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Abstract: We have considered an analytical control of two-photon absorp-
tion process of atoms in the strong-field interaction regime. The experiment
was performed on gaseous cesium atoms strongly interacting with a
shaped laser-pulse from a femtosecond laser amplifier and a programmable
pulse-shaper. When this shaped laser-pulse transfers the atomic population
from the 6s ground state to the 8s excited state, we have found that both
positively- and negatively-chirped laser pulses, compared with a Gaussian
pulse, enhance this excitation in the strong-field regime of laser-atom
interaction. This unusual phenomena is explained because the temporal
shape of the laser intensity compensates the effect of dynamic Stark shift for
the two-photon resonant condition to be optimally maintained. We provide
analytic calculations using the strong-field phase matching, which show
good agreement with the experiment.
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1. Introduction

Coherent control of a quantum system enables an involving nonlinear optical process to be
optimized or steered through a desirable quantum path [1, 2]. This beautiful way of handling
a quantum mechanical object was considered in early days to break chemical bonds, with a
laser pulse pair [3], or with interference between continuous wave lasers [4]. Then, an optimal
control theory with feedback algorithms was used to deal with complicated light-matter interac-
tions [5]. The programming and maintaining the phase information contained in both the light
and matter are central to the success of the control. For this, the ultrafast optical technique of
programming spectral and temporal shapes of laser pulses, called ultrafast pulse shaping [6],
has been developed. Lately the field of coherent control has been of significant interest in using
shaped ultrafast pulses for the control of atomic and molecular dynamics [7, 8, 9, 10], even in
condensed matter phase [11].

In a simple non-resonant two-photon absorption (i.e., no intermediate state to be considered),
analytical studies of the dependence of the spectral phase of pulse shapes on the transition prob-
ability has been carried [12]. For a complex system, such an analytical approach is not easily
applicable. Instead, in an adaptive approach, without requiring a priori knowledge of the sys-
tem Hamiltonian a learning algorithm traces out a massive number of pulse shapes to search
an optimal solution [5]. This adaptive approach has been useful to get nearly optimal pulse
shapes for many light-matter interactions [13, 14, 15]. The adaptively found solutions some-
times fail to bring easy understanding of the underlying physics. Instead, an analytical control
experiment with a few physical parameters in conjunction with an Hamiltonian analysis may
better serve for this interest. Analytical controls of two-photon absorption have been carried out
in the weak-field regime (i.e., when the field-induced level shift is negligible), and also in the
strong-field regime [12, 16, 17, 18]. Most of these studies focus on Fourier domain shaping of
laser pulses. However, in the strong-field interaction regime, a spectro-temporal domain study
is necessary, because energy levels are time-dependent, shifted by the laser pulse. If the laser
intensity is strong enough to induce a dynamic Stark shift more than laser bandwidth, the other-
wise resonant (two-photon) condition for the absorption becomes no more satisfied, especially
at the peak of the pulse. As in the weak interaction case [19], transform-limit is not an optimal
shape in the strong-field interaction case, but with a different reason.
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In this paper, we consider an analytical control of two-photon absorption process in the
strong-field interaction regime. The performed experiment is a subclass of coherent controls,
as the dynamic processes of the two-photon absorption are controlled by shaping the phase of
laser pulses. However, to emphasize the difference from the adaptive controls [5], the term of
analytical control is used instead. The experiment is carried out for the two-photon absorption
of cesium by shaped ultrafast pulses from a programmable pulse-shaper. The fluorescence de-
cay signal is investigated as a function of frequency chirp, detuning, and the pulse intensity in
the vicinity of the weak-to-strong field crossover. The transition probability function is obtained
as a solution of the time-dependent perturbation theory, and compared with the experimental
results.

2. Control of Strong-Field Interaction

For a simple picture of the strong-field two-photon absorption, we consider control experi-
ments with shaped laser pulses. Figure 1 depicts the schematics of experiments, with (a) a
transform-limited pulse, (b) a positively-chirped pulse, (c) a negatively-chirped pulse, and (d)
a red-detuned pulse. The corresponding energy diagrams of cesium are shifted temporally by
the laser fields, as illustrated in the time and frequency plane. The spectrograms of the IR laser
pulses are drawn in red and their second harmonic spectrograms are in blue.

c) negative chirp d) detuning

time
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a) zero chirp b) positive chirp
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Fig. 1. Schematics of strong-field two-photon excitations of ground-state atomic cesium
with shaped laser pulses. The spectrograms of the laser pulses and of their second harmon-
ics are depicted in red and blue, respectively. The magenta arrows indicate the excitation
paths for the strong interaction cases, while the yellow arrows do for the weak interaction
cases.

Figure 1(a) shows the case when an un-shaped pulse strongly interacts with atoms. The
dynamic Stark effect causes the two-photon excitation temporally off-resonant from the two-
photon energy of the laser field. As a result, the most photons at the peak of the laser pulse do
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not induce atomic excitation. The excitation is expected to happen not at the peak of the pulse,
but more in both the head and tail of the temporal profile of the pulse. On the other hand, in
Figs. 1(b) and 1(c), the laser pulses have positive and negative frequency chirps, but of the same
pulse energies as in Fig. 1(a). These pulses shift the atomic energy levels less than Fig. 1(a)
and, thereby, the atom-field resonant conditions for the two-photon absorption are better main-
tained. In particular, the Stark-shift energy levels can resonantly cross the spectro-temporal
field densities in the second harmonic spectrograms (drawn in blue). We expect, therefore, to
achieve stronger atomic excitations by both positively- and negatively-chirped pulses, than by
a transform-limited pulse in Fig. 1(a). We note that the atomic excitation is expected to occur
earlier in time than the peak of the pulse for the positively-chirped pulse as in Fig. 1(b), and
later for the negatively-chirped pulse in Fig. 1(c). The Stark shift can be pre-compensated by a
frequency-detuning of the laser pulse as illustrated in Fig. 1(d). Then, the atom-field resonant
condition is satisfied at the peak of the pulse, and the pre-detuned pulse excites more than a
pulse of zero detuning.

3. Theoretical Consideration

3.1. Semiclassical Model Description

We consider a semiclassical Hamiltonian which describes a classical laser field interacting with
quantum mechanical atoms. The 6s state and 8s state of cesium are used as the ground and ex-
cited state. The energy difference between the ground and excited state corresponds to 411 nm
and the center wavelength of a laser pulse is 822 nm. The population of the 6s state is ex-
cited to the 8s state through a two-photon absorption process. The pulse involving two-photon
transition has the center wavelength 822 nm and the bandwidth 30 nm. The energy between
the intermediate state 6p and the ground state corresponds to 852 nm and, therefore, the pulse
can not approach the 6p state sufficiently. Cesium atom can be considered as a two-level atom
system. The Hamiltonian of a strong-field two-level atom system can be written as [20]:

H(t) =

(
ω(S)

g (t) χ∗(t)e−i[δ t−φ(t)]

χ(t)ei[δ t−φ(t)] ω(S)
e (t)

)
, (1)

where the two-photon detuning is given as δ = 2Ω−ωeg and φ(t) is the temporal phase of the

pulse to be applied to the atom system. ω(S)
g (t) and ω(S)

e (t) are the Stark shifted angular frequen-
cies of the ground and excited states, each states is coupled with the far-detuned intermediate
states:

ω(S)
e,g (t) = −∑

m

μ2
{e,g}m

h̄2

Ig(t)
cε0

ωm{e,g}
ω2

m{e,g} −Ω2
, (2)

where the two-photon Rabi frequency χ(t) represents two-photon coupling of the excited state
and the ground state:

χ(t) = −∑
m

μemμmg

2h̄2

Ig(t)
cε0

1
ωmg −Ω

. (3)

Here, μem(μmg) is transition dipole moments between the excited(ground) and intermediate
states. ωm{e,g} is defined as ωm{e,g} = ωm −ω{e,g} where ωm and ω{e,g} are the angular fre-
quencies of the intermediate and excited(or ground) states. I is the peak intensity and ε0 is the
permittivity of free space. g(t) is the temporal intensity profile given as g(t) = exp(−t2/τ2).
The excited population was measured via fluorescence from the 7p state.

To estimate the final population of the excited state, an atom-field phase α(t) can be used:

α(t) =
∫ t

−∞
Δ(t ′)dt ′ −δ t +φ(t), (4)
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where Δ(t) is defined as Δ(t) = ω(s)
e (t)− ω(s)

g (t). Generally, a strong-field phase matching
condition is maximizing the integral [15]:

|
∫ ∞

−∞
χ(t)exp[iα(t)]dt|2 (5)

for the fixed pulse area, such that
∫ ∞
−∞ χ(t)dt = π/2. If the atom-field phase is perfectly

matched, the integral is maximum. It is not proportional to the excited population exactly but
shows the predisposition that the excited population is getting larger when the value of the in-
tegral is increasing. We calculate the quantity of the phase matching condition to estimate the
excited population. The strong-field phase matching makes it possible to estimate the excited
population by an analytic form. The phase term α(t) increases rapidly with time. We expand
α(t) using t/τ parameter.

α(t) �
√

π
2

Δτ[1+(
t
τ
)− 1

3
(

t
τ
)
3
+ ...]−δ t +β t2, (6)

where the temporal phase φ(t) = β t2 for a linear chirp pulse is considered. The strongest field
around time-zero contributes to the excited population dominantly. In |t| < τ region, the first
term of α(t) is approximated to a linear function. And χ(t) is decreasing exponentially in
|t|> τ . Thus the contribution of higher order terms of t/τ is relatively small. Higher order terms
up to the third order could be neglected. After integration, we obtain the following expression
of the excited population:

Pe ∝ χ2
0

πτ2√
1+β 2τ4

exp

[
− (δ −Δ

√
π/2)2τ2

2(1+β 2τ4)

]
(7)

In the case of zero detuning and weak field, δ and Δ go to zero. Thus the excited population
is described as:

Pe ∝
1√

1+β 2τ4
(8)

It has a single symmetrical peak at zero chirp rate and the perturbation approach also gives the
same form of the excited population. In strong field and zero detuning, only δ goes to zero. The
excited population is given as:

Pe ∝
1√

1+β 2τ4
exp

[
− πΔ2τ2

8(1+β 2τ4)

]
(9)

It has two peaks at the certain negative and positive chirp rate. It shows the minimum at zero
chirp rate.

3.2. Dynamic Stark Shift in Cesium

We calculate the dynamic Stark shift of the 6s and 8s state of cesium. The ground state 6s
and excited state 8s couple to the intermediate states with angular momentum quantum number
l > 0, which is far from the resonance [21]. We neglect couplings to the intermediate states
with l > 1 because the ground and excited state have an angular momentum of l = 0. By the
angular momentum selection rule, Δl = −1,0,1 , couplings to the p states are dominant. And
the transition dipole moment has a significant value when total angular momentum selection
rule Δ j = −1,0,1 are satisfied. The s states are able to couple to not only the p1/2 states but
also p3/2. Because the 6p3/2 state is not enough far from the resonance, it does not couple to
the 6s state. The sum of shift in the transition from 6s1/2 determines the total dynamic Stark
shift. The 6s ground state and the 8s excited state shift 20.87 THz and 14.15 THz for the pulse
intensity of 1× 1011 W/cm2. Both are up-shifted but the shift of the 6s state is larger than the
8s state. Therefore the energy level difference is smaller [22] by -6.72THz.
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4. Experimental Setup

For the experiment, a Ti:sapphire laser amplifier system is used to produce 150-fs-short pulses
with a pulse energy of 100 μJ at a repetition rate of 1 kHz. The wavelength of the laser is
centered at about 822 nm. The laser pulse passes through an actively controlled acousto-optic
programmable dispersive filter (DAZZLER) [23], which controls the phase and amplitude of
an ultrafast pulse. It overcomes the two limitations of a spatial light modulator: free of coupling
of the spatial and temporal aberrations of the laser beam and providing for large dispersion
compensation ranges. The pulse shaper writes a polynomial function of the power spectrum of
the pulse, A(ω)eiΦ(ω). The spectral phase A(ω) is programmed as

Φ(ω) = a1(ω −Ω)+
a2

2
(ω −Ω)2 +

a3

6
(ω −Ω)3 +

a4

24
(ω −Ω)4 + ..., (10)

where a1 is the delay parameter. a2, a3, and a4 are the second, the third, and the fourth or-
der chirp parameters. In the experiment, the second-order chirp a2 is varied from −4× 104 to
4×104 fs2. The apertured pulse is focused on a cesium vapor cell by a lens of f = 125 mm. A
lens of shorter focal length induces a short Rayleigh range and it cause a longitudinal intensity
averaging effect. The focused spot on the vapor cell is imaged by a telescope into the photo-
multiplier (PMT, Hamamatsu R1527P). Additionally, a bandpass filter for 460 nm is inserted
before the PMT to block the undesirable fluorescence and scattered IR. The signal intensity
of the PMT is kept in the well-calibrated detection range so that the fluorescence signal from
7p is linearly measured. The excited 8s population is below the saturation limit and is linearly
mapped with the fluorescence signal. The experimental setup is shown in Fig. 2.

8S1/2

7P1/2

852nm

822nm

822nm
460nm

Fig. 2. Schematic setup of a shaped-pulse two-photon absorption experiment in atomic
cesium. A half-wave plate (HWP) and a polarization beam splitter (PBS) are used to vary
the peak intensity for the range of 0 - 2× 1011 W/cm2. The inset shows the energy levels
of atomic cesium.

5. Results and Discussions

In our experiment, we have changed the chirp rate a2, not β . As τ , β , Δ, and χ0 are functions
of a2, a linear chirp rate in frequency domain, these parameters satisfy the following relations
from the Fourier transform:

βτ2 = 2a2/τ2
0 , (11)

Δτ = Δ0τ0, (12)

χ0τ = χ(0)
0 τ0, (13)

where τ0 is the pulse duration at zero chirp rate. Δ0 and χ(0)
0 are the amplitude of the dynamic

Stark shift and the amplitude of the two photon coupling at time-zero with an unshaped pulse.
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After substitution the Eq. (11)-(13) to the Eq. (7), the formula of the excited population is
obtained:

Pe ∝
1√

1+4a2
2/τ4

0

exp

⎡
⎢⎣−1

2

⎛
⎝δτ0 −

√
πΔ0τ0

2
√

1+4a2
2/τ4

0

⎞
⎠

2
⎤
⎥⎦ . (14)

5.1. Intensity Dependence

To observe the effect of the dynamic Stark shift which is dependent on the pulse intensity, we
measure the 7p-6s fluorescence as a function of chirp rate a2 and pulse peak intensity. However,
the pulse peak intensity is also a function of a2, we use instead unshaped-pulse peak intensity,
or the intensity of the corresponding transform-limited (TL) pulse. So, we denote I0 for the
TL peak intensity of a given shaped pulse, where I0 = Iτ/τ0 and τ = τ0

√
1+(2a2/τ0)2. The

experimental data and the fitted lines are given in Fig. 3. From the Eq. (7), we obtain the fitting
formula of the fluorescence as a function of a chirp rate a2 which can be controlled in our
experiment:

Pe ∝
1√

1+4a2
2/τ4

0

exp

[
− πη2I2

0 τ2
0

8(1+4a2
2/τ4

0 )

]
, (15)

where η is a proportional coefficient. The experimental data was fitted by Eq. (15), the pulse
duration τ0 is fixed at 88 fs. Eq. (15) contains two terms; the first term has a single peak at
zero chirp rate which is caused by the effect of fixed levels. The second term has the minimum
at zero chirp rate due to the dynamic Stark shift. The two terms compete with each other; In
weak field, the first term dominates the second term and the single peak shape is presented as
shown in Fig. 3(b). While the pulse intensity is growing, the second term is dominant and a dip
at zero chirp becomes deeper and wider. Therefore the double peak shape is arising as shown
in Fig. 3(c).
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Fig. 3. (a) Measured 7p-6s fluorescence signal induced by two-photon absorption in atomic
cesium is plotted in color (red is the biggest) as a function of linear chirp rate a2 and
scaled TL peak intensity I0/Ic. The equi-signal levels are traced by contour lines which are
reconstructed by a model calculation with best fit parameters. The typical behaviors of the
signals are shown in the strong- and weak-field regimes in (b) and (c), respectively.

To estimate the onset TL intensity between the weak and strong field, we approximate

#108898 - $15.00 USD Received 17 Mar 2009; revised 21 Apr 2009; accepted 22 Apr 2009; published 23 Apr 2009

(C) 2009 OSA 27 April 2009 / Vol. 17,  No. 9 / OPTICS EXPRESS  7654



−1 −0.5 0 0.5 1 1.5
60

70

80

90

100

110

120

130

7p
-6

s f
lu

or
es

ce
nc

e(
ar

b.
)

818nm
822nm
826nm

chirp rate(104 fs2 )

chirp rate(104 fs2)

de
tu

ni
ng

(n
m

)

818nm
822nm
826nm
zero chirp

a) b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 4. (a) Calculated 7p-6s fluorescence signals of atomic cesium in color (white is the
biggest), plotted as a function of linear chirp rate and detuning. The TL intensity is I0 =
1.43Ic. (b) Measured 7p-6s fluorescence as a function of chirp rate

Eq. (15) around zero chirp:

Pe ∝

[
1+

1
8

πη2τ2
0 (I2

0 − I2
c )
(

2a2

τ2
0

)2
]

exp

(
−πη2τ2

0 I2
0

8

)
. (16)

It is a quadratic function of a2. The sign of I2
0 − I2

c determines whether a function is upward or
downward opened parabola and the onset intensity is Ic = 2/

√
πητ0. If the pulse peak intensity

is sufficiently high (low), the fluorescence function is upward (downward) opened parabola
around zero chirp rate and has a single peak (double peak). In our experiments, η is given as -
50.4 Trad/s at the I0 = 1×1011 W/cm2 with a 150 fs laser pulse. Thus the onset peak intensity is
calculated as Ic = 0.25×1011 W/cm2 in our experiments. Over the onset intensity, symmetrical
double peak shape becomes clear as shown in Fig. 3(a). It means that the use of the certain
negatively or positively chirped pulse is able to maximize the fluorescence. As a peak intensity
is growing with the fixed pulse duration, the level energy difference is varying rapidly. Thus a
larger chirped pulse can make the resonance region, maximizes the fluorescence. As shown in
Fig. 3, an interval between two peaks is lengthened due to the stronger dynamic Stark shift.

5.2. Center Frequency Detuning

Generally, the fluorescence has a single peak in weak field and double peaks in strong field.
But, a single peak line shape is recovered at the certain detuning, even in strong field. The
strongest field of the pulse at time zero, which mainly influences the excited population, is able
to keep the resonance on the two photon transition when the center frequency of the pulse is
shifted. In this case, a linearly-chirped pulse (frequency-swept pulse) breaks the resonance and
the excited population is reduced. From the Eq. (14), the 7p-6s fluorescence can be calculated
as a function of chirp rate a2, detuning δ , and TL intensity I0. In the case that I0 is fixed at
1.43Ic, the calculated fluorescence is plotted in Fig. 4(a) and the corresponding experimental
data is given in Fig. 4(b). The equi-signal line in Fig. 4(a) is written as:

C =
1
2

X2 −
√

π
4

ηI0τ2
0 X2Y +

τ2
0

2
Y 2, (17)
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Fig. 5. Measured 7p-6s fluorescence signals in symbols as a function of detuning at various
fixed peak intensities, compared with numerical fits in lines using Eq. (18).

where X = 2a2/τ2
0 and Y =

√
πηI0/2− δ . C is a constant related to the magnitude of the

fluorescence. X and Y are the scaled chirp rate and detuning. Eq. (17) is a formula of a looped
curve (a heart shape). In weak field, the pulse intensity goes to 0 and the curve becomes the
circle centered at the origin. If the pulse intensity is enough to induce the sufficiently large
dynamic Stark shift, the circle is distorted and becomes a shape of an inverted triangle centered
at the detuning of δp =

√
πηI0/2. Around the detuning of δp, the single peak is recovered

and, from the Eq. (14), the maximum fluorescence is obtained at zero chirp rate. Because the
difference of the dynamic Stark shifts is negative in cesium, the detuning for resonance is also
negative. As a result, the fluorescence maximum is obtained at the condition of (detuning, chirp
rate) = (δp, 0) at a given I0, as expected in Fig. 4(a).

In our experimental condition, the detuning δp is about 5.6 nm at the TL intensity I0 = 1.43Ic.
Figure 5 shows the 7p-6s fluorescence measured as a function of the detuning along the green
dashed line in Fig. 4(a). The chirp rate is fixed at 0. The formula of the 7p-6s fluorescence for
the fixed chirp rate is obtained from Eq. (14) as

Pe ∝ exp(−(δ −Δ0
√

π/2)2τ2
0/2). (18)

The detunings are 2.8 nm, 4.3 nm, and 6.2 nm for I0 = 0.51Ic, 0.77Ic, and 1.03Ic, respectively.
In Fig. 5, the detuning for the compensation of the dynamic Stark shift is found proportional to
I0, showing good agreement with Eq. (18).

6. Conclusion

We have experimentally demonstrated that transform-limited pulse shapes are not optimal
for the strong-field two-photon transitions, even in the case when intermediate states are off-
resonant as in atomic cesium. It turns out that a shaped pulse with a non-zero chirp rate, either a
positive or negative, is more efficient, in the strong-field interaction regime, than an un-shaped
pulse is. A semiclassical model calculation shows excellent agreements with the investigated
phenomenological relationship among the laser detuning, the chirp-rate, and the temporal in-
tensity shape of the laser pulse obtained for the optimal two-photon transition in atomic cesium.
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