}, {1, 4}}.

There are two challenges for the Rydberg-atom approach 
to solve combinatorial optimization problems. One is imple-
menting large-scale graphs with complex connections, which 
requires arbitrary all-to-all couplings between vertices. The 
other is finding an efficient way to obtain the problem solu-
tions. Embedding an arbitrary coupled graph is restricted 
because the maximum number of direct qubit connections 
is limited in a certain finite area and volume defined by the 
blockade radius rb for two- and three-dimensional atomic 
structures, respectively. An effective connection between 
qubits physically separated farther than the blockade radius 
can be implemented by placing an auxiliary atomic chain 
(so-called Rydberg quantum wire) between them. Rydberg 
quantum wires realize all-to-all connections, including non-
planar and high-degree graphs. The all-to-all connection can 
be implemented by demonstrating Kuratowski’s subgraphs 
which are essential for embedding non-planar graphs [90]. 
Figure 8(b) shows an example to construct a non-planar 
K3,3 graph in a three-dimensional space, by placing three 
Rydberg quantum wires (red, yellow, and orange spheres) 
between the data qubit atoms (blue spheres) {1, 4} , {1, 6} , 
and {3, 4}.

The quantum annealing method is an efficient way to find 
MIS problem solutions [93]. The MIS problem solutions are 
encoded to the ground states of the classical Ising Hamilto-
nian in Eq. (1) with Ω = 0 and 0 < Δ < U . By evolving the 
Hamiltonian from Δ < 0 and turning Ω on and off, the MIS 
solution of the K3,3 graph {{1, 2, 3}, {4, 5, 6}} are obtained 
as frequently observed configurations out of 26 = 64 micro-
states in a probability histogram of Fig. 8(c). The detailed 
time strategy of the Ω and Δ during the quantum anneal-
ing can be modified by variational algorithms to optimize 
the answer obtaining performances. For example, an entire 
annealing path is divided into f segments, and a closed-loop 
optimization is conducted to find an optimal set of inter-
mediate Hamiltonian parameters Δi(t) and the duration of 
each segment �i , as in Fig. 8(d). In Ref. [91], the variational 
quantum annealing algorithm is tested for various 80-verti-
ces graphs with up to 8 degrees, and the performances are 
compared with simulated annealing (SA), a classical solu-
tion-finding algorithm, as in Fig. 8(e). The circuit depths 
(effective quantum annealing duration) showing minimum 
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error ratio 1 − R (defined by the average number of excita-
tions) for the experiments are shorter than SA by more than 
two orders of magnitude.

4  Prospects

Up till now, the limit of the Rydberg quantum system size 
is about 250 atoms. The NP-complete problem’s quantum 
advantage (the advantage of computational performance 
over digital computers) is expected to be achieved with 
about 5,000 atoms [92]. The currently developed and oper-
ated Rydberg quantum computers use alkali atoms (mainly 
Rubidium and Caesium), making it difficult to expand the 
system due to the intrinsic limitation of measurement effi-
ciencies and decoherence [37, 94]. The next generation 
Rydberg quantum computers are being developed using 
alkali atoms in different environments, or using alkaline- 
or rare-earth atoms. In this section, we briefly review such 
newly developing platforms and technical efforts to improve 
the system performance, such as speed, scalability, stability, 
and controllability.

3D Rydberg atom arrays are already developed  [31, 
35] and would be merit in terms of scalability. But it also 
causes a drawback in fast image processing because of an 
additional dimension for the process. To reduce the pro-
cessing cost, Ref.  [95] devised a way to simultaneously 

image fluorescence out of a three-dimensional array on a 
two-dimensional plane using a programmed SLM located 
in the quasi-Fourier domain between the Fourier and image 
planes. The method enables the three-dimensional imaging 
of an array aligned along the azimuthal axis using a tunable 
imaging lens [35], which is impossible by the conventional 
imaging method.

The finite trap lifetime is also a factor that limits the 
maximum number of atoms in a Rydberg array. Such a lim-
ited lifetime may be extended in a cryogenic environment 
because it lowers the level of the vacuum. In detail, the life-
time can be improved by a factor of 100 by increasing the 
vacuum level from the 10−10 Torr, current level, to 10−12 
Torr, by lowering the environment temperature to liquid 
Helium 4 K with a pulse tube refrigerator. The experimen-
tal system with the cryogenic environment is described in 
Fig. 9(a). More than 300 atoms [96] are re-arrangement in 
this system, by achieving an effective lifetime of 6,000 s [97] 
in each optical dipole trap, where the low-temperature sys-
tem is expected to increase the lifetime of the Rydberg states 
three times by reducing black-body-radiation (BBR) induced 
decays from Rydberg states.

Single species atoms are naturally identical and provide 
an advantage of scalability compared with artificial atoms 
(i.e., superconducting qubits). However, such identity also 
makes it difficult to locally address an atom without disturb-
ing nearby atoms having the same resonance. In this regard, 

Fig. 8  Graph implementations and maximum independent set (MIS) 
problems with Rydberg atom arrays. a A graph is implemented 
where vertices and edges are mapped from individual atoms and 
nearest-neighbor interactions. In an example 3-pan graph, the solu-
tions of MIS problem are {{1, 3}, {1, 4}} . b K3,3 graph, which is one 
of Kuratowski’s subgraphs. c Implementations of the K3,3 graph with 
Rydberg quantum wires. Three quantum wires of red, yellow, and 
orange spheres connects distant qubit atoms (blue spheres) {1, 4} , 

{1, 6} , and {3, 4} , respectively. d A microstate probability shows 
the solutions of MIS problem of K3,3 are {{1, 2, 3}, {4, 5, 6}} . e A 
quantum variational algorithm to optimize the approximation ratio 
R of MIS solutions. f Comparing the performance of the quantum 
variational algorithm in experiments with simulated annealing (SA) 
for graphs with 80 vertices. a–d From  [90]. e–f Reprinted figures 
from [91] with permission from AAAS
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a dual-species atom array or heterogeneous isotopes were 
suggested for mid-circuit, non-demolition readout, and low 
crosstalk [98]. Rydberg-mediated entanglement between 
85 Rb and 87 Rb has been demonstrated [99]. Recently, two-
dimensional dual species arrays up to hundreds of or tens of 
atoms have also been generated for Rb-Cs [100] and 85Rb-87
Rb [101]. Thus, the implementation of dual-species experi-
ments would appear soon.

The divalent atomic elements, such as alkaline-earth and 
Ytterbium atoms, have been used in optical lattice clock 
platforms due to their stable transitions from richer energy 
structures. The next-generation Rydberg atom platforms 
are mainly developed based on these alkaline-earth-like 
atoms. The qubit-ground state �g⟩ of strontium-88 atoms can 
be mapped to one of the long-lived triplet state 5s5p 3P0 , 
which is prepared from the 5s2 1S0 atomic ground state �a⟩ by 
the narrow-line width clock transition. Unlike the previous 
alkali-atom cases, the one-photon transition to the 5s61s 3S1 

Rydberg state �r⟩ is conducted to eliminate additional dissi-
pations to intermediate levels. The detection fidelity of the 
Rydberg state is also improved using a rapid auto-ioniza-
tion process rather than the anti-trapping from the tweezer. 
The two-atom collective Rabi oscillation is obtained with 
long coherence of  60 cycles, and the high fidelity of Bell 
state 0.991(4) is recorded [102]. Other advantages, such as 
Rydberg trapping [103] and controllability by ion-core tran-
sitions [104], are also demonstrated, raising expectations for 
future development.

In the meantime, the alkaline-earth-like atom’s ground 
state structure has no electronic orbital angular momentum 
that provides a different kind of qubit encoding than the 
standard hyperfine qubits of alkali atoms. Their fermionic 
elements have nearly degenerate ground states only from 
nuclear spin degrees of freedom. They are of weak sensitiv-
ity to a magnetic field and can have a long coherence time 
of over 10 s in dipole traps without dynamic decoupling 
thanks to small differential Stark shift [105]. Especially, 
nuclear spin 1/2 states of the metastable ground state of 
ytterbium-171 have attractive characteristics for quantum 
error corrections [106], so these are emerging as a new 
option for implementing neutral-atom quantum comput-
ing. Recent experiments demonstrated high fidelity single-
qubit operations ( F > 99.9 %) for 171 Yb nuclear spins in 1S0 
ground state, by both fast Raman transition [107] and slow 
RF transition [108]. The relevant cooling transitions and an 
image of the trapped atomic array are shown in Fig. 9(b). 
Two-qubit entangling gate via Rydberg excitation is also 
demonstrated [108], showing its capability as a universal 
quantum processor.

5  Summary

In summary, Rydberg dipole blockade (entanglement tech-
niques) and atom-arrangement techniques are the break-
through technologies, triggering the latest progress in 
Rydberg quantum computing over the last decade. With 
the rapid development of the Rydberg platforms—such as 
large qubit numbers (scalability), coherence (stability), and 
defect-free rearrangements (controllability)—the Rydberg 
quantum computing community paves the way to quantum 
advantages. Rydberg quantum computers are hoped to be 
useful for classically difficult computations problems, such 
as logistics, production management, task management, and 
network design, as they seem to be best suitable for com-
binatorial optimization problems (traveler salesman prob-
lems, etc.). Consequently, start-up companies have recently 
been established to accelerate technology advancement and 
commercial use. Pasqal in France works with Browaey’s 
research team at Institut d’Optique to develop a Rydberg 
quantum computer using a two-dimensional rubidium atom 

Fig. 9  Currently developed trapped atomic platforms for the next 
generation. a Trapped atomic science chamber combined with a cry-
ogenic system. Reprinted from  [97] with permission. b The energy 
level of 171-Ytterbium atom. Reprinted from [107]
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array to solve combinatorial optimization problems. Quera 
in the United States is working with Lukin’s group at Har-
vard to improve the speed and fidelity of Rydberg quantum 
computers using about 200 rubidium atoms. Cold Quanta in 
the United States is a company that specializes in develop-
ing optical traps for Bose–Einstein condensation and has 
recently worked with Saffman’s group at Univ. of Wiscon-
sin to develop a circuit-based Rydberg quantum computing 
using a blue-detuned repulsive optical trap. Atom comput-
ing Inc. in the United States is developing a next-generation 
Rydberg quantum computer using alkaline-earth atoms in 
conjunction with NIST, the U.S. National Institute of Stand-
ards. Atom computing investigates the stabilization, automa-
tion, and development of new laser-driven technologies to 
improve the performance of Rydberg quantum computers. 
It might be interesting to see if the Rydberg quantum com-
puting acts as a game changer in the existing quantum com-
puting industry of superconducting qubits (IBM, Google, 
D-wave), ion-trapped qubits (IonQ, Quantinuum), and pho-
tons (Xanadu, PsiQuantum).
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