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Strong-field two-photon transition by phase shaping
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We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted
energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant
absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime
of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and
curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom

interaction.
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I. INTRODUCTION

Pulse-shape programming of ultrafast laser fields has
enabled the development of many nonlinear light-matter
interactions beyond simple transform-limited pulses [1]. By
using a programed pulse shape, one can coherently control an
atomic or molecular process by steering it through a desirable
quantum path [2,3]. This novel concept of ultrafast coherent
control has been applied to, for example, the optimization of
nonlinear processes, such as multiphoton absorption, second-
and third-harmonic generation, etc. [4-10]. In particular,
ultrafast coherent control in multiphoton absorption has been
studied widely in the weak-field regime where the energy level
structure of the matter remains unchanged and population
transfers are negligible [11-14]. There, the main goal is
the laser spectral shaping to induce quantum interference
among many near-degenerate quantum pathways for the given
absorption process. However, a short laser pulse of ultrahigh
peak intensity, although it enhances the nonlinear process, in
general, can sometimes fail to optimize such an absorption pro-
cess. This is due to light-induced energy level modifications,
such as the power broadening and the dynamical Stark shift.

Even before the advent of ultrafast lasers, there were ex-
periments performed with a two-photon absorption in atomic
vapors in a strong-field regime, such as the coherent pulse
breakup into subpulses [15]. In recent years, there have been
many studies toward strong-field coherent control [16-22]. It
is now well known that, in general, a control scheme devised in
the weak-field regime cannot be directly applied to strong-field
coherent control, although the partial information of the weak-
field solution can still be useful [16]. There have been many
approaches solely developed for strong-field coherent controls:
the selective population of dressed states [17], the strong-field
atomic phase matching [18], the phenomenological study of
the symmetry breaking in spectrotemporal two-dimensional
(2D) maps [19], the piecewise adiabatic passage [20], and
the adiabatic Floquet theory [21]. Also, we have developed
an analytical control approach in which the strong-field
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interaction is probed by laser pulses prepared in a polynomial
sum of spectral phase terms [22].

In the strong-field regime where the structure of the energy
levels is strongly altered during the pulse interaction, a more
complicated ultrafast pulse design is required. One obvious
strategy is to shape the laser pulse both in time and in
frequency, in such a way that the absorption condition is main-
tained during the interaction (i.e., the laser frequency has to
follow the energy difference of the concerned dressed states).

In this paper, we report an experimental demonstration of an
optimal pulse shaping in which the static and dynamic energy
level shifts are simultaneously compensated by a programed
phase of a laser field. We perform analytical calculations,
which guide the programming in a regime beyond perturbation
theory where the Stark shifts and the population transfers are
significant. In order to optimize the two-photon absorption
in atomic cesium in the ground states, the frequency of the
laser pulse is swept by following the temporal change of the
absorption energy gap. In the case of a Gaussian pulse, it
is shown that a temporal cubic phase is sufficient to retain
the resonance condition during the interaction, since it very
accurately allows one to recover the population transfer that
would occur without Stark shifts.

The paper is organized as follows: In Sec. II, we describe the
model and the pulse-shaping scheme. Section III is devoted to
the experimental description. In Sec. IV, we present the results
and their interpretation before concluding in Sec. V.

II. THEORETICAL CONSIDERATION

A. The model and the general phase-matching condition

For a two-state system that corresponds to a two-photon
transition, the effective Hamiltonian in the resonant approx-
imation can be written in the two-state basis {|g),|e)} (of
respective energy w,,w,) as

0 19(1) €200
. 2 , (D)
1Q@) e HMD A +58(1)

where (¢) (chosen real) is the two-photon Rabi frequency
and ¢(¢) is the phase of the laser field, relative to its mean

H(t) =h|:
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(or central) frequency wy. We have decomposed the detuning
as A = w, — wg — 2wy, the static two-photon detuning, and
8(t) as the relative dynamical Stark shift. We have omitted
irrelevant global phases. For a field amplitude of shape /A (%),
the Rabi frequency is of the form Q(z) = QyA(r) with Qg
proportional to the peak-field intensity /e, and the Stark
shift has the same time dependence: §(¢) = §p A(t) with §y also
proportional to Ipeax: §o = 7§29 (see Appendix A for details).
We consider Gaussian pulse shape A(¢) = exp[—(z/ 7)2].

The Hamiltonian can be written alternatively as H =

TTHT — inT1dT /dt,
1
Ht) =h [ 1 290 ] : 2)
3Q(t) A +8(t) —20(0)
in a representation V() = T"w(t) of the original state ¥ (z)
associated with the diagonal transformation (which leaves the
population unchanged) 7'(¢r) = |g)(g| + ¢ 7'2*®|e) (e|.

It is known (see, for instance, Ref. [23] for a proof,
which uses the geometric control theory and Ref. [18] for
an experimental demonstration through a learning algorithm)
that, for such a two-state Hamiltonian Eq. (2), the minimum
pulse area of the Rabi frequency to achieve the complete

transfer is [ dt Q(r) = 7 and that it is achieved when the
exact resonance is satisfied at each time:

20(t) = A+ 8(1). 3)

This phase-matching condition can be interpreted as a
compensation of the dynamical Stark shifts by the shaping
of the pulse to maximize the resonance effects. No additional
chirping of the field can decrease the m-pulse area. This
result, Eq. (3), can be derived within the lowest order of the
perturbation theory [24], which leads, for the probability of
population transfer, to the excited state,

t , 2
/ dr’ Q(t/)e—i[2¢(t’)—At’—f’ S(u)du) (4)
1

i

1
P,(t) ~ -
() 1

where the error is of order O(e3) with respect to half of the
partial area of the Rabi frequency: €(¢) = fzi dt’ Q(t")/2. Here,
t; indicates the initial time of the interaction. However, the
phase-matching condition Eq. (3) is valid beyond the perturba-
tion theory as long as the two-state model Eq. (2) is preserved.
It is of interest to determine general analytic pulse-shaping
programming to satisfy this phase-matching condition [22]. In
the following, we derive and test approximate conditions with
simple pulse shapes, which compensate the dynamical Stark
shifts, in order to lead to an efficient population transfer.

B. Optimal phase-matching condition near the peak value
of the Stark shift

We perform a series expansion of the dynamical Stark
shift and of the phase in the time domain to satisfy the
phase-matching condition near its maximum in absolute
value (i.e., around ¢ = 0). By truncating the series by keeping
the cubic terms, we get a transfer probability proportional to
the peak intensity of the field,

2
Pe(nve’s) % '/OO e—X2+i7]X+i9X2+i$X3 dX ’ (5)

oo
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where the dimensionless control parameters are
defined as 15 =240)t — (5o + A)r, 0 = H(0)r?, and
£ = [¢ (0)T> + 8yT]/3. We determine the optimal pulse shape
from the maximum value of Eq. (5), which corresponds to
n =6 = & = 0. This leads to nonzero linear and cubic phase
terms and a zero quadratic phase:

180 4
2¢(t) = (A + o)t — 3 1. (6)
37
Figure 1(a) shows the probability of strong-field TPE from
Eq. (5). The point O in Fig. 1(a) corresponds to the unshaped
transform-limited pulse, and O, corresponds to the optimal
pulse shape (7 = § = 0). The spectrotemporal shape at O), can
be illustrated as in Fig. 1(e). The control parameters ¢(0) in n
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FIG. 1. (Color online) (a) Strong-field two-photon excitation
(TPE) probability P,(n,£) (arb. units) calculated as a function of
dimensionless parameters: the frequency detuning n and the spectral
curvature . (b) Two-photon spectrogram (as shaded contour plot, see
Appendix B) of the unshaped pulse at the point O(§pt/3, — At —
80T), where A and § denote the static and peak dynamic level shifts,
respectively. The (negative) dynamic level shift is drawn as a full line.
(c) Control of the detuning along O A. (d) Spectral curvature control
along AB. (e) Two-photon spectrogram of the optimally shaped pulse
at the point 0,(0,0).
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and ¢ (0) in & denote the frequency offset (detuning) and the
frequency curvature in a spectrogram, respectively. Therefore,
the change of 1 along the path O A in Fig. 1(a) is the frequency
detuning as illustrated in Fig. 1(c). Also, the change of & along
AB is the frequency curvature control as shown in Fig. 1(d).

III. EXPERIMENTAL DESCRIPTION

For the experiment, we used subpicosecond infrared
pulses with a pulse energy of up to 100 pJ produced from
a Ti:sapphire laser amplifier system, which operates at a
repetition rate of 1 kHz. The pulses were shaped by an
acousto-optic programmable dispersive filter (DAZZLER) and
were illuminated on cesium atoms ('3*Cs) of a gas density
of 2.2 x 10! m™3 in an optical cell at room temperature.
The laser frequency was tuned to make the two-photon
resonant condition for the 6S;,,-85;,, transition at the low
laser intensity limit, which implies § ~ 0 (i.e., A = 0). The
laser peak intensity (at the focus) was varied in the range
of 0 ~ 0.21y (Iy = 10" W/cm?). We remark that intensities
above this range start to produce a significant ionization from
the upper state (see Appendix A for details of the model,
which include the ionization rate from the upper state). Then,
the atoms in the excited 85/, state decay first to the 7P/,
state and then down to the 65/, ground state. We used the
7P12-681 /> fluorescence signal collected by a photomultiplier
tube to estimate the excitation probability of the 6S,,-8S; 2
transition. The collision coherent time and the transit time
(average escape time of atoms that pass the beam diameter)
are 66 and 390 ns, and the the lifetime of 85/, is 90 ns [25].

The field, before its spectral shaping, is of Gaussian shape
with the mean frequency wo: En(t) = Egne /™ i@ The
programming target pulse £(¢) also is chosen to be of Gaussian
shape:

Et) =& o~/ pilant+(1)] (7
The shaping in the frequency domain is such that
E(@) = A@) e Ep(w), @®)

where 0 < A(w) < 1 is the transparency coefﬁcient~of the
shaping device, ¢(w) is the spectral phase, and F(w) =
% _Jr;o F(t) e~®" dt denotes the Fourier transform. The pulse
shaper is capable of tailoring both amplitude A(w) and phase
¢(w) in the frequency domain.

The laser beam focused onto the atoms has a spatial

intensity profile,

2
w
0 e—rz/wz(z) 9)

I(r,2) =1 )
(r,2) peasz(z)

where w(z) is the beam waist. As a result, we have determined
numerically that the averaged field intensity and, consequently,
the averaged dynamic Stark shift are approximately reduced
by a factor 2 with respect to a uniform intensity profile.
The calculated averaged dynamic Stark shift is roughly 8y =
—10 x 10" rad/s (or —10 Trad/s) at Ineak = 20 GW/cm?
(see Appendix A for a more detailed discussion about the
modeling of the driven cesium atoms).
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FIG. 2. (Color online) Fluorescence 2D maps measured at laser
peak intensities Iy /lp = 0.06, 0.14, 0.17, and 0.21, as a function
of a; and a,t? parameters. Contour lines are calculated by using
Eq. (5).

IV. RESULTS AND DISCUSSION

A. Verification of the optimal pulse shaping

The verification of the optimal pulse-shaping scheme
discussed in Sec. 1L is carried out by measuring the 7 Py -651 2
fluorescence as a function of the phase ¢(¢) defined in Eq. (7).
The result is shown in Fig. 2, where ¢(¢) is programed as
a function of the coefficients a; and a,, which define the
variations of the cubic phase:

o) = art + axt’. (10)

In our experiment, we use peak intensities such that
Ineak £ 0.2 and fields of duration T =90 fs (that corre-
spond to an intensity time profile of full width at half
maximum 150 fs). A field of peak intensity Ipeax = 0.471p =
47 GW/cm? leads to a complete population transfer (at the
focus). We have checked from numerics that one can use
Eq. (4) to determine the line shapes (and contour lines) in
a rather good approximation. Moreover, the use of Eq. (5)
instead of Eq. (4) to fit our experiments does not show a
significant difference. The experiment does not allow us to
very accurately determine the optimal value of a;.

Along the vertical lines in Fig. 1(a), the frequency detuning
experiments are shown in Fig. 3, compared with the numerical
calculations. Figure 3(a) shows the line shapes of the signal,
measured at the three different laser peak intensities, as
functions of the frequency offset a; at zero cubic phase (i.e.,
a, = 0). The maximum of the signal is found at a larger
frequency offset for a larger /.. A more careful analysis
shows that a; is proportional to I as predicted in Sec. II
[see Eq. (6)].

Also, the signal is measured as a function of the frequency
curvature a,t? at zero linear phase (i.e., a; = 0). As shown
in Fig. 3(b), the signal is measured with zero detuning (i.e.,
a; = 0) as a function of the frequency curvature a,t%. The
line shape is symmetric at a low intensity (the lowest red line)
but becomes gradually asymmetric at higher intensities [the
black (middle) and blue (upper) lines]. As the peak intensity
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FIG. 3. (Color online) Strong-field TPE of cesium studied at
three different laser intensities Ipea/lo = 0.21, 0.14, 0.10. The
theoretical lines from Eq. (5) are compared with the 7P;/,-6S),,
fluorescence signal measured (a) as a function of the frequency offset
ay, defined in Eq. (10), at zero-frequency curvature a, = 0; and (b)
as a function of the frequency curvature a,t? at zero-frequency offset
a; = 0. The upper panels show the two-photon spectrograms (shaded
contour plots, see Appendix B) overlapped with the corresponding
dynamically shifted energy levels (solid lines). The dotted lines
represent the center frequency wy of the shaped pulse.

increases, the overlap between the shifted energy level and the
laser spectral distribution gradually decreases. As a result, the
TPE in cesium at zero-frequency offset is better achieved by a
negative cubic phase term. This seems counterintuitive because
the curvature of the laser spectral distribution is opposite that
of the shifted energy level. However, as illustrated in the top
panel of Fig. 3(b), the pulse at E’ with a negative cubic phase
makes a better overlap with the detuned energy level than
the pulse at E with a positive cubic phase. Therefore, the TPE
rate in cesium at zero-frequency offset is higher with a negative
quadratic frequency chirp.

Figure 4 shows the pulse-shape dependence of the TPE in
cesium. For a simple detuning experiment (a, = 0), shown by

@ (b)
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FIG. 4. (Color online) Pulse-shape dependence of TPE in cesium:
The excitation is measured (a) as a function of frequency offset a; at
fixed frequency curvatures a, = 0, 6, and —6 Trad/s, respectively;
and (b) as a function of frequency curvature a, 7?2 at fixed frequency
offsets a; = 0, 10, and —10 Trad/s, respectively. The peak intensity
of the laser pulse is maintained at Jpes = 1.7 x 10'® W/cm?. Upper
panels: as in Fig. 3.
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FIG. 5. (Color online) Scaled strong-field two-photon absorption
profile P,/I%t? in Eq. (5) is plotted as a function of (a) n = (2a; —
80)T and (b) & = 2a,7° + 8y7/3.

the black line (with open squares) in Fig. 4(a), the excitation
maximum is found at a negative a;, since §y < 0. We note that
the optimal point for the intensity Jpeax = 1.7 x 10'® W/cm? is
located at a; = —4.25 Trad/s and a,7%> = 1.4 Trad/s from the
analysis of Sec. II. The curvature control experiments shown
in Fig. 4(b) are along the horizontal lines in Fig. 1(a). The
measured signals are of more complex line shapes: Near the
optimal detuning at a; = 0 [black line (with open squares)],
as the curvature a; increases, the signal gradually grows and
rapidly increases near a, = 0 (near O,). For a more (less)
detuned case with the positive (negative) a; in the blue (with
open circles) [red (with open triangles)] line, the signal rapidly
decreases (increases) near a, = 0.

Finally, from Eq. (5), the intensity invariant forms of
excitation probability can be calculated as a function of each
single parameter 1 and &, respectively,

P.(1,0,0) = /e "2, (11)

P0.0.6) = Y (1 LOLEL2 gy
k=0

(2k)!

They are drawn in Fig. 5 overlaid with the measured data points
from Fig. 2. We note that the overall probabilities of strong-
field two-photon transition P,/I°t> follow the theoretically
obtained intensity invariant forms from Eq. (5).

B. Further optimization of the phase-matching condition

One can further improve the approximate condition Eq. (6)
by determining conditions that allow one to recover the
population transfer that would be obtained without Stark shifts.
To that end, we determine the population transfer to the excited
state at the end of the process, from the numerical integration
of the Schrodinger equation, for various (strong or not)
peak-field amplitudes and Stark shifts by using a phase of the
form Eq. (10). Here, we do not consider the spatial averaging.
We first make the analysis by using the two-state model
Eq. (2). This is extended in Sec. IV C to a more accurate model
of cesium for strong fields. Figure 6 shows two typical contour
plots of the deviation from the population transfer to the excited
state achieved without Stark shifts, with a pulse area of (a) 7
and (b) /2, which correspond to a population transfer without
Stark shifts of 1 and 0.5, respectively. We obtain (by taking
A = 0) the approximate optimal function that allows one to
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FIG. 6. (Color online) Contour plot (in the logarithmic scale to
base 10) at the end of the pulse of the deviation from the population
transfer in the absence of Stark shifts as a function of the dimen-
sionless quantities 2a,; /8y and 2a,72/8; for A = 0, 8§, = Q, and (a)
Q) = /7 and (b) TQy = /7 /2. They correspond to complete and
half population transfers, respectively, in the absence of Stark shifts.

accurately recover the population transfer without Stark shifts:

3
2¢(t) = b <0.89t - 0.12%) . (13)

This has been obtained for a field intensity not larger than the
one that leads to a complete population transfer in the absence
of Stark shifts.

The demonstration of the exact optimal values of the
linear and cubic terms in Eq. (13) is found to be beyond the
scope of the accuracy of the present experiments. However,
it is remarkable that this optimized function is a simple
linear function of the peak Stark shift and, thus, of the
peak-field amplitude, as anticipated in the preceding analysis.
The value obtained for the linear term is close to the one
determined with the truncated expansion Eq. (6). We have
checked that the perturbation theory Eq. (4) gives a good
approximation for the population transfer until the transfer of
approximately 0.15 (error of 5%), which corresponds to a pulse
area approximately of 0.25r (consistent with the estimated
error of the perturbative expansion). Despite this limitation,
we have obtained the interesting result that the line shapes
can be approximately well described, up to a scaling factor
(which depends on the intensity and the Stark shifts and that
has to be determined with the numerical simulation), by the
perturbation theory, even for stronger-field intensities.

C. Optimized phase matching beyond the two-state
model for cesium

For the population transfer in cesium atoms between states
651/2-851,2, a two-state approximation is, in principle, valid
for intensities not larger than approximately 10 GW /cm?
(see Appendix A for a precise statement). By using the
four-state Hamiltonian Eq. (Al1) derived in Appendix A,
we numerically derive conditions of cubic phase matching
to get the best population transfer at the lowest possible field
intensity. The lowest field intensity has been found to be
I = 47 GW /cm? with the cubic phase:

3
26(t) = 8 <0.75t - 0.10%) . (14)

We get a population transfer of 99%, and the rest is ionized.
We remark that the use of only a linear phase already allows a
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good transfer (98%). We notice that, for increasing intensities,
by deviating from the two-state model, the optimal cubic phase
moves to smallest values in absolute values for the linear and
cubic terms. We have obtained numerically that the coefficients
after the spatial averaging saturates to a; ~ —4.5 Trad/s and
a,t* ~ 0.5 Trad/s for fields intensities beyond 20 GW /cm?
in consistency with the experimental results.

D. Strong-field TPE in other alkali-metal atoms

The TPE in cesium is characterized as nonresonant
for a sufficiently low-field intensity, which means that no
intermediate states are directly involved (see Appendix A
for the precise conditions of this statement). The dynamic
Stark shift of the 65/, state is mainly determined by its
coupling with the 6 P;; and 6 P3, states. The other couplings
lead to a ponderomotive shift, which is much smaller [26].
The 65/, state is upshifted by the dynamic Stark effect due
to its repulsion with the two dressed states |6P;»,—1) and
|6 P3,2,—1). The shift of 85 > is due to its coupling mainly with
the P states and weakly with the continuum. The net dynamic
shift between 65 ,,-8S|/» is negative (see Appendix A).

On the other hand, TPE in rubidium or in sodium features
an additional single-photon resonance. A typical femtosecond
laser pulse of the center wavelength at 778 nm, that, in
principle, allows TPE in rubidium between states 55,
and 5D3/ 5,0, indeed strongly induces population into the
intermediate nearly resonant state 5P;, [27]. Thus, the TPE
in rubidium should be described by a three-level model
581/2-5P3/2-5D33 5,2 even for moderate-field intensities. Note
that 5Py, can also be populated for strong fields. In sodium,
a laser pulse of center wavelength 777 nm induces the
381/2-4S1 2 TPE process but also a 451,,-7 Py > single-photon
process [24]. Therefore, TPE in sodium should be modeled
by a three-level system, similar to the case of rubidium. In
both cases, the detuning that corresponds to the one-photon
resonance is 1 order of magnitude smaller than the one in
cesium from 65, and 6 P3;.

V. CONCLUSION

In conclusion, we theoretically analyzed and experimen-
tally demonstrated the optimization scheme for the two-photon
two-level system in the strong-field regime. By analyzing the
optimal pulse shaping for the given TPE by using an effective
two-state model, we have analytically obtained the optimal
solution, which is to maintain the two-photon resonance condi-
tion nearly zero during the atom-light combined Hamiltonian.
The resonance excitation condition is well maintained during
the light-matter interaction by the linear and cubic temporal
phase terms.
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APPENDIX A: MODEL FOR THE CESIUM ATOM DRIVEN
BY A TWO-PHOTON PROCESS

A. The two-state approximation for a two-photon transition
1. Definition

The effective Hamiltonian for a two-photon transition
between two states of respective energies w, and w, by a laser
of phase ¢(t) = wot + ¢(¢) (with wy as its mean frequency),
which corresponds to the instantaneous (or effective) laser
frequency w;(t) = ¢(t) = wy + ¢(¢), reads in the resonant
approximation:

Lo)e?ie®
Hy(t)="h lwg+fg2@t RS0 | . (AD
1020w, + Su(t) — i3T.(1)

The Stark shifts S¢(7) and S.(¢), respectively, of the ground
and excited states, are due to their coupling to the intermediate
states m and the continuum channels £,

52( 1) 2 W j
Zh |:Z |/‘ij| BN

oy a) nj a)L(t)

+P/ Sl } (A2)
Ty

with j = e,g, u;, (respectively, i ;.g ¢) the transition dipole
moments between the state j, of energy fiw;, and the inter-
mediate state (respectively, the continuum state of the channel
¢ and of energy E), and w,; = o, — wj, wgj = E/h — w;.
P indicates the principal part of the integral when it is
indefinite (if w; + w; reaches the continuum). The effective
two-photon Rabi frequency between the ground and the excited
states is

Ext
Q) = — ( )|: - MgmMme
mete.g Om

Sjt) =

th wg — (,()L(l)

dE Mg:E e IE t:e
= L — A3
+/ h ;E/h—a)g—wL(t)] (A3)

The field intensity I(¢) is related to the field amplitude £(¢)
through the relation / [W/cmz] ~ 3.51 x 10'° (E[a.u.])z. Itis
usually a good approximation to consider the mean (or central)
frequency of the laser wy instead of the instantaneous one
w(t) to calculate the Stark shifts and the Rabi frequency. This
is generally the case when the frequency of the laser is chirped
on a very small interval Aw; = A¢ < wy. In that case, one
has a constant ratio r between the relative Stark shift §(¢) and
the two-photon Rabi frequency:

() = S.(t) — Sg(t) =rQ(1). (A4)

One has also considered that the excited state is lossy through
ionization by the laser. This is taken into account by summing
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the partial rates to the continuum channel £:

T
Loty =Y T, TO = —EOlpte:imno,tnon > (AS)
4

2h

Here, the partial rates have been written for the case of a single
photon resonant in the continuum from the excited state.

2. Condition of validity

This resonant two-state approximation is valid when, for
allm # g,eand j = g,e,

(2| < 1A jml,
we — 20| K o,

(A6a)

12l lwe — (A6b)

with the one-photon detunings defined as

Agp =Wy — 0y —0p, Agy =—0p +0, —wp, (AT)

which correspond to the one-photon Rabi frequencies:

Qi = —pjmE /. (A8)

B. The two-photon 65;,,-8S,, transition in cesium

We consider the two-photon transition in cesium between
the state g = 65,2 and e = 8S),,. The mean frequency wg
of the laser [which corresponds to the laser frequency of the
Fourier-transform pulse (i.e., before its shaping)] is exactly
two-photon resonant: wy = (wg — w,)/2 (i.e., A =0). The
relevant parameters for the considered transition are given in
Table I. We have determined the parameters that involve the
dipole moment couplings with Egs. (A2), (A3), and (AS) by
using Ref. [28] for the bound-bound couplings and the Fues
model potential [29,30] for the bound-free couplings (see also
Ref. [31] for a general discussion of model potential methods).

A single photon allows the ionization of the atom from
the excited state, however, through the small ratio |,/ 2| =
6.5 x 1073,

Two intermediate states (1 =6P;, and 2 = 6P3;, of
respective energy w; and w,) are close to a single-photon
resonance and lead to strong Stark shifts in the effective
two-state model Eq. (Al). Here, we derive the conditions
of validity for this two-state model. The static one-photon
detunings are

—4.47 x 1073 a.u., (A9)
—-1.94 x 1073 (A10)

Aglzwl—a)g—woz

Ap =wy) —wg —wy =

For a laser intensity I =10 GW/cm?, we get for the
peak single-photon Rabi frequencies (in a.u.) Q4 = 1073 <

TABLE 1. Parameters for the transition in cesium 65, ,,-85>.

r w, — w, (rad/s) o (rad/s)

2.29 x 10"
I, (rad/ps)
3.5 x 10731 (GW/cm?)

1.85 4.58 x 101
Se — 8, (rad/ps) Q (rad/ps)
—1.0I (GW/cm?) —0.541 (GW/cm?)
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Ag| and €, = 1.4 x 1073 ~ |A,,|, which, in principle,
g 8 8 P p
prevents the use of a two-state approximation. For inten-
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sities beyond I = 10 GW/cmz, we, thus, use a four-level
approximation:

Sg(t) %le(t) %QgZ(t) %Qge(t)
1Q .y 390
Mo =1 | 2 (1) Ag —¢(0)+ Si(1) .0 f 1(t) Al
1Q () 0 Agr — ¢(1) + Sa(t) 1Qa@)
Qge(t) 1940 1Qn) —2¢(t) + S.(t) — i 3Te(t)

However, we have checked numerically that the two-state
model is still a good approximation for peak intensities up
tol =10 GW/ cm?, in particular, due to the additional Stark
shift S, that allows state 2 to be sufficiently shifted from the
resonance.

APPENDIX B: SPECTROGRAM FOR TWO-PHOTON
PROCESSES

To provide an intuitive picture of the time evolution of
the spectrum of the laser, timefrequency spectrograms such
as the Wigner function have been proposed (see, for instance,

Refs. [32,33]). The Wigner function of an electric field E(z)
can be written as [32]

W(w,t) = f E*(w+ o' /2)E(w — &' /2) ' do. (B1)

For a two-photon process, we prefer to use a second-harmonic
Wigner function defined as
Wo(w,t) = / W' ,H)W(w — o' ,t)do'. (B2)

The absolute value of this second-harmonic Wigner function
defines the two-photon spectrogram used in Figs. 1, 3, and 4.
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